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This paper introduces a general procedure for decomposition of non-stationary time series into a
permanent and a transitory component allowing both components to be stochastic. The
permanent component is shown to be a random walk with drift and the trapsitory or cyclical
component is a stationary process wi.h mean zero. The decomposition methodology, which
depends only on past data and therefore is computable in ‘real time’, is applied to the problem
of measuring and dating business ‘cycles’ in the postwar U.S. economy. We find that measured
expansions and contractions are of roughly equivalent duration and that our dating of cyclical
episodes tends to lead the traditional NBER dating and, to a lesser extent, the ‘growth cycle’
chronology of Zarnowitz and Boschan (1977).

1. Introduction

The idea that cyclical or transitory movements can be observed in
econcmic time series and can be separated from trend or permanent
components is a very old one and has played an important role in shaping
our thinking about economic phenomena. The traditional application of the
concept is, of course, 10 the ‘business cycle’. In their classic work on the
subject, Burns and ‘Mitchell (1946) have as a specific objective the dating of
cyclical episodes rather than numerical measurement of individual cyclical
movements. Their -approach emphasized identification of ‘turning points’,
defined to be points in time when a cross-section of economic indicators
changed direction from positive to uegative, or vice versa. Subsequent dating
of business cycles by the National Burcau of Economuc¢ Research has
foliowed the methodology of Burns and Mitchell. A number of objections to
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the method, both concentual and practical, can be put forward. On the
conceptual side, it is not clear in the context of a growing and perhaps
inflationary economy that to declare a cyclical ‘downturn’ one necessarily
should require that indicators show actual declines. To put it another way, if
the underlying trend in a time series is strongly positive, then downturns in
its cyclical component may occur without any negative change appearing in
the seres itself. Further, even if a downturn appears in the series it will
generally lag the downturn in the cyclical component. From a practical point
of view, particularly if one regards counter-cyclical policy to be feasible, a
serious shortcoming arises from the fact that turning points are detected only
with benefit of hindsight. In this regard it might be more useful to attempt
numerical measurement of cyclical movements to provide an on-going record
of cyclical movements a» they develop.

A number of approaches to numerical measurement of the business cycle
have been suggested, almost all of them ad hoc in nature. One method which
has enjoyed popularity with students of the business cycle assumes that trend
is a deterministic function of time, usually a polynomial [for example see
Fellner (1956)]. The cycle component emerges in this method as a residual
from the trend line. A rather unsatisfactory implication of this approach ‘s
that the long-run evolution of the time series is deterministic and therefore
perfectly predictable. If in fact the changes in economic series are a random
process in a statisticai sense, then the deviation of the series from any
deterministic path will grow without bound. Further, to impose a
detcrministic time trend when one is not in fact present may severely distort
the apparent statistical properties of the resulting cycle as shown recently by
Nelson and Kang (1981).

Friedman’s (1957, decomposition of measured income into ‘permanent’
and ‘transitory’ components may be interpreted as a trend-cycle
decomposition in a behavioural context. For empirical purposes Friedman
(1957, pp. 142-144) suggested that the permanent component might be
represented as a geometric distributed lag on past incomes which, as Muth
(1960) demonstrated, corresponds to the optimal forecast of income if income
is generated by a particular stochastic process. An impoitant virtue of such
an approach is its freedom from determinism, although to interpret
‘permanent’ as ‘expected’ requires rather strong prior assumptions about the
stochastic structure of the series in question. Another virtue is the fact that
the computation of the components depends only on one-sided filtering of
the data, that is, only past ohservations ave needed. There have been, to our
knowledge, no studies of the utility of exponential smoothing techniques (of
which Friedman’s procedurs is the simplest case) for measurement of
business cycles. Our own technique, however, will be seen to proceed rather
in that general direction though in a much more general framework which
includes exponential smoothiag as a special case.
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Nerlove (1967) has approached the problem of decomposition as one of
signal extraction, making use of a theorem due to Whittle (1903). The
fundamental difficulty with the signal extraction approach is that it requires
prior knowledge of the particular stochastic processes generating the
unobserved components, and tractable solutions appear to be limited to
rather simple cases.

Working in the traditional setting of business cycle analysis, Mintz (1969,
1972) has considered the problem of measuring and-dating growth cycies:

cvelical enisodes for an economv where aheolute downturng are rare and
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recession is marked only by a letup in the rate of expansicn. How can one
make the ‘invisible’ cycles in such an economy ‘visible’ by statistical
procedures? Two alternative measures of cycle in this setting are suggested
by Mintz. One is referred to as the ‘deviation cycle’ defined to be the resicual
from a centered, seventy-five month moving average of the data. The same
weights are used to form the moving average regardless of ihe series being
analyzed. At the ends of the series the missing thirty-seven observaticns
required by the centered movi.ig average are supplied by extrapolation of the

rate Gf changp nhcprvpr‘ Anring the ndt(nrnng h:n:nhl_fnnr months. The

second definition offered by Mintz, referred to as step cycles’, focuses on
fluctuations in rates of change. A ‘downturn’ is defined to be the endpoint of
a period of relatively rapid growth and an ‘upturn’ as the endpoint of a
period of relatively low growth. Exact dating of the step cycles proceeds via
maximization of the variance of mean changes over each tentative breaking
point between ‘high’ growth and ‘low’ growth. For German data there was
strong coincidence between the alternative measures of cycle, although Mintz
concluded that for final dating of cycles the deviation measure was preferred.
Applying the same methods to U.S. data, Mintz found that discrepancies
relative to the traditional NBER dates were all due to their resulting in
somewhat earlier turning points at cyclical peaks. On a theoretical level, we
might be concerned about using the same centered moving average as used
to compute trend for all series — ideally the procedure for extraction of
trend should be appropriately tailored to the stochastic properties of each
series considered. On a practical level, the centered moving average trend
presents a serious problem for studying on-going developments in indicator
series since future observations are unavailable for inclusion in the average.
To simply extrapolate recent past rates of change into the futurc to fill the
gap may well result in missing turning points at the time they occur, even
though they become apparent with hindsight.

The methodology for measuring cyclical movements which we propose is
based on the fact (proven in section 2) that any time series which exhibits the
kind of homogeneous non-stationarity typical of economic time series can be
decomposed into two additive components, a stationary series and a pure
random walk. The stationary part, which we call the cyclical component, is
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defined to be the forecastabie momentum in the series at each point in time.
The random walk is simply the mid-point of the predictive distribution for
the future path of the original series. Application of this iechnique begins
with investigation of the stochastic structure of each series and then exploits
the particular structure of each to arrive at the appropriate filters. The
associated computational procedures are completely operational. Since our
measurement of the cyclical component depends only on past data it may be
performed in ‘real time’ to monitor business developments. We show how
our cyclical component may be used to date cyclical turning points and to
judge the severity of economic contractions by reference to postwar U.S.
experience. We also compure our cyclical chronclogy with those of the
NBER and the ‘growth cycle’ chronology of Zarnowitz and Boschan (1977).

2. Decomposition of ARIMA process inio permanent and trapsitory
components

A large number of studiss over the last decade have shown that many
economic time series are well represented by the class of homogeneous non-
stationary ‘“ARIMA’ processes for which the first differences are a stationary
process of autoregressive-moving average form. Such processes may appear
to exhibit ‘trend’ when they driit persistently upward, but they are in fact the
accumulation of changes which in general may be autocorrelated and have a
positive mean value. We will assume that the data in hand are non-seasonal
since seasonal adjustment logically precedes business cycle analysis. The
applicability of our conceptual framework to the problem of seasonal
adjustment will be explored in a future paper.

We denote the observaticns on a non-stationary series by z, and its first
differences by w, so that w,=:z,--z,_,. If the w’s are stationary in the sense of
fluctuating around a ﬂxed mean with stable autocovariance structure then
the decomposition theorem due to Wold {1938) implies that w, may he
expressed as

Wt=ﬂ+8t+‘2"1£[—l+"" (1)

where y is the long-run mean of the w series, the A; are constants, and the &'s
are uncorrelated random disturbances with mean zero and variance ¢2. The
&'s are often referred to as ‘innovations’ since they are the part of w, and z,
which is uot predictable from the past. We note that many €co
senes requxre tranaformat '

Our concept of the decompos:tlon of z is motlvated ;'Zby"conmdenng the
relation of the current value z, to the forecast profile for future z’s. In our
framework, the forecast profile takes the place of a deterministic trend as the
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benchmark for the location of the series ard therefore for measuring the
cyclical component. The expectation of z,., conditional on data for :
through time ¢ is denoted by Z,(k) and is given by

2,(R)=E(Z,+k[...,Z,_l,z,}
=zt+E(Wt+1+"'+wt+kl"".wt-hwt) (ﬂ\
=z 4@ (1) ...+, (k),

since the z’s can be expressed as accumulations of the w’s. Now from (1) it is
easy to see that the forecast of w,,; at time ¢ is

W, (1) =p+ Aig + Aiv 18-+
3)

=.u+ Z A’jst' 1-j

i=1

since future disturbances ¢,,, are unknown but have expectation zero. We
are assured of convergence of summations ) J, by the stationarity of w [see
Box and Jenkins (1976, pp. 49-50)]. Substituting (3) into (2) and gathering
terms in each ¢, we have

’ W,

K ‘k+ 1
ft{k)=k#+z,+(}:ii)a,+(z l,-)s,_1+.... (4)
1 2 /

If we now consider very long forecast horizons we have approximately
2‘,(:\')::kﬂ+Z,+(Z)L,-)£,+(ZAi)s,_1+.,. (5)
1 2

by virtue of the convrrgence of ) A, It is now apparent that the forecast
profile 1s ~ymptotic (0 a linear function of forecast horizon k with slope
equal 1o p, the rate of drift of the series, and a ‘level’ (algebraically the
intercept) which its:If is a stochastic process. It is natural to interpret this
level as the permaent or trend component of z,. Denoting this level by Z, we
have :

‘ N

Zt==z,+(Zl,-)£,+(ZA,-)s,_1+.... (6)
1 2

To prove that Z, is a random walk with rate of drift u, we need only
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demonstrate that the first difference of Z, is u plus a non-autocorrelated
noise. Upon taking first differences in (6) we have

:Zt—ft—l=wt+(zii)8t~(llat"l +2‘28t*'2+"')5 (7)
1

which in view of eq. (1) for w, reduces to

2:"21-—1:”'*'(21:')&’ Ao=1. @)
0 .

Since ¢, is seriaily random by definition, the permanent component Z, is
indeed a random walk with rate of drift equal to u and a non-autocorrelated
innovation equal to () & 4,)¢,. To summarize, we have found that the forecast
profile approaches a linear path as it is extended into the indefinite future
and we have defined the permanent component of a series as the value the
series would have if it were on that long-run path in the current time period.
The permanent component is then the long-run forecast of the series adjusted
for its mean rate of change and we have shown that it follows a random
walk. . ,

Note that the variance of the innovation in the permanent component is
Q% %;?6* which may be larger or smaller than o2, the variance of the
innovation ¢, of the observed data z,, depending on the signs and pattern of
the 4’s. In particular, the innovations in the permanent component will be
‘noisier’ in this sense than those of the observed data if the A; are positive
which would typically be the case if the changes in z, the w’s, are positively
autocorrelated. For uxample, if the w’s were first-order autoregressive with
coefficient 0.5, then we would have 1,=0.5' and (39 4)*=4 so that the
variance of innovations in the permanent component would be four times as
large as the variance of the innovations in the observed data. Note also that
Z shifts from period to period in response only to the current innovation
while past events have no effect on z. Thus it is only ‘new information’ that
triggers a revision in our measure of the permanent part of z.

The permanent component as we have defined it may be interpreted as the
current observed value of z plus all forecastable future changes in the series
beyond the mean rate of drift. To see this we rewrite (6) in the equivalen
form :

2:=Z,+k1im D%, (1) +%,2)+... + %, (k)] — kn}, ©)

which sums all forecasted future changes and subtracts the portion due to
drift. The secc::d term on the right-hand side of (9) is the difference between
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z’s permanent component and its current value, in effect the momerntum
contained in z, at time ¢. It is natural to regard this second component as the
transitory or cyclical portion of z,. Denoting the cyclical portion by ¢, we
have the definition

¢,= lim {[W,(1)+...+W, (k)] - ky}

k- 0

~(Sa)at{(Sa)a-rr

the equivalence being apparent from eq. (6). Proof that ¢, is a stationary
process is immediate in the case that w, is a finite order moving average
process (4,=0, i>g) and follows in the autoregressive or mixed ARIMA case
from expansion of the inverse of the AR polynomial using partial fractions
[Box and Jenkins (1976, p. 54)].

Our definition of c, as the sum of forecastable future changes in z at tims ¢
implies that ¢ will generally b: positive when z is rising more rapidly than
average and negative when z is rising less rapidly (or falling) since first
differences of economic time series are predominantly positively
autocorrelatéd. To illustrate, suppose that the first differences of a particular
series have & representation as a first-order moving average process with
mean y. In that case we would have

w,=2,—2,_,=u+¢e+0_, (11)

so that in terms of the previous notation A,=6 and A4;=0 for all i>1. The
parameter 6 is bounded |0|<1 in general and will be positive if w, is
positively autocorrelated as is the case for most economic time series. From
(8) the first difference of the permanent part of z, is given by

Z—Z—1=p+[(1+0)], (12)

which is a random walk with rate of drift y and innovation [(1+0)e,]. The
variance of this innovation is (1+6)*¢* which will be larger than ¢ if the
changes in z are positively autocorrelated. The cyclical component of z, is
given by eq. (10) which becomes

c, = Be,. (13)

In this example, the cyclical part of z is serially random and is simply
proportional to the current innovation in z and therefore also to the current
innovation in the permanent part of z.
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As a check on the reasonableness of our results, consider the special case
of the random walk in z which is well known to characterize speculative
prices and corresponds to (11) with 6 set equal to zero. From (9) or (12) it is
apparent that Z,=z, and from (13) that ¢,=0 in this speclal case. These
results reflect the fact that a random walk contains no forecastable
momentum, in other words, there are no meaningful cycles in the stock
market. All price movements are permanent and current prices reflect the
best estimate of the ‘trend’.

In summary, the permaneni/transitory or trend/cycle decomposition
preposed in this paper is tailored to the stochastic structure of each time
series. The permanent component is invariably a random walk with the same
rate of drift as the original data and an innovation which is proportional to
that of the original data. The transitory component is a stationary process
which represents the forecastable momentum present at each time period but
which is expected to be dissipated as the series tends to its permanent level.
The remainder of the paper deals with application of this framework to
measurement of cyclical components in series traditionally monitored by the
NBER and comparison of the results with the postwar business cycle
identified and dated by the NBER.

3. Practical implementation of the technique and application to U.S. business
cycle indicators

In order to apply the results of section 2 to economic series we must have
at hand a procedure for representing such series as linear stochastic processes
and a general procedure for numerical computation of ¢, and Z, given the
data and the linear .tochastic model. Operationality requires, of course, that
we be able to write the linear process in terms of a finite number of
parameters, a requirement which is satisfied if we confine our attentinn to
linear processes of rational form; that is, where

wt:=u+(l—/:,lL—)\,zLZ—...)gl, (14)

may be written in the form

(1-0,L—...—0,L,
W, = + . 15
ST Sy —y (1)
or equivalently
wl=¢1wl'l+"’+¢pwf—p+”(1”¢1""-..-“(bp)
(16)

+81—0181—l “...*0‘18

t—q
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in which case {w,} is referred to as a mixed ARIMA process of orders p and
q. Stationarity requires that the roots of (1—¢,L—...—¢,L")=0 lie outside
the unit circle. Since theory will, in general, not provide the appropriate
values of p and g these must be supplied by analysis of the data. Box and
Jenkins have smphasized use of the sample autocorrelations of a stationary
series for model ‘identification’. Estimation of the ¢ and 0 parameters is in
general non-linear, involving minimization of a non-quadratic sum of squares
function if the ¢ are assumed to be normal. Rather than reviewing this
material here, we refer the reader to Box and Jenkins (1976), or Nelson
(1973) for the relevant details.

Given an estimated model for a particular series how may we proceed to
compute ¢,? We note first of all that forecasts w, (1), w,(2),... from any given
origin date are readily computed from past observations on w by direct
evaluation of the conditional expectations of successive future observations
implied by the estimated model [again see Box and Jenkins (1976), or Nelson
(1973)]. Given that sequence of predicted changes we may apply the formula
implied by (10). In practice the limit in (10) can be replaced by a large
number of forecasts: we used 100 forecasts and then checked the value of
W, (100)— & which in all cases was trivially small. '

To summarize, we have shown that the procedure for cycle measurement is
completely operational, involving the two steps: (1) identification and
estimation of an ARIMA model for the first differences of the non-stationary
series of interest, and (2) numerical evaluation of ¢, using a practical
equivalent of (10). At any given time the computed value of ¢, will involve
only past values of the observed series, avoiding the extrapolation problems
associated with ‘two-sided’ filtering techniques such as centered moving
averages.

To explore the implications of our technique we chose a set of indicators
. which the NBER uses in their composite indices of cyclical indicators or
were components before the Zarnowitz and Boschan (1975a, b) evaluation
and revision of the indices, or can be considered ‘important’ economic series.
The 38 indicators and their NBER classifications are listed in table 1.! The
series are observed monthly except for the five labelled quarterly.

Indicators (1) through (20) are components of the current NBER
composite indices, thus, of the 22 component series, only two were not
analyzed. The Stock Price Index is a leading indicator but is a pure random
walk process, hence does not have a cyclical component — which perhaps
underlies Paul Samuelson’s quip that, ‘stock prices have accurately predicted
nine of the last five recessions’. And the Average Prime Rate Charged by
Banks does not have a stochastic structure suitable for ARIMA modeling as

1A1] data for the historical series were obtained from various issues of the Business Conditions
Digest.
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Classification of economic indicators.

Stochastic
NBER cycle
Numter Indicator classification® 'classxﬁcatmn"
{1 Average Workweek of Production Workers,
Manufscturing L Lg(2)
2) Layoff Rate, Manufacturing L C
3) Manufacturer’s New Orders for Consumer Goods
and Mazterials, Constant Dollars L C
4) Index of Net Business Formation L L{3)
{5) Contracts awd Orders for Plant and Equipment,
Constant Dollars L L{3)
6) Index of New Private Housing Units Authorized by
Local Building Permits L Lg(6)
¥ Vendor Performance, Percent of Companies
Reporting Slower Deliveries L C
(8) Inventories on Hand and on Order, Constant
Dollars L C
19) Sensitive Price Index L C
(10) Total Liquid Assets L Lg(9)
(11) Money Supply (M1), Constant Dollars L L(8)
(12) Number of Employees on Non-agricultural
Payrolls, Establishment Survey C C
(13) Index of Industrial Production, Total C <
(14) Personal Income, Less Transfer Payments,
Constant Dollars C C
(15) Manufacturing and Trade Sales, Constant Dollars C C
(16) Index of Labor Cost per Unit of Qutput, Total
Manufacturing Lg Lg(10)
(17) Manufacturing and Trade Inventories, Total Book
WValue, Constant Dollars Lg Lg(3)
(18) Commercial and Industrial Loans Qutstanding Lg Lg(3)
(19) Average Dur tion of Unemployment Lg - Lg(4)
(20) Ratio Consumer Installlnent Debt to. Personal
Income g Lg(3)
(1) Average Weekly Initial Claims for Unemployment : e
Insurance, State Programs L L(2)
(22) Manufacturer’s New Qzders, Durable Goods
Industries L C
(23) Contracts ani O1de s “or Piant and Equinrent, :
Current Dolle =< 1. L(3)
(24; Cornoirte Proiits after Taxes Quarterly L C
125} Inazs of 2ricz per Unit of Labor Cost,
Ma:zixfact:’ring L L(2)
(26) Index o1 Inaustrial Material Prices C C
27 Muzufacturing and Trade Sales, Current Dollars  C - C
(28) Unemployment Rate, 15 Weeks and Over Lg Lg(9)
29) Business Expendltures New Plant and Eqmpment »
- Quarterly - o Lg - Lg@)
(30) Bank Rates on Short—Term Busmms Loans, g : R
Quarterly Lg Lg(3)
{313 Mannfactunng and Trade Inventories, Total B sok CL
Value, Current Dollars Lg Lg(3)
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Table 1 —cont nued |

Stochastic
) NBER cycle

Number Indicator classification®  classification®
(32) Unemployment Rate, Total ' U Lg(7)
(33) Personal Income U C
(34) Consumer Installment Debt Lg C
(35) Gross National Product, Constant Dollars

Quarterly C C
(36) Gross National Product, Current Dollars,

Quarterly U C
37 Number of Persons Unemployed U C
(38) Total Civilian Employment U Lg(2)

L == Leading, C = Roughly coincident, Lg=Lagging, U = Unclassified.
f”l‘he Stochastic Cycle Classification is developed at a later point in section 3 of the paper
using the proposed methodology of decomposition.

it remains unchanged for long periods of time. Indicators (21) through (34)
were components before the revision of the indices and the remaining series
possess economic importance.?

Since our analysis subsumes taking first differences, we analyze the levels
of some series which are differenced by the NBER. We study Consumer
Installment Debt whereas the NBER indicator is the change in this series
(see footnote 2), Inventories on Hand and on Order instead of its net change,
Total Liquid Assets rather than its percent change, and the index of
Sensitive Prices in place of Percent Change in Sensitive Prices. Because the
last three series are not readily available, they are cons.ructed by setting the
first value,equal to 100 and generating the remaining values from the change
or percent change data.

Five of the indicaiurs are stationary asd therefore, by deiinition, devoid of
the random 'valk component: Average WVotkweek of Production Workers,
Manufacturing; Vendor Periorraance, Percent of Comgpanies Repo.iiny
Slower Dcliveries; Layoff Rate, Manufacturing; 1’ nemploymeﬂt Roie, 15
Weeks and over; ancl the Total Unemployment Kate. Since these coras are
already a pure ‘cycle’, their cyclical components are defined as devi: A0S
from their respective means.

ARIMA models for the first differences were obtained for the 33 ron-
stationary indicators.® The data base extends from 1947 through 1974 for 23

"Indlcators (32) and (33) were componente of the indax of rougily coincident indivators but
are now unclassified by the NBER. Indicator (34), which is classified as lagging, was not part of
an index but the change in the series was in the index of leading inclicators.

3Details of the estimated models are available from the authoss.
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series and 1948 through 1974 for the remaining indicators. As one would
expect from the mature of output series, the first differences of many of our
indicators display departures from spatial homogeneity in raw form. This
tendency disappears after transformation to natural logs and thus the
majority of the models are for logged series. In many cases the models are of
multiplicative form, that is the moving average polynomial is written as the
product of two polynomials in L, and one of the polynomials will have non-
zero coefficients only at seasonal lags, that is 11, 12, or 13 months or 3, 4, or
5 quarters. Other models are not multiplicative but have coefficients at those
lags. Such models are essentially seasonal models, in apparent contradiction
to the indicators being the standard ‘seascnally adjusted’ series in general
use. Usually the seasonality which appears in the models is ‘negative
seasonality’ which is manifest in negative serial correlation at the seasonal
lags. Clearly, the adjustmaent procedures in use by the Department of
Commerce and the Bureau of Labor Statistics may not succeed in the
extraction of seasonality from these series but rather tend to leave some
correlation at lag 12 (4 for quarterly) or at adjoining lags or to introduce
negative correlation at those lags. This phenomenon has been noted
previously and commented on in Nelson (1972) and is explained by
Cleveland and Tiao (1976). Because we want the cycles to be free of any
spurious seasonal variation, the seasonal coefficients were disregarded for the
purposes of calculating the cycle components.

A few of the non-stationary indicator series are plotted along with their
cycle components in figs. 1 through 4. Also shown on the plots are the
NBER reference cycles, shaded from peak to trough. The time period
covered ends at the third month or first quarter of 1977, thus up to 1974 the
cycle components utilize later data in the sense that the data are used to
estimate the coefficients, and post-1974 cycle components are computed on a
real time basis. The plotted indicators are representative of the series in
gencral in that the cycle components not only tend to antlclpatf: movements
in the original series, reflecting the fact that the cycle components measure
the forecastable momentum of each series, but also typically lead the
traditional NBER turning points. Comparlson of figs. 3 and 4 also reveals
that the cycle component is as observable in nominal series as in real
measures; in fact, nominal and real GNP have very nearly the same cycle
components.

Descriptive comparison of the individual indicator cycles 1s gxea'ly
facili‘ated by construction of a compos:te index of movements in general
business conditions which can serve as a frame of reference for dlscussmg the
timing of individual indicators. Since differences in the scale of measurement
of indicators is irrelevant to their importance in an indcx, all of the cycle
series were divided by their siandard deviations prior to computation of
indices. Denoting the standardized cycle component of the ith series at time ¢
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by c; , then all linear composite indi. s, J,, are of the form

IL=3 B, (17)

where the weight applied to the ith component is denoted f; and there are M
components making up the index.*

The method used to choose the weights conforms to Burrs and Mitchell’s
classical definition of a business cyzle. They state: ‘Our definition presents
business cycles as a consensus among expansions in ‘many’ economic
activities, followed by ‘similarly general’ recessions, contractions, and
revival.’> Hence, it is necessary to select weights which extract a common
source of variation from the different series. Since principal component
analysis attempts to capture common movement in a set of observations, an
index which meets the criterion is the first principal component vector of the
constituent cycle series. Consequently the weights chosen maximize the
variance of the index and, because their inner product is unity, the variance
is independent of the weights.

The first principal component of the indicator cycles, which accounis for
32.89% of their total variation, is called the ‘Index of Business Conditions’
and pictured in fig. 5. The index captures clearly the leading nature of the
cycle components compared to the reference dates. Most of the indicator
cycles have positive weights in the index but eleven weights are negative.®
For six of the indicator cycles, layoffs (2), duration of unemployment (19),
initial unemployment claims (21), unemployment rates (28, 32), and nurnber
of unemployed (37), we expect the weights to be negative because the NBER
inverts those series, thus it is the negative of the ¢ycle which will move with
‘business conditions. Indicator cycles for manufactures’ new orders for
consumer goods in constant dollars (3) and for new plant and equipment
orders in constant (5) and current dollars (23) move counter to the original
series because of negatively autocorrelated data. When a series displays
negative serial correlation, a positive change in the series will frequently be
associated with negative momentum. The inverse behavior of indicator cycles
for housing permits (6) and unit labor costs (16) is explained below when the
indicators are classified with respect 10 timing.

Sample correlations between the index and the individual indicator cycles
are useful in describing the coherence of the indicators without computing all

“For the purpose of index construction, in the five cases of quarterly series the cycle
componeni measure was assumed to have occurred in tihe middle month of the quarter and the
cycle of the intervening months estimated by interrolation.

SBurns and Miitchell (1946, p. 6).

®The exact weights are available from the wuthors.



168 S. Beveridge and C.R. Nelson, A new approach to decorposition of economic time series

pair-wise correlations within the indicator set. By considering leading and
lagging ccrrelations, that is

COIT[I,,C,-’,.;.,‘], k=0, i"l, iz,..-, (18)

we may hope to characterize each of the indicator cycles as a leading,
lagging, or coincident indicator.

It may be of interest to note that the correlations are quite symmetric
around their maximum absolute value. The intensity of the correlation
dampens with increasing lag in both directions. This dampening of
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Fig. 5. Index of business conditions, monthly.

correlation together with the cyclical pattern of correlation is indicative of
the pseudo-periodic nature of indicator cycles and the index. If we were in
fact dealing with true periodic functions of time then correlation would fail
tc dampen out. The contemporaaeous correlations have signs appropriate in
view of the weights given the indicator cycles in the composite index.

From the cross-correlation re:ults, it was evident that the indicator cycle
for unit labor costs (16) has a negative weight in the index because the
indicator cucle lags behind business conditions tc the extent that its
contemporaneous movement reflects the previous cycle phase. On the oiher
hand, we firzd that the indicator cycle for housing permits (6) has a dominant
‘negative-lagging’ relationship with movements in the economy rather than
the NBER’s ‘positive-leading’ classification. This suggests that the housing
industry exhibits stronger (faster and more widespread) recoveries from
recessions than the deterioration it suffers going into a cyclical downturn.

Indicator cycles are defined as roughly coincident if the maximum
correlation (in absolute value) occurs within one month . of the
contemporaneous relationship and the rest are classified as leading or laggmg
depending on whether the maximum correlation occurs at a negative or
positive lag respectively. Qur suggested classifications and the number of
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months by which an indicator cycle leads or lags the index (shown in
parentheses) are presented in the last column of table 1.

Eleven of the classifications have changed, furthermore, the five indicators
which are unclassified by the NBER have been classifiec.” Ten of the eleven
reclassifications are for indicators which the NBER has categorized as
leading, a finding not at odds with the results of those who have attempted
to use leading indicators to forecast economic activity.® The one exception is
the consumer debt (34) indicator which the NBER classifies as lagging and
its changes as leading, thus, our roughly coincident classification falls
midway between the two. For the indicators which the NBER does not
classify, our lagging classification for the unemployment rate (32) indicator
cycle is in agreement with the classification for the fifteen weeks and over
unemploymen. rate (28) indicator cycle, and we would expect nominal GNP
(36) and Personal Income (33) to be coincident indicatcrs. Total Civilian
Employment which we have classified as lagging could equaily well retain its
unclassified stitus since its maximum correlation with business conditions
occurs in both the coincident and lagging categories.

4. The dating of U.S. growth and business cycles

The indicator cycles classified as roughly coincident can provide the basis
for a redating of U.S. growth and business cvcles. A composite ‘Index of
Roughly Coincident Indicator Cycles’ was formed from the first principal
component vector of the coincident cycles. The first component accounted
for 51.1% of the variation and the weights changed very little from those
used in the index of business conditions. The index is plotted in fig. 6 and
like its component cycles, it seems to lead traditional cycle dates.
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Fig. 6. Index of rcughly coincident indicator cycles, monthly.

"There may be no real disagreement in the reclassification of indicators constant dollar
inventories (8), sensitive prices (9), and liquid assets (10 for, as is discussed above, it is the
differences of these series that are utilized by the NBER.

8See, for example, Hymans (1973).
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Whiie cycle component decomposition is done on a real time basis, the
identification of peaks and iroughs can only be apparent in retrospect and
necessarily depend upon definitions which are to some extent crbitrary. The
rules we have used for identifying peaks and troughs are patterned after
those applied by Mintz in her analysis of U.S. data. First, reject a peak or
trough when there are like turns without an intervening opposite turn. In
deciding which of the pair to reject, we retain the largest (smallest) peak
(trough). Second, the minimum duration of a cycle phase is five months; and
the last criterion is that like turning points cannot be less than twelve
months apart. The remaining turning points are our estimates of postwar
growth cycles, that is, retardations in the rate of growth in the economy. The
turning points of the stochastic growth cycles are reported in columa (1) of
table 2 and, for comparison, Zarnowitz and Boschan’s (1977) growth cycle
dates are presented in column (2).°

In general, our datings are similar to Zarnowitz and Boschan’s (ZB);
however, the turning points in our index lead theirs with the exception of the
concurrent dating of the Feb. ’61 turn.!® Notable differences between the two
sets of datings are the following: the July 51 turning point is one year before
ZB’s date, the Dec. ’62 recovery precedes the turn in ZB’s index by twenty-
two months, and the Dec. 67 peak leads by eighteen months. We also found
growth cycles at Mar. *55-July °56, Nov. *58-Aug. ’59, and Aug. *75-Oct. 76,
which were not detected by ZB.

The composite index can also be utilized to date classical business cycles
which Burns and Mitchell have defined as absolute declines in economic
activity. Thus we add the further rules that to qualify as a business cycle
turning point, the index trough (peak) must be negative (positive) and the
momentum must be .1egative (positive) for at least five consecutive months in
the neighborhood of the trough (peak) date. This leads to the rejection of
five turning points and yields the business cycle datings given in column (3)
of table 2. The reference cycle dates established by the NBER are presented
in column (4) of the table.

Like the growth cycle analysis, the turning points in our coincident index
lead the classical turning points. Further, four distinct episodes are present in
our index which were not dated at all by classical methods. Taking the
NBER-dated episcdes in order we have

Nov. 48 (peak)-Oct. ’49 (trough): Our index records a loss in momentum
beginning in Nov. *47, a brief recovery in '48, and then falls steadily until the
April °49 trough. If the Nov. *47 peak is an artifact of the data (37 percent of

“The Zarnowitz and Boschan growth cycle datings are almost identical to Mmtz’s but have
the advariage of covering a Icrnger time period.

"“The first turning point in our index occurs in 1947 and thcrefore must be consxdered
tentative ince many of the component cycles do not begin until 1948.
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Table 2
Peaks(P) and troughs(T) in growth cycles and classical business cycles, 1947:01-1977:03.

(1) . 2) (3) “4)
Stochastic growth Zarnowitz-Boschan Stochastic business v

cycle turning growth cycle cyci: turning NBER
points turning points points reference dates
P-Nov 47 July 48 P-Nov. 47 Nov. '48
T-April '49 Oct.’49 T-Ap~il 49 Oct. 49
P-Aug. ’50 Mar. °51 P-Aug. ’50

T-July ’51 July °52 T-July *51

P-Nov. ’52 Mar. ’53 P-Nov. ’52 July ’53
T-Dec. 53 Aug.’54 T-Dec. °53 May %4
P-Mar. ’55 P-Mar. °55

T-July ’56 T-July °56

P-Dec. ’56 Feb. 57 P-Dec. ’56 Aug. °57
T-Feb. '58 April 58 I-Feb. °58 April '58
P-Nov. 58 - P-Nov. *58 April 60
T-Aug. ’59 T-Feb. *61 Feb. ’61
P-Jan. 60 Feb. '60 2-Dec. 61

T-Feb. 61 Feb. 61 T-Dec. ’62

P-Dec. 61 May '62 >-Feb. "66

F-Dec. 62 Oct. 64 ‘ 'T-Feb. *67

P-Feb. 66 June ’66 2-Dec. ’67 Dec. 69
T-Feb. ’67 Oct. 67 T-Nov. "70 Nov. 70
P-Dec. 67 Mar. ’69 >-Feb. *73 Nov. '73
T-Nov. 70 Nov. '70 T-Jan. *75 Mar. 75
P-Feb. *73 Mar. 73

T-Jan. *75 Mar. ’75

P-Aug.’75 .

T-Oct. *76

*Time period not examined by Zarnowitz-Boscharn.

the component cycles do not begin unti 1948), then we would date the
peak at June 48.

July ’53 (peak)-May ’54 (trough): This rec:ssion shows up in our index as a
peak in Nov. ’52 and a continuous loss in nomentum untii Dec. *53.

Aug. '57 (peak)-April ’58 (trough): We datc the beginning of this recession at
Dec. ’56 when the momentum in our index begins to decline until Avg. 57
and then falls rapldly until the Feb. *58 recovery. Thus the index detects the
weakenmg economy eight months before it is recognized by the NBER.

April '60 (peak)-Feb. ’61 (trough): The loss in momentum in our index
shows up nearly a year and one-half prior o the reference date, althou;:h the
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subsequent recovery is in the same month. The index peaks in Nov. °58,
declines until Oct. °59, and then reveals a short recovery which peaks in Jan.
’60 (the momentum at this point is less than half of its value on Nov. ’58).
This behavior suggests that ths economy had already entered a recession
when the steel strike occurred (July ’59 to Mov. *59) xud the peak detected by
the NBER is the temporary stimulant of the strike settlement.

Dec. 69 (peak)-Nov. *70 (trcugh): Our index does not show a pronounced
peak but instead gradually decreases beginning in Dec. ’67. The momentum
gives a picture of the econoiay sliding rather than falling into a recession.
Fhe trough dates, however, are the same.

Nov. *73 (peak)}-March 75 (trough): This cycle phase shows up as a distinct
loss of momentum in Feb. *73 and a recovery in Jan. ’75. From Aug. *74 to
Jan. *75 there is a substantial loss in momentum indicating that over this
period the economy suffered a rapid and severe contraction.

Four ‘mini-recessions’ which our index detects do not appear in the
classical chronology. The stochastic cycle decomposition employed in this
study, however, also allows one to gauge the severity of a recession. The
values of the coincident index at the ten recorded troughs are, in ascending
orderof- -magnitude, as follows: Mar. *75 (~—10.0), Feb. *58 (—8.6), April *49 (
—1.9), Dec. ’53 (—1.6), Feb. ’61 (—5.0), Nov. *70 (—4.5), July *51 (—3.5),
July ’56 (—2.3), Feb. 67 (—1.8), and Dec. 62 (—1.1). The ordering is in
general accord with other economic measures of the depth of a contraction,
the most recent recession being the most severe in the postwar period. Thus
it appears that the momentum in the economy has to fall to about —4.0
before a classical recession is declared.

5. Summzry and conclusions

In this paper we have introduced a general procedure for decomposition of
non-stationary time sesics into permanent and transitory components. The
theoretical basis for the utcomposition does not require that the time series
follow a deterministic trend uw! -uther hegins with the assumption that the
successive changes in the series (or its natural logarithm) are stationary with
a representation as an ARMA process. We show that the long-run forecast
profile for such a series at any point in time is asymptotic to a linear
function of time which we define as the permanent component awhen it xs
evaluated at the current time period. The pe ' n o
be always a random walk with drift. The b 1 the
component and the actual value of the series is lhen the momentum
contained in the series at that point in time and is a natural measure of its
transitory or cyclical component The traﬁsuory component is itself a




S. Beveridge and C.R. Nelson, A rew approach to decomposition of economic time series 173

stetionary process with mean zero. The innovations in the permanent
component are shown to be larger or smaller than those in observed data
depending oa th~ autocorrelation structure of the particular series in
question. The decomposition depends only on past data and therefore is
computable in ‘real time’.

The decomposition methodology was applied to the problem of measuring
and dating business ‘cycles’ in the postwar U.S. economy, using thirty-eight
indicator series monitored by the NBER. While out results should only be
regarded as exploratory, we feel that they warrant some tentative conclusions
based on comparison with the traditional NBER chronology as well as with
the recent work of Zarnowitz and Boschan (1977). A composite index of
indicator cycles formed by taking their first principal component allowed a
classification of individual indicators into leading, coincident, and lagging
categories which differed from that of the NBER in about one-third of the
cases. Since the index is a linear combination of stationary series with mean
zero it exhibits fluctuations above and below the mean of roughly equivaient
duration. Thus the measured expansions and contractions are of roughly
equivalent duration, in contrast with the traditional NBER chronology
which results in contractions which are very brief relative to intervening
expansions. Reflecting our definition of the cyclical component as the .
forecastable momentum in a series at a given time, our dating of cyclical
episodes tends to lead the traditional NBER dating and, to a lesser extent,
the ‘growth cycle’ chronology of Zarnowitz and Boschan (1977).
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