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This paper introduces a general procedure for decomposition of non -stationary time series into a 
permanent and a transitory component allowing both components to be stochastic. The 
permanent component is shown to be a random walk with drift 2nd the transitory or cyclical 
component is a stationary process wl_h mean zero. The decomposition methodology, which 
depends only on past data and therefore is computable in ‘real time’, is applied to the problem 
of measuring and dating business ‘cycles’ in the postwar U.S. economy. We find that measured 
expansions and contractions are of roughly equivalent duration and thal our dating of cyclical 
episodes tends to lead the traditional NBER dating and, to a lesser extent, the ‘growth cycle’ 
chronology of Zarnowitz and Boschan (1977). 

1. Introduction 

The idea that cyclical or transitory movements can be observed in 
economic time series and can be separated from trend or permanent 
components is a very old one and has played an important role in shaping 
our thinking about economic phenomena. The traditional application of the 
concept is, of course, to the ‘business cycle’. In their classic work on the 
subject, Burns and Mitchell (1946) have as a specific objective the dating of 
cyclical episodes rather than numerical measurement 65 individual cyclical 
movements. Their approach emphasized identtiication of ‘turning points’, 
defined to be points in time when a cross-section of economic indicators 
changed direction from positive to negative, or vice versa. Subsequent dating 
of business cycles by the National Bureau of Economic Research has 
followed the methodology of Burns and Mitchell. A number of objections to 
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the method, both conceptual and 

c@kal component may occur without any negative change appearing in 
the s&es it&f. Further, even if a downturn appears in the series it will 
generally lag the downturn in the cychcal component. From a practical point 
of view, particularly if one regards counter-cyclical policy to be feasible, a 
&ou:s shortcoming arises from the fact that turning points are detected only 
with benefit of hindsight. In this regard it might be more useful to attempt 
numerkal measurement of cyclical movements to provide an on-going record 
of cycllical movements as they develop. 

A number of approaches to numerica! measurement of the business cycle 
have been suggested, almost all of them ad ?ZOC in nature. One method which 
has enjoyed popularity with students of the business cycle assumes that trend 
is a deterministic function of time, usually a polynomial [for example see 
Felfner (1956)J The cycle component emerges in this method as a residual 
from the trend line. A rather unsatisfactory implication of this approach !s 
that the long-run evolution of the time series is deterministic and therefore 
perfectly predictable. If in fact the changes in economic series are a random 
process in a statistical sense, then the deviation of the series from any 
deterministic path will igrow without bound. Further, to impose a 
deterministic time trend when one is not in fact present may severely distort 
the ;r.pparent statistical properties of the resulting cycle as shown recently by 
Nelson and Kang (ll981). 

Friedman% (1957,, ’ decomposition of measured income into ‘permanent’ 
and ‘transitory’ components may be interpreted as a trend-cycle 
decomposition in a beha-vioural context. For empirical purposes Friedman 
(1957, pp. 142-W) suggesled that the permanent component might be 
represented as a geometric distributed lag on past incomes which, as Muth 
CI96Oi demonstrated, corresponds to the optimal forecast of income if income 
is generated by a particular stochastic process. An important virtue of such 
an approach is its freedom from determinism, although to interpret 
‘ manent’ as ‘expect&’ requires rather strong prior assumptions about the 
stochastic structure of the series in question. Another virtue is the fact that 
the computation of the components depends only on one-sided filtering of 
the data, that is, only paa observations ?re needed. There have been, to our 
knowledge, no studies of the utility of exponential smoothing techniques (of 
which Friedman’s procedur 12 is the simplest case) for measurement of 

siness cycles. Our own technique, however, will be seen to proceed rather 
that general direction though in a much more general framework which 
udes exponential smoothi ‘lg as a special case. 
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Nerlove (1967) has approached the problem of decomposition as one of 
signal extraction, making use of a theorem due to Whittle (1903). The 
fundamental difficulty with the signal extraction approach is that it requires 
prior knowledge of the particular stochastic processes generating the 
unobserved components, and tractable solutions appear to be limited to 
rather simple cases. 

Working in the traditional setting of business cycle analysis, Mintz (1969, 
1972) has considered the problem of measuring and. dating growth cycles: 
cyclical episodes for an economy where absolute downturns are rare and 
recession is mar.ked only by a letup in the rate of expansion. How can one 
make the ‘invisible’ cycles in such an economy ‘visible’ by statistical 
procedures? Two alternative measures of cycle in this setting are suggested 
by Mintz. One is referred to as the ‘deviation cycle’ defined to be the resibual 
from a centered, seventy-five month moving average of the data. The same 
weights are used to form the moving average regardless of Lhe series being 
analyzed. At the ends of the series the missing thirty-seven observations 
required by the centered movi,lg average are supplied by extrapolation of the 
rate of change observed during the adjoining twenty-four months. The 
second definition offered by Mintz, referred to as ‘step cycles’, focuses on 
fluctuations in rates of Change. A ‘downturn’ is defined to be the endpoint of 
a period of relatively rapid growth and an ‘upturn’ as the endpoint of a 
period of relatively low growth. Exact dating of the step cycles proceeds via 
maximization of the variance of mean changes over each tentative breaking 
point between ‘high’ growth and ‘low’ growth. For German data there was 
strong comcidence between the alternative measures of cycle, although Mintz 
concluded that for final dating of cycles the deviation measure was preferred. 
Applying the same methods to U.S. data, Mintz found that discrepancies 
relative to the traditional NBER dates were all due to their resulting in 
somewhat earlier turning points at cyclical peaks. On a theoretical level, we 
might be concerned about using the same centered moving average as used 
to compute trend for all series - ideally the procedure for extraction of 
trend should bf appropriately tailored to the stochastic properties of each 
series considered. On a practical level, the centered moving average trend 
presents a serious problem for studying on-going developments in indicator 
series since future observations are unavailable for inclusion in the average. 
To simply extrapolate recent past rates of change into the future to fill the 
gap may well result in missing turning points at the time they occur, even 
though they become apparent with hindsight. 

The methodology for measuring cyclical movements which we propose is 

based on the fact (proven in section 2) that any time series which exhibits the 
kind of homogeneous non-stationarity typical of economic time series can be 
decomposed into two additive components, a stationary series and a pure 

random walk. The stationary part, which we call the cyclical component, is 
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defined to be the forecast;lbie momentum in the series at each point in time. 
The random walk is simply, the mid-point of the predictive distribution for 
the future path of the originat series, Application of this technique begins 
with investigation of the &to&astir: structure elf each series an& the.n exploks 
the pa&&r struc&re of each to arrive at the appropriate filters. The 
associated computational procedures are completely operationab, Since our 
measurement of the cyclical component depends only on pask data it may be 
performed in ‘real time’ to monitor business developments. We show how 
our cyclical component ma;lr be used to date cyclical turning points and to 
judge the severity of economic contractions by reference to postwar U.S. 
experience. We also comprire our cyclical chronology with those of the 
NBER and the ‘growth cycle’ chronology of Zarnowitz and Boschan (1977). 

2. Ikeomposition of AROMA process into permanent and trawitory 
components 

A large number of studi::s over the last decade have shown that many 
economic time series are well rc=:presented by the class of homogeneous non- 
stationary ‘ARIMA’ processles flor which the first differences are a stationary 
process of autoregressive-moving average form. Such processes may appear 
to exhibit ‘trend’ when they drijt persistently upward, but they are in fact the 
accumuIation of changes which in general may be autocorrelated and have a 
positive mean value. We will assume that the data in hand are non-seasonal 
since seasonal adjustment Yogjcally precedes business cycle analysis. The 
applicability of our conce;;:)tual. framework to the problem of seasonal 
adjustment will be explored in a. future paper. 

We denote the observations on a non-stationary series by zt and its first 
differences by w, so that w, =: z, -- z,__ t. If the w’s are stationary in the sense of 
fluctuating around a fixed mean with stable autocovariance structure then 
the decomposition theorem due: to Wold (1938) implies that ~7, may he 
expressed as 

where p is the long-run mean of the w series, the & are constants, and the E’S 
are uncorrefated random disturbances with mean zero and variance cr2. The 
Es are often referred to as “innovations’ since they are the part of w, and z, 
which is nor. predictable from the past. We note that many ~onomic time 
series rquire transformatioit to riatural logs before the fir& $iTerenCes , .- , 
exhibit stationarity, so the- w’s th&. are ‘c&t&o& r&es of:chairge. _ ’ ’ * 

Our concept sf the decomposition of z is motivated .by considering the 
lati~n of the current value zb to the forecast profile for future 2’s. In our 
amework, the foret;ast profile takes the place of a deterministic trend as the 
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benchmark for the location of the series arA therefore for measuring the 
cyclical component. The expectation of z,~~ conditional on data for z 
through time t is denoted by ;,(k) and is given by 

=z,+$(l)+...+G,(k), 

since the J’S can be expressed as accumulations of the w’s. r\Tow from (1) it is 
easy to see that the forecast of v++ i at time t is 

~r(i)=~+;liE,+jli+lE,-l+*** 
(3) 

m 

=)A+ C ij&t l-j, 

j=l 

since future disturbances 8, + 1 are unknown but have expectation zero. We 
are assured of convergence of summations clzi by the stationarity of w [see 
Box and Jenkins (1976, pp. 49--X9]. Substituting (3) into (2) and gathering 
terms in each L:, we have 

If we now consider very long forecast horizons we have approximately 

(4) 

by virtue OF the convf rgence of c& It is now apparent that the forecast 
profile is s-.ymptotic L~ a linear function of forecast horizon k with slope 
equal 1.0 14, &e rate of drift of the series, and a ‘level’ (algebraically the 
intercept) which itsAf is a stochastic process. It is natural to interpret this 
level as rho wwwmt or trend component of zt. Denoting this level by 2, we , 

have 

TO prove that Zf is a random walk with rate of drift p, we need only 
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demonstrate that the first difference of & is p plus a non-autocorrelated 
noise. Upon taking first differences in (6) we have 

which in view of eq. (1) for w, reduces to 

Since E, is serially random by definition, the permanent component Zt is 
indeed a random walk with rate of drift equal to p and a non-autocorrelated 
innovation equal to (C$ &) t. E “I’o summarize, we have found that the forecast 
profile approaches a linear path as it is extended into the indefinite future 
and we hate defined the permanent component of a series as the value the 
series would have if it were on that long-run path in the current time period. 
The permanent component is then the long-run forecast of the series adjusted 
for its mean rate of change and we have shown that it follows a random 
walk. 

Note that the variance of the innovation in the permanent component is 
(c;P i.i)2a2 which may be larger or smaller than a2, the variance of the 
innovation :E~ of the observed data z,, depending on the signs and pattern of 
the A’s. In ,particular, the innovations in the permanent component will be 
‘noisier’ in this sense than those of the observed data if the ;li are positive 
which would typically be the case if the changes in z, the w’s, are positively 
auto-correlated. For ::xample, if the w’s were first-order autoregressive with 
~ffient OS, then we would have Ai =O.S’ and (Co” Ai)’ =4 SO that the 
variance of innovations in the permanent component wo?llld be four times as 
large as the variance of the innovations in the observed data. Note also that 
2 shifts from period to period in response only to the current innovation 
while past events have no effect on Z. Thus it is only ‘new information’ that 
triggers a revision in our measure of the permanent part of z. 

The permanent component as we have defined it may be interpreted as the 
current observed value 
beyond the mean rate 
f0m 

Z,=q+ lim 
k-‘a, 

of z plus all forecastable future changes in the series 
of drift. To see this we rewrite (5) in the equivalent 

which sums all forecasted future changes and subtracts the portion due to 
rift. The secc:~J term on the right-hand side of (9) is the difference between 
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z’s permanent component and its current value, in effect the momentum 
contained in z, at time t. It is natural to regard this second component as the 
transitory or cyclical portion of 2,: Denoting the cyclical portion by c, ue 
have the definition 

c,= lim ([G,(l)+ l . l +G,(k)] - kp} 
3 

-;‘, 

i#Ii &t+ fiii E,-l”km** 9 

1 ( > 2 

(is) 

the equivalence being apparent from eq. (6). Proof that c, is a stationary 
process is immediate in the case that W, is a finite order moving average 
process (a, =O, i > 4) and follows in the autoregressive or mixed ARIMA case 
from expansion of the inverse of the AR polynomial using partial fractions 
[Box and Jenkins (1976, p. 54)3. 

Our definition of c, as the sum of forecastable future changes in z at time t 

implies that c will generally bl: positive when z is rising more rapidly than 
average and negative when z is rising less rapidly (or falling) since first 
differences of economic time series are predominantly positively 
autocorrelated. To illustrate, suppose that the first differences of a particular 
series have r’: representation as a first-order moving average process with 
mean JL In that case we would have 

so that in terms of the previous notation & = 8 and pi = 0 for all i > 1. The 
parameter 8 is bounded It?l< 1 in general and will be positive if w, is 
positively autocorrelated as is the case for most economic time series. From 
(8) the first difference of the permanent part of z, is given by 

- _ 
2 --2,-l t =~+cu t-em (12) 

which is a random walk with rate of drift p and innovation [( 1 + 6)sJ. The 
variance of this innovation is (1 + 8)2rr2 which will be larger than ci2 if the 
changes in z are positively autocorrelated. The cyclical component of z, is 
given by eq. (10) which becomes 

c, = OEt. (13) 

In this example, the cyclical part of z is serially random and is simply 
proportional to the current innovation in z and therefore also to the current 
innovation in the permanent part of z. 
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AS a check on the reasonableness of our results, consider the special case 
of the random walk in z which is well known to characterize speculative 
prices and corresponds to (11) with 0 set equal to zero. From (9) or (12) it is 
apparent that Zt:= Z, and from (13) that c, = 0 in this special case. ‘These 
results reflect the fact that a random walk contains no forecastable 
momentum, in other words, there are no meaningful cycles in the stock 
market. All price movements are permanent a,nd current prices reflect the 
best estimate of the ‘trend’. 

In summary, the permanent/transitory or trend/cycle decomposition 
ppoposed in this paper is tailored to the stochastic structure of each time 
series. The permanent component is invariably a random walk with the same 
rate of drift as the original data and an innovation which is proportional to 
that of the original data. The transitory component is a stationary process 
which represents the forecastable momentum present at each time period but 
which is expected to be dissipated as the series tends to its permanent level. 
The remainder of the paper deals with application of this framework to 
rsneasurement of cyclical components in series traditionally monitored by the 
NBER and comparison of the results with the postwar business cycle 
identified and dated by the NBEW. 

3. Practical implementation of the technique and application to U.S. business 
cycle iudicators 

In order to apply the results of section 2 to economic series we must have 
at hand a procedure for representing sucl’l series as linear stochastic processes 
and a general procedure for numerical computation of c, and Z, given the 
data and the linear ,%ltochastic model. Operationality requires, of course, that 
we be able to write the linear process in terms of a finite number of 
parameters, a requirement which is satisfied if we confine our attention to 
linear processes of rational form; that is, where 

w,==/.I+(1-1,L-il,L2-...)&,, (14) 

may be written in the form 

(l-0, L-7.. -O,E)&, -. 
wf==p+ (1-&L,-...--&LP)’ 

or equivalently 

(15) 
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in which case (w,) is referred to as a mixed ARIMA process of orders p and 
+ Stationarity requires that the roots of (1 - &L--- . m. - &,Lp) = 0 lie outside 

the unit circle. Since theory will, in general, not provide the appropriate 

values of p and 4 these*must be supplied by analysis of the data. BOX and 
Jenkins have emphasized use of the sample autocorrelations of a stationary 
series for model ‘identification’, Estimation of the (b and 6 parameters is in 
general non-linear, involving minimization of a non-quadratic sum of squares 
function if the &t are assumed to be normal. Rather than reviewing this 
material here, we refer the reader to Box and Jenkins (1976), or Nelson 
(1973) for the relevant details. 

Given an estimated model for a particular series’ how may we proceed to 
compute c,? We note first of all that forecasts $, (1 ), 6, (2), . . . from any given 
origin date are readily computed from past observations on w by direct 
evaluation of the conditional expectations of successive future observations 
implied by the estimated model [again see Box and Jenkins (1976), or Nelson 
(197311. Given that sequence of predicted changes we may apply the formula 
implied by (10). In practice the limit in (10) can be replaced by a large 
number of forecasts: we used 100 forecasts and then checked the value of 
$,( iO0) - fi which in all cases was trivially small. 

To summarize, we have shown that the procedure for cycle measurement is 
completely operational, involving the two steps: (1) identification and 
estimation of an ARIMA model for the first differences of the non-stationary 
series of interest, and (2) numerical evaluation of c, using a practical 
equivalent of (10). At any given time the computed value of c, will involve 
only past values of the observed series, avoiding the extrapolation problems 
associated with ‘two-sided’ filtering techniques such as centered moving 
averages. 

To explore the implications of our technique we chose a set of indicators 
which the NBER uses in their composite indices of cyclical indicators or 
were components before the Zarnowitz and Boschan (1975a, b) evaluation 
and revision of the indices, or can be considered ‘important’ economic series. 
The 38 indicators and their NBER classifications are listed in table 1 .l The 
series are observed monthly except for the five labelled quarterly. 

Indicators (1) through (20) are components of the current NBER 
composite indices, thus, of the 22 component series, only two were not 
analyzed. The Stock Price Index is a leading indicator but is a pure random 
walk process, hence does not have a cyclical component - which perhaps 
underlies Paul Samuelson’s quip that, ‘stock prices have accurately predicted 
nine of the last five recessions’. And the Average Prime Rate Charged by 

Banks &es not ha.ve a stochastic structure suitable for ARIMA modeling as 

lAl1 data for th’e 9aktorical series were obtained from various issues of the Business Conditions 
Digest. 
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Table 1 

Classification of economic indicators. 

Number Indicator 
__I- 

Stochastic 
NBER cycle 
classification8 classificationb 

Average Workweek of Production Workers, 
Manu%cturing L 

Layoff Ra!e, Manufacturing L 
Manufacturer’s New Orders for Consumer Goods 

and Materials, Constant Dollars L 
Inldex of Net Business Formation L 
Contracts and Orders for Plant and Equip-ment, 

Constant Dollars L 
Index oq New Private Housing Units Authorized by 

Local Building Permits L 
Vendor Performance, Percent of Companies 

Reporting Slower Deliveries L 
Inventories in Hand and on Order, Constant 

Dogars L 
Sensitive Price Index L 
Total Liquid Assets L 
Money Supply (Ml), Constant Dollars L 
Number of Employees on Non-agricultural 

Payrolls, Establishment Survey C 
Index of Industrial Production, Total c 
Personal Income, Less Transfer Payments, 

Constant Dollars C 
Manufacturing and Trade Sales, Constant Dollars C 
Zndex of Labor Cost per Unit of Output, Total 

Manuf&turing Lg 
Manufacturing and Trade Inventories, Total Book 

Value, Constant Dollars Lg 
Commercial :qnd Industrial Loans Outstanding Lg 
Avlerage Dur tion of Unemployment Lg 
Ratio Consumer Installment Debt to Personal 

Income Lg 
Average Weekly Initial Claims for Unemployment 

Insuran~, State Programs 1, 
Manufacturer’s New O&r% Durable Goods 

Industries L 
C~latracts a&i o&?: Sk. f’iant and Equipzzent, 

Current Do& ~5 r 
Corpo;gte Pro&~ Ltfter Taxes, Quarterly i 
Xn.%tii & 2ri?~ pr Unit of Labor Cost, 

Ma2*&cttring ‘L 
fndex 011nci~stria.l Material Prices C 
&.rzufacturiny and Trade Sales, Current Dollars C 
Unemployment Rate, 15 Weeks and Over Lg 
Business Expenditures, New Plant and Equipment, 

QllarterlY " 
Bank Rates on Short-Term Business Loans, 

u 

Quarterly Lg 
Manufacturing and Trade Inventories, Total Brook 

Value, Current DolIzs Lg 

Ltm 
C 

C 
L(3) 

W 

Lg @? 

C 

C 
c 

C 
C 

U(3) 
Lg (3) 
u3w 

W3) 

L(2) 

c 

L(3) 
C 

L(2) 
c - 
c 
Lg (9) 

Lx (2) 

Lgf3) 

ig(3) 
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Table 1 ---cant nued 

Number IndicatlBr 

Stochastic 
NBER cycle 
classification” classificationb 

-. 

(32) Unemployment Rate, Total U Lg(7) 
(33) Personal Income U C 
(34) Consumer Installment Debt Lg C 
(35) Gross National Product, Constant Dollars, 

Quarterly c C 
(36) Gross National Prociuct, Current Dollars: 

Quarterly U C 
(37) Number of Persons Unemployed U c 
(38) Total Civilian Employment U LgW 
-- 

“L = Leading C = Roughly coincident, Lg = Lagging, U = Unclassified. 
blrhe Stochastic Cycle Classrlication is developed at a later point in section 3 of the paper 

using the proposed methodology of decomposition. 

it unchanged for periods of Indicators (21) (34) 
were before the of the and the series 
possess importance.2 

Since analysis subsumes first differences, analyze the 
of some which are by the We study 
Installment Debt the NBER is the in this 
(see footnote Inventories on and on instead of nt’t change, 

Liquid Assets than its change, and Index of 
Sensitive Prict;a in place of Percent Change in Sensitive Prices. Because the 
last three series are not readily available, they are consLructed by setting the 
first value eqiaal to 100 and generating the remaining values from the change 
or percent < 71~nge data. :a 

Five of the .indicat;irs are stationary ag,a therefore, by dcbimition, devoid of 
the random VG:EK component: Average LVo &week of Prod ixction Workers, 
Manuf’aetuPiag ; Vendor Periorrtiance, Percent r_3f Comi;anies Reps: ,i2>~ 
Sfower Dtiliveries; Layoff Rate, Manufacturing; Vnemployme~t I? :. ic, ‘, f; 
Weeks and over; and the Total Unemployment &ate. %nce these zr~p9 z-e 
&mdy a pure ‘cycle’, their cyclical components are defined as wyA\!kn 
from their respective ‘means. 

ARIMA models for the first differences were obtained fJr the 33 r?on- 
stationary indicators 3 The data base extends from ;947 through 1974 fog 21 

21ndicators (32) and (33) were components of the index of roccgilly coincident indicators but 
are now unclassified by the NBER. Indicator (34), which is classified as laggkg, was not part of 
an index.but the change in the series was in the index of leading indicators. 

3Detailk of the e&i&ted models are available from the authois. L 
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series and 1948 through 1974 for the remaining indicators. AS one would 
expect from the nature of output series, the first differences of many of our 
indicators display departures from spatial homogeneity in raw form. This 
tendency disappears after transformation to natural logs and thus the 
majority of the models are for logged series. In many cases the models are of 
multiplicative form, that is the moving average polynomial is written as the 
product of two polynomials in L, and one of the polynomials will have non- 
zero co&icients only at seasonal lags, that is 11. 12, or 13 months or 3, 4, or 
5 quarters. Other models are not multiplicative but have coefficients at tlrose 
lags. Such models are essentially seasonal models, in apparent contradiction 
to the indicators being the standard “seasonally adjusted’ series in general 
use. Usually the seasonality which appears in the models is ‘negative 
seasonality’ which is manifest in negative serial Icorrelation at the seasonal 
lags. Clearly! the adjustment procedures in use by the Department of 
Commerce and the Blsreau of Labor Statistics may not succeed in the 
extraction of seasonal&y from these series but rather tend to leave some 
correlation at lag 12 (4 for quarterly) or at adjoining lags or to introduce 
negative correlation at those lags. This phenomenon has been noted 
previously and commented on in Nelson (1972) and is explained by 
Cleveland and Tiao (1976). Because we want the cycles to be free of any 
spurious seasonal variation, the seasonal coefficients were disregarded for the 
purposes of calculating the cycle components. 

A few of the non-stationary indicator series are plotted along with their 
cycle components in figs. 1 through 4. Also shown on the ;?lots are the 
NBER reference cycles, shaded from peak to trough. The time period 
covered ends at the third month or first quarter of 1977, thus up to 1974 the 
cycle components u\ilize later data in the sense that the data are used to 
estimate the coefficients, and post-1974 cycle components are computed on a 
real time basis. The plotted indicators are representative of the series in 
genrral in that the cycle components not only tend to anticipate movements 
in the original series, reflecting the fact that the cycle components measure 
the forecastable momentum of each series, but also typically Jead the 
traditional NBER turning points. Comparison of figs. 3 and 4 also reveals 
that the cycle component is as observable in nominal series as in real 
measures; in fact, nominal and real GNP_ have very nearly the same cycle 
components. 

Des&ptive comparison of the individual indicator cycles is grca!ly 
facili’ated by construction of a composite index of movements in general 

usiness conditions w_hich can serve as a frame of reference for discussing the 
ring of individual indicators. Since differences in the scale of measurement 

indicators is irrelevant to their importance in an index, all of the cycle 
standard deviations prior to computation of 

enoting the standardized cycle component of the ith series at time t 
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Fig, 1. Employees in non-agricultural establisllments, monthly 1947:W 1977:03. 
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ig. 2. Consumer installment debt, monthly (natural logs) 194? :02-1977:03. 
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Fig. 3. Gross national product, constant dollars, quarterly (natural logs) 1947 :02-1977 :Ol . 
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Fig.. 4. Gross national product, current dollars, quarterly (natural logs) 1947 :02-1977 :Ol. 
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by ci t then all linear composite in& A, i,, are of the form , 

where the weight applied to the ith component is denoted Pi and there are M 
components making up the itidex.4 

The method used to choose the wSghts conforms to Burr,s and Mitchell’s 
classical definition cd’ a business cycle. They state: ‘Our definition presents 

business cycles as a consensus among expansions in ‘many’ economic 
activities, followed by ‘simiiarly general’ recessions, contractions, and 
revival.’ 5 Hence, it is necessary to select weights which extract a common 
source of variation from the different series. Since principal component 
analysis attempts to capture common movement in a set of observations, an 
index which meets the criterion is the first principal component vector of the 
constituent cycle series. Consequently the weights chosen maximize the 
variance of the index and, because their inner product is unity, the variance 
is independent of the weights. 

The first principal component of the indicator cycles, which accounts for 
32.8 yO of their total variation, is called the ‘Index of Business Conditions’ 
and pictured in fig. 5. The index captures clearly the leading nature of the 
cycle components compared to the reference dates. Most of the indicator 
cycles have positive weights in the index but eleven weights are negative? 
For six of the indicator cycles, layoffs (2), duration of unemployment (19), 
irGtia1 unemployment claims (21), unemployment rates (28, 32), and number 
of unemployed (37), we expect the weights to be negative because the NBER 
inverts those series, thus it is the negative of the cycle which will move with 

‘busiriess conditions. Indicator cycles for manufactures’ new orders for 
consumer &ods in constant dollars (3) and for new plant and equipment 
orders in constant (5) and current dollars (23) move counter to the original 
series because of negatively autocorrelated data. When a series displays 
negative serial correlation, a positive change in the series will frequently be 
associated with negative momentum. The inverse behavior of indicator cycles 
for housing permits (6) and unit labor costs (16) is explained below when the 
indicators are classified with respect “IO timing. 

Sample correlations between the index and the individual indicator cycles 
are useful in describing the coherence of the indicators without computing all 

‘For the purpose of index construction. in the five cases of quarterly series the cycle 
component mea&e was assumed to have occurred in the middle month of the quarter and the 
cycle of the intervening months estimated by intct c&ation. 

‘Burns and Mitchell (1946, p. 6). 
‘The exact weights are availably fro 
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pair=wise correlations within :he indicator set. By considering leading and 
lagging ccrrelations, that is 

Corr tip ci, t -I- J9 k=O, +l, k2 ,... , (18) 

we may hope to characterize each of the indicator cycles as a leading, 
lagging, or coincident indicator. 

It may be of interest to note that the 
around their maximum absolute value. 
dampens with increasing lag in both 

* 
correlations are quite symmetric 
The intensity of the correlation 
directions. This dampening of 

Fig. 5, index of business conditions, monthly. 

correlation together with the cyclical pattern of corre!.ation is indicative of 
the pseudo-periodic nature of indicator cycles and the index. If we were in 
faet dealing with true 1 eriodic functions of time then correlation would fail 
tc dam;mn out. The cOmteEp0rmeOus correlations have signs appropriate in 
vkw of the wei.ghts given the indicator cycles in the composite index. 

From the cross-correlation reults, it was evident that the indicator cycle 
for unit labor costs (16) has a negative weight in the index because the 

or qicle lags behind ‘business conditions to the extent that its 
poral-reous movement reflects the previous cycle phase. On the other 

hand, we ficd that the indicator cycle for housing permits (6) has a dominant 
ging’ relationship with movements in the economy rather than 
“positive-leading’ classification. This suggests that the housing 

stronger (faster and more widespread) recoveries from 
sions tha:!r the deterioration it sufiers going into a cyclical downturn. 

ndicator cycles are defined as roughly coincident if the maximum 
(in absolute value) occurs within one month of the 

nd the rest are classified as leading or lagging 
aximum correlation occurs at a negative or 

uggested c~assi~~~~tions an 
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months by which an indicator cycle leads or lags the index (shown in 
parentheses) are presented in the last column of table 1. 

Eleven of the classifications have changed, furthermore, the five indicators 
which are unclassified by the NBER have been classifieC.7 Ten of the eleven 
recla8ssifications are for indicators which the NBER has categorized as 
leading, a finding not at odds with the results of those who have attlempted 
to use leading indicators to forecast economic activity.* The one exception is 
the consumer debt (34) indicator which the NBER classifies as lagging and 
its changes as leading, thus, our roughly coincident classification falls 
midway between the, two. For the indicators which the NBER does not 
classify, our lagging classification for the unemployment i-ate (32) indicator 
cycle is in agreement with the classification for the fifteezl weeks and over 
unemployme:l: rate (28) indicator cycle, and we would expect nominal GM 
(36) and Personal Income (33) to be coincident indicators. TotAl Civilian 
Employment which we have classified as lagging could equally well retain its 
unclassified st,ttus since its maximum correlation with business conditions 
occurs in both the coincident and lagging categories. 

4. The dating of U .S. growth and business cycles 

The indicator cycles classified as roughly coincident can provide the basis 
for a redating of U.S. growth and business cycles. A composite ‘Index of 
Roughly Coincident Indicator Cycles’ was formed from the first principal 
component vector of the coincident cycles. The first component accounted 
for 51.1% of the variation and the weights changed very little from those 
used in the index of business conditions0 The index is plotted in fig. 6 and 
like its component cycles, it seems to lead traditional cycle dates. 

_ - 
_ - 
- - 
_ - 
_a - 

_ - 

_I I 

Fig. 6. Index of roughly coincident inkator cycles, monthly. 

7There may be no real disagreement in the reclassification of indicators c;onstan: dollar 
inventories (8), sensitive prices (9), and liquid assets (LO! for, as is discussed above, it is the 
difkem-w of these series that are utilized by the NBER. 

?3ee, for examp 
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While cycle component decomposition is done on a real time basis, the 
rdentification of peaks and iroughs can only be apparent in Wrospect and 
neessa:rily depend upon definitions which are to some extent i-rbitrary. The 
rules we have used for identifying peaks and troughs are patterned after 
those applied by Mintz in her analysis of U.S. data. First, reject a peak or 
trough when there are like turns without an intervening opposite turn. In 
deciding which of the pair to reject, we retain the largest (smallest) peak 
(trough). Second, the minimum duration of a cycle phase is five months; and 
the last criterion is that like turning points cannot be less than twelve 
months apart. The remaining turning points are our estimates of postwar 
growth cycles, that is, retardations in the rate of growth in the economy. The 
turning points of the stochastic growth cycles are reported in column (1) of 
table 2 and, for comparison, Zarnowitz and Boschan’s (1977) growth cycle 
dates are presented in column (2).” 

In general, our datings are similar to Zamowitz and Boschan’s (ZB); 
however, the turning points in our index lead theirs with the exception of the 
concurrent dating of the Feb. ‘61 turn. lo Notable differences between the two 
sets of datings are the following: the July ‘51 turning point is one year before 
ZB’s date, the Dec. ‘62 recovery precedes the turn in Zl+ index by twenty- 
two months, and the Dec. ‘67 peak leads by eighteen months. We also found 
growth cycles at Mar. ‘55--July ‘56, Nov. ‘5&Aug. ‘59, and Aug. ‘7%Oct. ‘76, 
which were not detected by ZB. 

The composite index can also be utilized to date classical business cycles 
which Burns and Mitchell have defined as absolute declines in economic 
activity. Thus we add the further rules that to qualify as a business cycle 
turning point, the index trough (peak) must be negative (positive) and the 
momentum must b/e .%tegative (positive) for at least five sonsecutive months in 
the neighborhood of the trough (peak) date. This leads to the rejection of 
five turning points and yields the business cycle datings given in column (3) 
of table 2. The reference cycle datts established by the NBER are presented 
in column (4) of the table. 

Like the growth cycle analysis, the turning points in our coincident index 
!ead the classical turning points. Further, four distinct episodes are present in 
our index which were not dated at all by classical methods. Taking the 
NBER-dated episodes in order we ‘have 

ov. ‘48 (peak)-Oct. ‘49 (trough): Our irtdiex records a loss in momentum 
beginning in Nov. ‘47, a brief recovery in ‘48, and then falls steadily until the 
April ‘49 trough. If the Nov. ‘47 peak is an artifact of the data (37 percent of 

3 

The! 2i!%um~witz md Boschan growth cycle datings are almost identical to Mint& but have 
the advatsage of ewering a longer time period. 

B@The ‘rrsn twning point /in our index occxxs in 1947 and therefore must be considered 
~~~tati~e ince maq of the component cycles do not begin until 19411. 
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Table 2 

Peaks(P ) and troughs(T) in growth cycles and classical business cycles, 1947 ~01-1977 :03. 

(1) (2) (3) 
Stochastic growth Zarnowitz-Boschan Stochastic business 
cycle turning growth cycle :ycE 3 turning 
points turning points points 

-I-- 

P-NW ‘47 July ‘48 P-Nov. ‘47 
T-April ‘49 Oct. ‘49 F-ATl*il ‘49 

’ P-Aug. ‘50 Mar. ‘51 P-Aug. ‘50 
T-July ‘51 July ‘52 T-July ‘51 

P-Nov. ‘52 Mar. ‘53 P-Nov. ‘52 
T-Dec. ‘53 Aug. ‘54 ‘C-Dee. ‘53 

P-Mar. ‘55 P-Mar. ‘55 
T-July ‘56 T-July ‘56 

P-Dec. ‘56 Feb. ‘57 P-Dec. ‘56 
T-Feb. ‘58 April ‘58 T-Feb. ‘58 

P-Nov. ‘58 - P-Nov. ‘58 
T-Aug. ‘59 T-Feb. ‘61 

P-Jan. ‘60 Feb. ‘60 ?-Dec. ‘61 
T-Feb. ‘61 Feb. ‘61 ‘I’-Dec. ‘62 

P-Dec. ‘61 May ‘62 ‘-Feb. ‘66 
‘F-Dec. ‘62 Oct. ‘64 ’ ‘T-Feb. ‘67 

P-Feb. ‘66 June ‘66 ‘-Dec. ‘67 
T-Feb. ‘67 Oct. ‘67 ‘T-Nov. ‘70 

P-Dec. ‘67 Mar. ‘69 -‘-Feb. ‘73 
‘I--Nov. ‘70 Nov. ‘70 ‘T-Jan. ‘75 

P-Feb. ‘73 Mar. ‘73 
T-Jan. ‘75 Mar. ‘75 

P-Aug. ‘75 
T-Oct. ‘76 

a 

- 

“Time period not examined by Zarnowitz-Boschan. 

(4) 

NBER 
reference dates 

Nov. ‘48 
Oct. ‘49 

July ‘53 
?Aay ‘54 

Aug. “57 
April ‘58 

April ‘60 
Feb. ‘61 

Dec. ‘69 
Nov. ‘70 

Nov. ‘73 
Mar. ‘75 

the camponent cycles do not begin unti 1948), then we would date the 

peak; at June ‘48, 

July ‘53 (peak)-May ‘54 (trough): This reclzssion shows up in our index as a 

peak in Nov. ‘52 and a continuous 10s~ in momentum until Dec. ‘53. 

Aug.. ‘57 (peak)-April ‘58 (trough): We date: the beginning of this recession at 

Dee, ‘56 when the momentum in our index begins to decline until At g. ‘57 
and then falls rapidjy until the Feb. ‘58 recovery. Thus the index detects the 
wealsen~ng economy eight months before it is recognized by the NBER. 

April “60 (peak)--Feb. ‘61 (trough): The loss in momentum in OUT index 
shows up nearly a year and one-half prior xo the reference elate, althoul :h the 
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subsequent recovery is in the same month. The index peaks in Nov. ‘58, 
declines until Qct. ‘59, and then reveals a short recovery which peaks in Jan. 
‘60 (the momentum at this point is less than half of its value on Nov. ‘58). 
This behavior suggests that Ithe economy ha.d already entered a recession 
when th$e steel strike occw xred (July ‘59 to Nov. ‘59) b ~rd the peak detected by 
the NBER is the tempurary stimulant of the strike settlement, 

Dec. ‘69 (peak)-Nov. ‘70 (trough): Our index does not show a pronounced 
peak but instead gradually decreases beginning in Dec. ‘67. The momentum 
gives a picture of the economy sliding rather than falling into a recession, 
The trough dates, however, are the same. 

Nov. ‘73 (peak)--March “75 (t.yrough): This cycle phase shows up as a distinct 
loss of momentum in Feb. ‘7.3 and a recovery in Jan. ‘75. From Aug. ‘74, to 
Jan. ‘75 there is a substlantial loss in momentum indicating that over this 
period the economy suffered a rapid and severe contraction. 

Four ‘mini-recessions which our index detects do not appear in the 
classical chronology. The stochastic cycle decomposition employed in this 
study, however, also allows one to gauge the severity of a recession. The 
values of the coincident inde:c at the ten.recorded troughs are, in ascending 
oraeP-~magnit~de, as fo:Jows: Mar. ‘75 (- lO.O), Feb. ‘58 (- 8.6), April ‘49 ( 
-7.9), Dec. ‘53 ( - 7.6), Feb. ‘61 (- 5.0), Nov. ‘70 (-4.5), July ‘51 t-3.5), 
July ‘56 (- 3. 3 ), Feb. ‘67 ( - l-8), and Dec. ‘62 ( - 1.1). The ordering is in 
general accord with other economic measures of the depth of a contraction, 
the most recent recession being the most severe in the postwar period. Thus 
it appears that tht momentum im the economy has to fall to about -4.0 
before a classical recession is declared. 

5. Sammary ad conclusions 

In this paper we have introduced a general procedure for decomposition of 
non-stationary time ce: r i ‘: q into permanent and transitory components. The 
theoretical basis for tht ~ei omposition does not require that the time series 
follow a deterministic trend L~,F +:;sth~ hegins with the assumption that the 
successive changes in the series (or its natural logarithm) are stationary with 
a representation as an ARMA process. We show that the long-run forecast 
profile fcr such a series at any point in time is asymptotic to a linear 
function of time which we define as the permanent component when it is 
evaluated at the curfent time period. The permanent compotientS is’ t;h&n to 

always a random waik with drift. -The d&&&e betweeu the eerj&rient 
component and the actual value of the series is then the ,momeintum 

ntained in the series at that .point in time an,d is a natural measure of its 
transitory or cyclical component. The transitory component is itself a 
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sktionary proct-ss with mean zero. The innovations in the permanent 
component are shown to be larger or smaller than those in observed data 
depending 061 thm autocorrelation strl: cture of the particular series in 

question. The decomposition depends only on past da& and therefore is 
computable in ‘real time”, 

The decomposition methodology was applied to the problem of measuring 
and dating business ‘cycles’ in the postwar U.S. economy, using thirty-eight 
indicator series monitored by the NBER. While our results should only be 
regarded 8s exploratory, we feel that they warrant some tentative conclusions 
based on cbmparison with the traditional NBER chronology as well as with 
the recent work of Zarnowitz and Boschan (1977). A composite indt:x of 
indicator cycles formed by taking their ftrst principal component allowed a 
classification of individual indicators into leading, coincident, and lagging 
categories which difFered from that of the NBER in about one-third of the 
cases. Since the index is a linear combination of stationary series with mean 
zero it exhibits fluctuations above and below the mean of roughly equivalent 
duration. Thus the measured expansions and contractions are of roughly 
equivalent duration, in contrast with the traditional NBER chronology 
which results in contractions which are very brief relative to intervening 
expansions. Reflecting our definition of the cyclical component as the , 

forecastable momentum in a series at a given time, our dating of cyclical 
episodes tends to lead the traditional NBER dating and, to a lesser extem, 
the ‘growth cycle’ chronology of Zarnowitz and Boschan (1977). 
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