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Abstract

In this paper, we study the performance of the Markov Chain Monte Carlo algorithms in

estimation of the classical extremum problems. We find that even in well-defined problems,

the stability of Markov chains depends on the parameter support and prior distribution. A

possible implication is the inferior quality of Markov chains when the guess for the starting

point of the MCMC procedure is inadequate. We estimate a simple model using artificial

datasets to illustrate that even in a model as simple as ours, the problem with the starting

value exists and displays more severely in smaller samples.
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1 Introduction

With the formal introduction of the Laplace type estimators (LTE) by Chernozhukov and Hong

(2003), the MCMC approach to classical estimation problems has become increasingly popular.

LTEs are attractive for practitioners, because they allow a straightforward frequentist interpre-

tation: point estimates and standard errors of structural parameters can be produced directly

as means and standard deviations of Markov chains. Despite these favorable properties, there

are pitfalls a researcher should be aware of. As we argue in this paper, even in well-defined

structural models the MCMC procedures may fail to produce adequate point parameter esti-

mates. We derive a sufficient condition for the stability of Markov chains generated by the

MCMC procedures and show that the parameter support and the choice of prior distributions

are critical in producing quality Markov chains.

To illustrate our results, we estimate a simple Dynamic stochastic general equilibrium (DSGE)

model using simulated datasets and show that with “flat” priors, parameter estimates depend

on a starting value of the Hastings Metropolis algorithm. We also develop a test for a viola-

tion of regularity conditions and demonstrate that the set of starting points iducing instability

decreases with the number of observations. This indicates that the problem of instability of

Markov chain may be more severe in shorter samples. The test suggests that if it is feasible

to compute the mean-square Hessian of the quasi-likelihood function in the finite set of points

of the parameter space, then a proper proposal density and the starting point of the MCMC

procedure can be found such that guarantee the minimum possibility of instability of markov

chains.

An attractive feature of the MCMC approach is its reliance on the Bayesian inference for

models, for which a quick computation of the likelihood function is not feasible (see (Geweke

1999) and (Chib 2001)). A standard MCMC procedure applied to classical estimation problems

requires the formulation of the quasi-likelihood function using the original classical objective

function. Hastings-Metropolis algorithms are then used to estimate the structural parameters

by sampling from this non-standard distribution. Acceptable performance of the algorithm

may only be achieved if a model is identified and the resulting Markov chains are reversible.

In this case, the sampling distribution converges to the stationary target distribution. Our

theory allows one to study the convergence of sampling distributions in the case of the random
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walk Hastings-Metropolis algorithm used for estimation of identified models. Such an analysis is

complicated for discrete models, because it requires one to solve a non-linear difference equation.

A more convenient way to study the stability of the Hastings-Metropolis Monte-Carlo chains is

to consider the sampling process in continuous time ((Gelfand and Mitter 1993), (Roberts and

Tweedie 1996), (Roberts, Gelman, and Gilks 1997), and (Roberts and Rosenthal 2007), among

others). When the number of draws of the Monte-carlo chain approaches to infinity, the process

of normalized sample means of the Hastings-Metropolis draws can be described by the Langevin

diffusion and thus belong to the class of the so-called Langevin diffusion algorithms ( Robert

and Casella (2004)). The Langevin diffusion process Lt evolves according to the stochastic

differential equation:

dL(t) =
1
2
∇ log f (L(t)) dt + dW (t),

where W (t) is the Brownian motion, and under appropriate regularity conditions, f is the

stationary distribution of the solution L(t). In this paper, we show that the convergence to

a stationary distribution of MCMC chains generated by the random walk Hastings-Metropolis

algorithm is related to the Lyapunov stability of the corresponding continuous time stochastic

dynamic system.

In general the convergence properties of the estimation algorithm will depend on the prop-

erties of the objective function which will determine the quality of parameter identification.

The problem of weak identification in the parametric setting has been studied in the theoreti-

cal econometric literature. Our results are supportive of this literature suggesting that models

with weak identification will be hard to estimate with MCMC methods because our sufficient

convergence conditions can be violated. However, our results regarding the convergence of the

estimation procedure are more general, because we demonstrate that problems may arise even

in models without identification problems. We emphasize that the quality of estimates obtained

with MCMC procedures may not be necessarily related to identification issues.

From the practical viewpoint, this paper justifies the strategy to search for a “good” starting

point of the Hastings-Metropolis algorithm. From the theoretic viewpoint, given appropriate

choices of proposal and prior distribution, the choice of the starting values should not have a

large impact on the convergence of the MCMC algorithm. However, the estimates produced
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with the MCMC algorithms often turn out to be sensitive to the choice of a starting point.

For instance, An and Schorfheide (2007), suggest the choice of an appropriate starting point as

the first step of the Bayesian estimation algorithm. In this paper we provide some theoretical

justification for this strategy.

We emphasize that the poor quality of the LTE estimator that may result from the conver-

gence problems that can be intrinsic to the MCMC algorithm rather than a model. However,

it is not the goal of this paper to recommend the researchers to refrain from using the MCMC

approach. In principal, other algorithms that can be used for finding the extremum estimators

can have more complicated problems.

The idea of this paper is closely related to the research on asymptotic convergence of the

empirical posterior distribution of MCMC draws (see the summary of this research in Meyn

and Tweedie (2009)). We emphasize, however, that this paper has a different focus by treating

the MCMC algorithm as a stochastic method to estimate parameters of a structural model

rather than the entire posterior parameter distribution. While the Bayesian approach provides

conditions that guarantee convergence of the distribution of draws to the target distribution,

our theory is less restrictive, as it only looks for the conditions of convergence of estimates to a

minimizer of an empirical objective function. Even though in simple cases our theory may suffice

for the convergence of the resulting distribution, it is not expected to imply the convergence of

distribution in more complicated likelihood structures.

The remainder of this paper is organized as follows. Section 2 introduces the theory of

stability of MCMC chains. In Section 3, we apply this theory to the random walk Hastings-

Metropolis algorithm. Section 4, presents a quantitative exercise to accompany the theoretical

results. Section 5 concludes.

2 Stochastic Stability of a General Diffusion-Driven Stochastic

Process

Consider a general diffusion-driven dynamic stochastic process θ(t), with the dynamics given by

d θ(t) =
1
2
∇ log f(θ(t)) dt + G(t, θ(t)) dw(t), (1)
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where t ≥ 0, θ(t) is k× 1, and f(θ(t)) and G(t, θ(t)) are a drift and diffusion coefficients respec-

tively. Following Gikhman and Skorokhod (2004), we impose the following set of assumptions

on the dynamic behavior of this process to ensure that (1) has a unique solution in the family

of non-anticipating stochastic processes on [0, T ]:

Assumption 1 Assume that

• System (1) has a unique equilibrium θ∗ ∈ int (Θ) ⊂ Rk, i.e.

1
2
∇ log f (θ∗) = 0 and G (t, θ∗) = 0;

• log f(θ) is bounded and Lipschitz continuous in θt ∈ Θ ⊆ Rk;

• G(t, θ) is Lipschitz continuous in θ with a Lipschitz constant L ≥ 0;

• For all θ ∈ Θ and t ∈ [0, T ] there exists a constant K > 0 such that

‖G (t, θ) ‖ ≤ K (1 + ‖θ‖) ;

• θ(0), the starting value of the process described by (1) is a second-order random vector

independent of the family of σ-algebras Ft generated by the Brownian motion w(t) for

t ∈ [0, T ].

Using the analogy with deterministic dynamic systems, we introduce the following definitions

of stochastic stability following Hasminskii (1980):

Definition 1 Assume that θ∗ in Θ ⊂ Rk is a unique equilibrium of (1), and {θ(t)}∞t=0 is the

stochastic system described by (1). Then θ∗ is stochastically stable, if for all ε > 0

PFt

{
sup
t∈R+

|θ(t)− θ∗| ≥ ε

∣∣∣∣ θ(0)

}
p−→ 0,

for all θ(0)
p−→ θ∗. Otherwise, the equilibrium is stochastically unstable.
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Equilibrium point θ∗ is locally asymptotically stochastically stable, if it is stochastically stable

and

PFt

{
lim

t→+∞ |θ(t)− θ∗| = 0
∣∣∣∣ θ(0)

}
p−→ 1,

for all θ(0)
p−→ θ∗. Finally, equilibrium point θ∗ is globally stochastically asymptotically stable

relative to set Θ 3 θ∗, if it is asymptotically stochastically stable and

PFt

{
lim

t→+∞ |θ(t)− θ∗| = 0
∣∣∣∣ θ(0)

}
= 1,

for all θ(0) ∈ Θ.

The definition of local stability means that for all processes with starting points approaching

the equilibrium θ∗, the probability that the stochastic process leaves an arbitrary small neigh-

borhood of equilibrium approaches zero. The definition of asymptotic stability strengthens the

notion of stochastic stability by imposing further that a locally stable stochastic process ap-

proach the equilibrium with probability tending to one, when a starting point is tending to θ∗.

The requirement for a stochastic process (1) to be globally asymptotically stable is that besides

being stable, all processes described by the system (1) find themselves in equilibrium with prob-

ability 1, when a starting point belongs to some set Θ. Global stability is defined relative to a

subset of starting values, which means that while a stochastic process may be globally unstable

for some starting values, it may still be considered globally stable relative to another set of

starting values. Because ultimately we are interested to establish conditions for convergence of

LTEs from different starting points, the the concept of global stochastic stability is the most

relevant one for this paper.

To approach the problem, we rely on the concept of Lyapunov stability extended to stochastic

problems by the following theorem from Hasminskii (1980). With this in mind, we first introduce

a relevant definition of a positive-definite in Lyapunov’s sense function.

Definition 2 A function v(t, θ) is said to be positive definite in Lyapunov sense in a neighbor-

hood of θ = θ∗, if v(t, θ∗) = 0, and in this neighborhood v(t, θ) > w(θ), where w(θ) > 0, for

θ 6= θ∗.
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Theorem 1 summarizes the result of the global stability of the stochastic system (1):

Theorem 1 Suppose the process described by system (1) satisfies assumption 2, and there exists

a positive definite in Lyapunov’s sense function v(t, θ) : R+×Θ → R, which is twice continuously

differentiable with respect to θ, and once continuously differentiable with respect to t everywhere

except possibly at the equilibrium point θ∗, such that

Lv =
∂v (t, θ)

∂t
+

∑

i

1
2
∇ log fi (θ)

∂v (t, θ)
∂θi

+
1
2

∑

i,j

{G (t, θ) G (t, θ)}i,j
∂2v (t, θ)
∂θi∂θj

< 0,

for all (t, θ) ∈ R+ ×Θ; moreover, v(t, θ) has an infinitesimal upper limit, i.e.

lim
θ→θ∗

sup
t>0

v(t, θ) = 0,

and be radially unbounded, i.e.

lim
|θ|→∞

inf
t>0

v(t, θ) = ∞.

Then the equilibrium point θ∗ is globally asymptotically stochastically stable relative to set Θ.

The result in Theorem 1 can be used to test for convergence of an MCMC algorithm with a

starting point in the set Θ.1 Because for the limiting diffusion process of the Hastings-Metropolis

algorithm, G(·, ·) in (1) does not depend on the number of draws, the Lyapunov function v(t, θ)

is independent of time (Gikhman and Skorohod (1977)). Thus, ∂v(t,θ)
∂t = 0, and under the

conditions of Theorem 1 about v(t, θ), the limiting diffusion process of the Hastings Metropolis

MCMC algorithm is stable if the following functional form is negative-definite:

∑
i
∇ log fi (θ)

∂v(θ)
∂θi +

∑
i,j
{G (t, θ) G (t, θ)′}i,j

∂2v(θ)
∂θi∂θj

= ∇ log f (θ)′∇v (θ) + e

(
G (t, θ) G (t, θ)′ ∗ ∂2v(θ)

∂θ∂θ′

)
e.

(2)

In this formula, e is a unit vector and ∗ denotes the Hadamard multiplication.
1Provided a Lyapunov function for the stochastic process characterizing the Hastings-Metropolis can be con-

structed.
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We complement the statement of Theorem 1 by the following theorem that provides sufficient

conditions for instability:

Theorem 2 Suppose system (1) satisfies assumption 2, and for some Θ ∈ Θ there exists a

function v(t, θ) : R+ × Θ → R which is twice continuously differentiable with respect to θ, and

once continuously differentiable with respect to t everywhere except possibly at the equilibrium

point θ∗, such that for any ε > 0,

sup
t∈R+, θ∈Θ\Bε(θ∗)

Lv =
∂v (t, θ)

∂t
+

∑

i

1
2
∇ log fi (θ)

∂v (t, θ)
∂θi

+
1
2

∑

i,j

{G (t, θ) G (t, θ)}i,j
∂2v (t, θ)
∂θi∂θj

< 0,

for Bε (θ∗) =
{
θ ∈ Θ

∣∣ ‖θ − θ∗‖ < ε
}
, and

lim
θ→θ∗

inf
t>0

v(t, θ) = ∞.

Then the equilibrium point θ∗ is asymptotically stochastically unstable, and

PFt

{
sup
t∈R+

‖θt‖ < ρ
∣∣ θ(0)

}
= 0,

for all θ(0) ∈ Θ and 0 < ρ < diam
(
Θ

)
.

The proof of the theorem can be found in Hasminskii (1980) or Kushner and Dupuis (2001).

To prove the instability of a diffusion process described by Equation (1) with the help of

Theorem 2, the positive definite Lyapounov function must approach infinity in the neighborhood

of the equilibrium. If such a Lyapunov function can be found, and if there exists at least one

θ ∈ Θ such that the following condition holds,





∂v (θ, t)
∂t

+
∑

i

1
2
∇ log f i (θ)

∂v (t, θ)
∂θi

+
1
2

∑

i,j

{G (t, θ) G (t, θ)}i,j
∂2v (t, θ)
∂θi∂θj



 < 0,

then the diffusion process will not stabilize around the equilibrium point θ∗ with probability 1,

for any starting point of the process θ(0).
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3 Stability of the Hastings-Metropolis Algorithm with a Gen-

eral Likelihood Structure

We apply the theory developed in Section 2 to the Laplace type estimator (LTE) suggested by

Chernozhukov and Hong (2003). This choice is motivated by the fact that the LTE is based on

MCMC and Hastings-Metropolis algorithms, and thus the convergence of the estimator is closely

related to the stability properties of resulting Markov chains. In addition, the LTE encompasses

a broad range of extremum estimation problems. Moreover, the conclusions we make regarding

the convergence of LTEs can be useful for Bayesian estimation problems, since the likelihood

function in the Bayesian approach can just be considered as a special case of a distance function

for the LTE problem.

The LTE defines a (quasi-)likelihood function as the exponential transformation of the mo-

ment condition or a distance function LN (θ), eLN (θ), where N is the number of observations

and θ is a (k × 1) element of the parameter space Θ. The quasi-posterior distribution of the

parameter θ is then defined as

pN (θ) =
eLN (θ)π(θ)∫

Θ eLN (θ)π(θ)dθ
, (3)

where π(θ) is the weighting function (“prior” distribution).2 The LTE can then be defined as

the mean or a particular quantile of a random variable with the distribution (3). Chernozhukov

and Hong show that under some regularity conditions the LTE possesses the same asymptotic

properties as the standard classical estimator and is as efficient asymptotically. They also show

that under mild regularity conditions, the asymptotically valid parameter estimates and their

confidence intervals can be easily obtained as appropriate quantiles of the distribution pN (θ).

Because the quasi-posterior distribution in Equation (3) is non-standard, Chernozhukov and

Hong (2003) suggest a standard approach to describe it, which consists in generating MCMC

chains using a Hastings-Metropolis algorithm. The standard random-walk Hastings-Metropolis
2The difference between the LTE and the pure Bayesian approach is that in deriving the posterior distribution,

the latter relies on the likelihood function, while the quasi-likelihood function in the LTE approach can be derived
from any statistical moment condition or distance function.
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algorithm generates a sequence {θt}T
t=1 according to the process

θt = θt−1 + 1(ut < ρt)σεt,

where 1 is the indicator function, ut is i.i.d. U [0 , 1], εt is i.i.d. N (0, 1), σ > 0, and ρt =

min{1, eLN (θt−1+σεt)π(θt−1+σεt)

eLN (θt−1)π(θt−1)
}. The LTE can then obtained as a simple mean of this Markov

chain.

Although Chernozhukov and Hong (2003) acknowledge the fact that a poor choice of a

starting value may result in a slower convergence of MCMC chains, they do not elaborate on

this problem. In this paper, we demonstrate that a poor choice of the starting value may

not only slow down convergence, but may also lead to instability of Markov chains, and as a

result produce diverging LTEs. When the number of draws approaches infinity, the process of

cumulative means {θ̂t}T
t=1, where θ̂t = 1√

t

∑t
i=1 θi, can be approximated by the diffusion process

as follows:

d θ(t) =
1
2
∇ log pN (θ(t)) dt + dW (t). (4)

Although the stability of this process does not necessarily imply the stability of a Hastings-

Metropolis algorithm with a finite number of draws, Markov chains that are long enough will

inherit the stability properties of their continuous time counterparts according to the functional

central limiting theorem.3 Thus, the convergence of the LTE identified by the stability of MCMC

chains generated with the Hastings-Metropolis algorithm using large number of draws can be

established through investigation of (in)stability of the corresponding diffusion process.

Chernozhukov and Hong (2003) establish the asymptotic convergence of the quasi-posterior

distribution pN (θ), and asymptotic normality and consistency of the LTE under assumptions

that the vector of parameters of interest θ is locally identified in population, and the sample
3The Markov chain process will inherit the stability property of the corresponding limiting continuous-time

diffusion, if the diffusion is a “sufficiently good” approximation of the discrete process behind the LTE, which is
determined by the quasi-posterior function and the number of draws used to compute the estimate. Under the
smoothness assumption 2, the numerical difference between this diffusion and the process for θ̂t is of stochastic

order op

(
1√
T

)
. Therefore, the stability properties of the continuous-time approximation will translate into the

stability properties of the discrete process, when Theorems 1 or 2 hold in the neighborhood of size 1√
T

around θ∗.
The size of this neighborhood shrinks for longer Markov chains.
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likelihood function admits a locally linear representation around θ∗ in mean square. We continue

to rely on the assumptions from Chernozhukov and Hong (2003). In addition, to justify the

use of the first-order approximation to the quasi-posterior density pN (θ) at any point θ ∈ Θ,

we strengthen the Expansion assumption (Assumption 4 in Chernozhukov and Hong (2003))

by imposing the uniform convergence of the sample likelihood, and assuming that the sample

likelihood has a locally linear L2-representation in any point of the r-neighborhood of the true

parameter estimate θ∗. The modified Expansion assumption has the following formulation:

Assumption 2 The sample quasi-likelihood LN (·) admits the local-quadratic approximation in

the L2-norm uniformly in θ, so that for each θ ∈ int (Θ), it is possible find r > 0 such that for

all θ′ such that ‖θ′ − θ‖ < r,

LN

(
θ′

)− LN (θ) L2

=
(
θ′ − θ

)′∆1N (θ) + N
(
θ′ − θ

)′∆2N (θ)
(
θ′ − θ

)
+ RN

(
r, θ′ − θ

)
,

where ∆1N (θ) d−→ N (0, A(θ)) and ∆2N (θ) is a constant (for a given N) matrix with both

elements and determinant uniformly in N bounded from zero. Moreover, for each ε > 0, there

is a sequence δN such that δN

√
N → 0, and a sufficiently small r, such that for any ε > 0,

lim sup
N→∞

P ∗
{

sup
‖θ′−θ‖≤δN

‖RN (r, θ′ − θ) ‖
1 +

√
N‖θ′ − θ‖ > ε

}
= 0,

and

lim sup
N→∞

P ∗
{

sup
|θ′−θ‖≤δN

‖RN (r, θ′ − θ) ‖
1 +

√
N‖θ′ − θ‖ > ε

}
< ε,

in any shrinking neighborhood with δN < r and δN → 0.

Assumption 2 allows to substitute a possibly non-smooth objective function LN (θ) with its

mean-square representation not only in a neighborhood of equilibrium, but also at any point

in the parameter space. It ensures the uniform convergence of the residual, and guarantees

existence of a sequence of shrinking radii δN and a sufficiently small r, such that for any ε > 0

the standard “empirical process condition” holds for the outer probability inside the shrinking

neighborhood of θ∗, and outside this shrinking neighborhood, the divergence of the residual is
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driven by the mean-square expansion terms higher than quadratic.

Under Assumption 2, the first-order approximation to pN (θ) from Equation (3) can be

written as follows:

pN (θ) ≈ ∆1N (θ) +
1

π (θ)
∂π (θ)

∂θ
,

and the Langevin diffusion process (4) becomes:

dθ(t) =
1
2

{
∆1N (θ(t)) +

1
π (θ(t))

∂π (θ(t))
∂θ(t)

}
dt + dW (t).

The sufficient condition for the stability of this diffusion process from Theorem 1 can now be

used to formulate the null hypotheses of stability:

H0 : sup
θ∈Θ

{{
∆1N (θ) +

1
π (θ)

∂π (θ)
∂θ

}
∂v (θ)
∂θ′

+ e′
∂2v (θ)
∂θ∂θ′

e

}
< 0.

The optimal test of H0 would include the search over different alternative Lyapunov func-

tions that satisfy the properties listed in Theorem 1, which may be very difficult to implement

in practice. Although the stability test we offer is not optimal because it relies on a specific

Lyapunov function, it nevertheless is implementable and has a fixed coverage for a particular

model and sample size. Following a common strategy, we construct a Lyapunov function candi-

date to test H0 for the stability of the continuous-time diffusion process θ(t) using a quadratic

functional form as follows4:

v(θ) =
P∑

p=1

1
{
rp−1 ≤ (θ − θ∗)′ Σp (θ − θ∗) ≤ rp

}
ap

(
(θ − θ∗)′ Σp (θ − θ∗)

)αp , (5)

where P is the number of possible discontinuity points for the optimization criterion (the quasi-

likelihood function), and for p = 0, ..., P , rp > 0, ap > 0, and αp are real numbers, r0 = 0,

rP = +∞, and matrices Σp are positive definite. The lengths of the radii rp correspond to the

discontinuity points of the log-likelihood function. Parameters ap, αp and elements of matrices

4An attractive feature of such a candidate function is that it implies the Gaussian density as a solution, which
simplifies algebraic manipulations for the stability analysis.
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Σp are calibrated to ensure that v(θ) is twice continuously differentiable on the ellipsoids of

discontinuity (θ − θ∗)′ Σp (θ − θ∗) = rp, for p = 1, . . . , P .

In the further analysis, we abstract from problems with discontinuities in the population

objective function. In this case, the Lyapunov function candidate,

v(θ) = a0

(
(θ − θ∗)′ Σ0 (θ − θ∗)

)α0 , (6)

is a positive-definite quadratic form with the infinitesimal upper limit, radially unbounded and

twice continuously differentiable, provided that parameters a0, and α0 are greater than 0, and

matrix Σ0 is positive-definite. Assuming without loss of generality that a0 = 1, αp = 1, and Σ

is an inverse of the variance of the parameter of interest, Σ0 = Σ−1
θ , and taking into account

that Σθ is symmetric, the first and second derivatives of this Lyapunov function can be written

as follows:

∂v (θ)
∂θ′

= 2Σ−1
θ (θ − θ∗),

and

∂2v(θ)
∂θ∂θ′ = 2Σ−1

θ . (7)

In this case, the limiting diffusion process of the MCMC algorithm is stable, if for all θ ∈ Θ, the

following condition holds

k∑

i,j=1

[
∆i

1N (θ) +
1

π (θ)
∂π (θ(t))

∂θi

]
Σ−1

θ {i,j}
(
θj(t)− θj∗) +

∑

i,j

(
Σ−1

θ {i,j}
)

< 0.

Given that the continuous-time stochastic process is a very good approximation for the empirical

process of the cumulative average of the posterior Markov chain, we can apply the stability test

to the cumulative mean of the posterior draws. Because in empirical applications the values of

θ∗ and Σθ are not known, we suggest a two-step procedure to construct the test statistic to test

that the MCMC algorithm is stable and consequently, that the LTE converges. In each step,

a Markov chain is generated with the random walk Hastings-Metropolis algorithm. In the first
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step, the elements of the Markov chain provide the estimates of θ∗ and the variance-covariance

matrix Σθ, θ
∗ and Σθ respectively. In the second step, the elements of the Markov chain are

used to calculate the following statistic:

Ts = sup
t≤s




k∑

i,j=1


∆i

1N

(
θ̂t

)
+

1

π
(
θ̂t

)
∂π

(
θ̂t

)

∂θ̂i
t


Σ−1

θ {i,j}
(
θ̂j

t − θj
∗)

+
k∑

i,j

(
Σ−1

θ {i,j}
)

 , (8)

where s is the number of elements of the Markov chain used to calculate the LTE, and θ̂t is the

LTE calculated over the first t < s draws of the Markov chain. This statistic is determined by

a sequence of stopping times of the considered Markov chain and its asymptotic distribution is

defined by a two-sided Brownian bridge. The null hypothesis will fail to reject if the value of Ts

is smaller than the α−percent quantile of this distribution.

Alternatively, we can develop the test of non-stability of the MCMC algorithm using the

results from Theorem 2. The following Lyapunov candidate function 2:

ṽ (θ) = log
(
(θ − θ∗)′ Σ0 (θ − θ∗)

)

is explosive when approaching the equilibrium θ∗, as is required by Theorem 2. The null hy-

pothesis of the Markov chain instability can then be derived from condition

{
∆1N (θ) +

1
π (θ)

∂π (θ)
∂θ

}
∂ṽ (θ)
∂θ′

+ e′
∂2ṽ (θ)
∂θ∂θ′

e < 0.

The test statistic for the test of instability can be constructed by analogy to the Markov chain

stability test.

3.1 Example

The following example of a simple censoring model demonstrates the divergence of the LTE.

In this example, MCMC chains will not stabilize around equilibrium even if Markov chains are

infinitely long. It should be noted that the LTE diverges even though the parameter of interest

is identified, and the estimator converges at a parametric rate.
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Consider a model where the objective function is defined by the moment condition

g (x, θ) = a + (|x− θ| − a) 1 {|x− θ| ≤ a} , (9)

where x is the random variable, θ is the parameter of interest, and a > 0. In the vicinity of

x = θ, the moment condition coincides with the absolute value function, and it turns into a

constant when x is distant from θ. Note that the moment condition is symmetric around x = θ.

The estimator θ̂ minimizes the sample objective QN (θ):

θ̂ = arg min
θ∈Θ

QN (θ) ,

where QN (θ) = 1
N

N∑
i=1

g (xi, θ). If x is uniformly distributed in the interval [−a, a], the popula-

tion objective Q (θ) = E [g (x, θ)], is given by

Q (θ) =





1
2a

(
a2 + θ2

2

)
, if |θ| < a

1
2a

(
2a|θ| − θ2

2

)
, if a ≤ |θ| ≤ 2a

a, if 2a < |θ|
. (10)

This function is shown in Figure 1, where the parameter a = 1. The figure demonstrates that the

population objective has a well-pronounced extremum θ∗ = 0. Moreover, because the objective

function of the correctly specified model is equivalent to that of the least absolute deviation

estimator in the vicinity of θ∗, it inherits the property of parametric convergence from the least

absolute deviation estimator. However, in spite of these favorable properties, MCMC chains

obtained with a simple Hastings-Metropolis random walk algorithm are unstable.

To see this, consider a standard random walk Hastings-Metropolis algorithm, in which a

proposal draw ξt is generated from a normal distribution with the mean θt−1:

ξt = θt−1 + σ εt,

where θt−1 is the last element of the MCMC chain, σ > 0 is the standard deviation of the proposal

draws, and εn ∼ N (0, 1). Under the flat prior distribution for θ, θt = ξt with a probability ρt =
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min
{

1, QN (ξt)
QN (θt−1)

}
, and θt = θt−1 with probability 1− ρt. Notice that whenever |θt−1| > |xi|max,

θt−1 belongs to the flat part of the objective function. In this case, the next element of the MCMC

chain will get outside this area with probability Φ( |xi|max+|θt−1|
σ )−Φ( |xi|max−|θt−1|

σ ) ≤ Φ(2a
σ )− 1

2 .

Thus, the lower bound on the probability for the next element of the MCMC chain to stay in

the flat region is 1−(Φ(2a
σ )− 1

2) = 3
2−Φ(2a

σ ). Because a > 0, the lower bound of this probability

is always between 1
2 and 1. Thus, an infinitely long MCMC chain will be locked in the flat area

with a positive probability, which means the equilibrium θ∗ = 0 is not globally asymptotically

stable according to Definition 1.

One can also verify that the sufficient condition of instability is satisfied in this problem when

the Lyapunov Candidate is determined as v(θ) = log(|θ|) . For a one-dimensional problem,

∂v

∂θ
=

1
θ
,

and

∂2v

∂θ2
= − 1

θ2
.

At the same time, in population ∆1(θ) = Q′(θ), and

Q′(θ) =





θ
2a if |θ| < a

sign(θ)− θ
2a , if a ≤ |θ| ≤ 2a

0 if 2a < |θ|
. (11)

Thus, if the prior is uniform, so that ∂π(θ)
∂θ = 0, then the sufficient condition for instability of

the equilibrium θ∗ = 0, from Theorem 2 becomes

Q′(θ)
1
θ

<
1
θ2

,

which can be simplified to

Q′(θ) <
1
θ
,
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for θ > 0.5 One can show that if a < 2, this inequality holds for all θ ∈ R. Thus, the equilibrium

θ∗ = 0 in this case is stochastically, and thus globally asymptotically unstable.

4 Empirical application

The purpose of the empirical application is to demonstrate that in short samples, the convergence

of MCMC algorithm may fail even if models that can be consistently estimated in long data

samples. We use a version of the dynamics stochastic general equilibrium (DSGE) model popular

in the empirical macroeconomics. A DSGE model is summarized by a dynamic system of

aggregate model variables, usually output, consumption, employment, etc. The choice of the

model is motivated by the fact that DSGE models, although often enhanced with a number of

features to facilitate the fit of the model and the data, are still simpler in terms of dynamics

and less computationally intensive than models from the microeconometric literature. The use

of a simpler model makes our argument stronger.

We choose to work with artificial datasets to minimize the problem of model misspecification.

Specifically, the objective function is the distance function that matches impulse responses from

the model and the data. Using the model-generated samples, we estimate the vector autore-

gression model and obtain impulse responses from this model, following a common approach in

the literature. Although this empirical model is misspecified by definition, we show that the

resulting bias is not significant. We find that the problem of the LTE convergence is substantial

when samples are short. We find that the null hypothesis of Markov chain stability is satisfied

more often in larger samples.

In the remaining part of the paper, we first describe the general structure of the model. We

proceed by explaining how the model was calibrated, and how data samples were generated.

Then, we explain the strategy to estimate model parameters. Finally, we present the results of

the empirical exercise.
5If this condition holds for θ > 0, the sufficient condition for instability will be automatically satisfied for

θ < 0.

17



4.1 Model

The model is a version of the dynamic stochastic general equilibrium (DSGE) model studied in

Christiano, Eichenbaum, and Evans (2005). We introduce real and nominal rigidities, such as

variable investment costs and habit formation, and nominal rigidities by assuming Calvo-Yun

style price and wage stickiness.6 For simplicity, we abstract from modeling money, and focus on

a cashless economy.

A representative infinitely lived household maximizes the expected lifetime utility

E0

∞∑

t=0

βtu(ct − bct−1, 1− lt), (12)

where β ∈ [0, 1] is the discount factor, and E0 denotes expectation conditional on information in

period t = 0. The logarithmic intratemporal utility is defined over consumption and leisure

u(ct, 1− lt) = φ log(ct − bct−1) + (1− φ) log(1− lt), (13)

where ct − bct−1 is the adjusted for habit consumption, b ∈ [0, 1] is the habits parameter, and lt

represents hours of work.

Each household supplies a continuum of differentiated labor types to the labor market in a

monopolistically competitive fashion. These labor types are aggregated into homogenous labor

by a competitive labor packer firm using a Dixit-Stiglitz aggregating technology where ηp is the

intratemporal elasticity of substitution between different labor types. The homogeneous labor

is then supplied to intermediate producers to use in the intermediate goods production. In each

period, with probability 1 − αw households can freely change the wage rate for differentiated

labor supplies. With probability αw, the wage rate may not be changed freely; however it is

allowed to partially adjust to the previous period inflation πt−1 according to the formula

W j
t = W j

t−1π
χw
t−1, (14)

where χw ∈ [0, 1] is the parameter of partial wage indexation.

Households invest to accumulate capital, and then they rent it to firms. Besides depreciation
6See Calvo (1983) and Yun (1996).
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of capital at a rate δ, any adjustment to the level of investment relative to the previous period

level is associated with capital loss. Following Christiano, Eichenbaum, and Evans (2005), we

assume that the loss per unit of investment is

Φ
(

it
it−1

)
=

κ

2

(
it

it−1
− 1

)2

, (15)

where it denotes investment and κ > 0 is a parameter determining the convexity of the invest-

ment cost function.

Besides wage and rental income, households may receive dividends from ownership in firms,

and net lump-sum transfers from government.

A continuum of intermediate firms of measure 1 produce differentiated goods according to

the Cobb-Douglas technology

yi,t ≤ ztk
1−θ
i,t hi,t

θ, (16)

where ki,t denotes capital, hi,t is homogenous labor factor, θ ∈ [0, 1] is the parameter determining

the share of labor in production, and zt is the exogenous stochastic technology process that

evolves according to

log
(zt

z

)
= ρz log

(zt−1

z

)
+ εz,t, (17)

where z is a technology level in a non-stochastic steady state, ρz ∈ [0, 1] is the autocorrelation

parameter, and εt is an i.i.d.(0, σz) stochastic process.

Intermediate goods are inputs to the production of the final homogenous good yt by com-

petitive firms using a Dixit-Stiglitz aggregating technology, with parameter ηp > 1 determining

the intratemporal elasticity of substitution between differentiated inputs. According to the

Calvo-Yun price rigidity setting, in every period a firm can reset the price for its product with

probability 1− αp. However, with probability αp the firm cannot choose its price freely, but is

allowed to partially adjust it for the previous period inflation πt−1 according to the formula

P i
t = P i

t−1π
χp

t−1, (18)

where χp ∈ [0, 1] is the parameter of partial indexation for prices.
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We assume that monetary policy follows a simple Taylor type interest rate rule

log(
Rt

R
) = αRlog

(
Rt−1

R

)
+ απlog

(πt

π

)
+ αylog

(
yt

yt−1

)
, (19)

where αR, απ, and αy are parameters.

Finally, there is no role for fiscal policy. Government consumption gt is financed by lump-

sum taxes, which implies that the following government budget constraint is satisfied in every

period.

As is standard in the literature, we focus on a symmetric equilibrium, where all firms with

an opportunity to change prices will set them at the same level. By analogy, all wages that

can be changed will be set by households at the same level for each labor type. The model

equilibrium is then determined by a nonlinear dynamic system of 14 variables that evolve over

time according to the following system of 14 difference equations

kt+1 = (1− δ)kt + it

(
1− Φ

(
it

it−1

))
, (20)

yt

sp
t

= ct + gt + it, (21)

λt = u1(ct − bct−1, 1− lt) + βu1(ct+1 − bct, 1− lt+1), (22)

λtqt = βλt+1(mct+1zt+1f1(kt+1, ht+1) + qt+1(1− δ)), (23)

λt = qtΦit(
it

it−1
) + βλt+1qt+1Φit(it+1, it), (24)

λt = bβrt
λt+1

πt+1
, (25)

sp
t+1 = (1− αp)p̃

−ηp

t + αp

(
πt

π
χp

t−1

)ηp

st, (26)
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sw
t+1 = (1− αw)

(
w̃t

wt

)−ηw

+ αw

(
wt−1

wt

)−ηw
(

πt

πχw
t−1

)ηw

sw
t , (27)

Ft =
ηw − 1

ηw
w̃tλt

(
w̃t

wt

)−ηw

ht + αwβ

(
πt+1

πχw
t

)ηw−1 (
w̃t+1

w̃t

)ηw−1

Ft+1, (28)

Ft = u2(ct, 1− lt)
(

w̃t

wt

)−ηw

ht + αwβ

(
πt+1

πχw
t

)ηw
(

w̃t+1

w̃t

)ηw

Ft+1, (29)

Xt = ytmctp̃
−ηp−1 + αpβ

λt+1

λt

(
p̃t+1

p̃t

)ηp+1 (
πt+1

π
χp

t

)ηp

Xt+1, (30)

Xt =
ηp − 1

ηp
ytp̃

−ηp

t + αpβ
λt+1

λt

(
p̃t+1

p̃t

)ηp
(

πt+1

π
χp

t

)ηp−1

Xt+1, (31)

log(
Rt

R
) = αRlog

(
Rt−1

R

)
+ απlog

(πt

π

)
+ αylog

(
yt

yt−1

)
, (32)

and

log(
zt+1

z
) = ρzlog

(zt

z

)
+ εz,t+1, (33)

where all the variables in (20) - (33) are defined in Tables 1 and 2, and

wt = mctztθ

(
k

h

)1−θ

, (34)

yt =
ztk

1−θ
t ht

θ − ψ

sp
t+1

, (35)

lt = sw
t ht, (36)

p̃t =




1− α
(

πt

πχ
t−1

)ηp−1

1− α




−1/(ηp−1)

, (37)
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and

w̃t =




w1−ηw
t − αww1−ηw

t−1

(
πt

πχw
t−1

)1−ηw

(1− αw)




1/(1−ηw)

(38)

are the real wage rate, final good output, labor supply, relative optimal price by firms and

relative optimal wage by households respectively.

The 14 variables that constitute the equilibrium dynamics of the model are: mct, qt, ivt, hd
t ,

ct, λt, πt, ft, xt, and Rt, sp
t , sw

t , and kt,and zt. To solve the model, we use the perturbation

method outlined in Schmitt-Grohé and Uribe (2004) to solve for the first order approximation

to the equilibrium dynamics of the model.

4.2 Data Generating Process

To generate the data, we calibrate the model as follows. We set the intertemporal discount factor

β = 0.9902, which corresponds to a steady state annualized real interest rate of approximately

4 percent. Depreciation rate δ is set at a conventional value of 2.5 percent. The investment

adjustment costs κ is 3, and habits parameter is calibrated at 0.6. The technology parameter θ

that reflects the share of labor in output is set at 0.7, implying the capital share of 0.3. Calvo

parameters for price (αp) and wage (αw) rigidities are 0.6 and 0.8 respectively, which implies that

on average prices are set for a period of 2.5 quarter, and wages change every 5 quarters. Both

wages and prices are subject to partial indexation, with χp and χw set at 0.5. The elasticities

of substitution between different labor types and differentiated intermediate goods, ηw and ηp,

are both set equal to 6 to imply steady state markups of 20 percent. Monetary policy rule

coefficients αR, απ, and αy are set at 0.7, 0.3 · 1.5 = 0.45 and 0.5 · 0.3 = 0.15 correspondingly, to

imply that the rule is inertial, and satisfies the generalized Taylor principle. The steady state

inflation target is π = 1.005, which implies annualized inflation rate of approximately 2 percent.

The steady state labor is h = 0.3, and the steady state shadow price of capital is q = 1. Steady

state government consumption is 20 percent of GDP. Finally, the steady state technology is

z = 1, the autocorrelation of the technology process ρz is 0.2, and the standard deviation σz is

0.01. Table 2 summarizes the calibration of model parameters.

We generate samples of various sizes for the following 7 variables: GDP, consumption, in-
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vestment, hours, the real wage rate, inflation, and the interest rate. Each sample is generated

by feeding in realizations of the stochastic technology process (17) for N periods. To avoid the

problem of stochastic singularity as pointed out by Ireland (2004), we add measurement errors

to the data, so that observations zobs
t are related to the underlying model generated data zmodel

t

as follows

zobs
t = zmodel

t (1 + errt), (39)

where errt is a multivariate (7 × 1) i.i.d. random variable with mean zero and the standard

deviation of 0.01.

We use data sample zobs
t to estimate a vector autoregression model with 2 lags (VAR(2))

in the way an empirical economist would do. We place the productivity variable, GDPt
Ht

first in

the VAR. This variable identifies the neutral technology shock. Following the standards of the

empirical literature, we order the interest rate last in the VAR. The interest rate represents the

reaction of monetary policy to observed information about the current state of the economy. The

variables with ordering from 2 to 6 are consumption, investment, labor, wages, and inflation,

correspondingly. 7 All variables in the VAR are the logarithms of the data. We use this VAR

model to obtain impulse response functions (IRF) of our 7 variables of interest. These sample

impulse responses are then used in an IRF matching exercise described in the next subsection.

4.3 Estimation

We use the Laplace type estimator by Chernozhukov and Hong (2003) to estimate the vector of

13 model parameters

θ = {αp, αw, χp, χw, b, κ, θ, β, αR, απ, αY , ρz, σz}. (40)

The distance function LN (θ) is the weighted average of the difference between theoretical and

empirical impulse response functions:

LN (θ) = (X(θ)− X̂N )′V̂N (X(θ)− X̂N ), (41)
7Although the VAR(2) model we estimate with Cholesky identification is misspecifies, we find that at large

sample sizes, a VAR(2) model generates impulse responses that accurately match those from the true model.
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where X(θ) denotes impulse responses generated by the model, and X̂N denotes impulse re-

sponses predicted by an empirical model with N data observations. V̂N is the weighting matrix,

which could be a singular matrix.8 Following Christiano, Eichenbaum, and Evans (2005), we use

the diagonal weighting matrix with inverse of variances of impulse responses along the diagonal.

The estimates are obtained by generating a Markov chain of 1 million draws using the

random-walk Hastings-Metropolis algorithm. We assume that the prior distribution π(θ) is

uniform over the parameter space. The transition kernel is q(x|y) = f(|x − y|), where f is a

multivariate 13×1 zero-mean normal distribution with variance V = σD, where D is the inverse

of the negative numerical hessian of the distance function, D = −H−1, H = ∂2LN (θ)
∂θ∂θ′ , and σ is a

scaling parameter. The hessian is evaluated in a starting point for the Markov chain, ξ0, and D

is induced to be symmetric by deriving D from the following transformation:

D = V ΛV, (42)

where V is the matrix of eigenvectors of D, and Λ is the diagonal matrix with absolute values

of eigenvalues of D along the diagonal. The scaling parameter s is adjusted to achieve the

acceptance rate of the algorithm between 30 and 40 percent.

4.4 Results

We test the convergence of the LTE in application to the empirical model by calculating the

statistics (8) for the null hypothesis of the stability of the underlying limiting diffusion process.

With this purpose, we utilize a two-step procedure outlined in Section 2. In each step, we

estimate the model based on 1 million MCMC draws. To reduce correlation between consecutive

draws, we record every 1000th element of the Markov chain. In the first step, we set the starting

value θ0 at the true parameter value. We use the draws of the first step to evaluate θ
∗ and

Σθ. The starting value for the MCMC chain in the second step is set at θ
∗. The elements of

the Markov chain obtained in the second step are used to calculate the statistics (8), and its

distribution. The statistics is calculated using the last 100 elements of the Markov chain. We

obtain the distribution of the statistic by calculating it for all the subsets of the Markov chain
8In estimation, we use impulse responses for 20 steps of each variable, which gives rise to 140 points to match.

Thus, X(θ) and X̂N are vectors 140× 1, and V̂N is 140× 140.
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with the length of 100 elements. Specifically, we identify the subsets {θi}t+99
i=t , for t from 1 to

991. Once we obtain the distribution of Ts, we can find critical values and test the hypothesis

of stability.

Figure 3 shows the distributions of Ts, as well as 5% critical values (red dashed vertical

lines), and the value of the statistics for the estimate (green vertical line) for five data samples

of lengths 100, 200, 500, 1, 000, and 10, 000 observations. The graphs reveal that the null of

stability is accepted for all the samples, which is not surprising, since the starting value of

the Hastings-Metropolis algorithm was chosen in the close proximity to the minimizer of the

objective function.

The theoretical implication of the stability theorems is that a proper choice for the starting

value and the parameter set may considerably improve the performance of the LTE. The choice

of the starting point that it is close enough to the true parameter value may lessen the chance of

instability, because if the stability set exists, it must surround the true parameter. Chernozhukov

and Hong (2003) mention that a proper starting point for the MCMC algorithm may facilitate

convergence of the LTE. The strategy to search for a proper starting point has also been widely

used in practice (An and Schorfheide (2007)) in Bayesian econometrics, although to the best of

our knowledge, there has been no theoretical justification to this strategy.

To demonstrate how the wrong choice of the starting point can negatively affect the outcome

of estimation, we run multiple MCMC chains using different starting values. Specifically, we fix

all parameters but one at their true values, and vary the starting value for this single parameter.

To present the results in a more compact way, we show the resulting estimate for the parameter of

interest only, shown with a dot in a corresponding graph in Figures 4 - 6. The figures contain 13

plots, each showing the estimate for the parameter of interest (along the vertical axis) depending

on the starting value for this parameter (on the horizontal axis), keeping the starting values of

all the other parameters at their true values. If there are no stability issues, one should expect to

see the the graphs where all the points lie along the horizontal line. We repeat this exercise for

five samples of different sizes: 100, 200, 500, 1, 000, and 10, 000 observations. The graphs reveal

that there is a lot of variation in the estimates when samples contain 100 and 200 observations

(Figures 4(a) and 4(b)). This is true for almost all the parameters and especially noticeable for

parameter αy. Comparing graphs with different sample sizes, one can notice that convergence of
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the parameters to true values improves with the number of observations. While a small bias from

misspecification of the empirical VAR model remains even at 10, 000 observations, convergence

is almost perfect for the longest sample, as can be seen from Figure 6.

To minimize the possibility of instability in MCMC chains, one may also try to shrink the

parameter space where the Markov chain will wonder most of the time as much as possible around

the true parameter value. While the researcher is usually not aware of the true parameter value,

she may still rely on some information from economic theory that can be used to form priors

about parameters. Because the prior π(θ) appears in the statistic (8), it can be manipulated

with the aim to minimize the possibility of instability in MCMC chains. Since priors are widely

used in the Bayesian literature, the results of this paper may help to justify the use of specific

prior distributions in Bayesian applications.

A crucial assumption behind our results is that model parameters are identified. Often, the

failure of Markov chains to converge is attributed to the absence of identification. In case of

identification failure, parameters cannot be estimated consistently without additional informa-

tion, and MCMC methods will produce diverging Markov chains (Dufour and Hsiao (2008)).

Figure 2 shows the profile of the expected distance function across different dimensions of the

parameter space. We approximate the expectation with a simple average of empirical distance

functions obtained from 100 different data samples. The artificial data samples are created us-

ing the strategy outlined in Section 4.2. To reduce the short-sample bias, each sample contains

10,000 observations. The graphs demonstrate that the cross-sections of the expected distance

function are hump-shaped for all parameters of interest, which implies that the model is iden-

tified across all dimension of the parameter space. A necessary condition for identification of

model parameters is non-singularity of the expected hessian of the distance function. We check

this condition by evaluating the rank of the expected hessian of the distance function (41), and

do not find the evidence of rank deficiency.

5 Conclusion

In this paper, we study the performance of the MCMC-based estimation algorithm for extremum

estimators. This method has become very popular for estimation of complex structural models,

since it alleviates many problems associated with alternative gradient-based maximum search
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procedures. We find that even if an estimation problem is well-defined and the parameter of

interest identified, there is no guarantee that Markov chains generated by the MCMC procedure

will converge to the true maximizer of the sample objective. In general, if there is a set of

parameter values such that the convergence criterion is satisfied for all points in this set, then

the MCMC algorithm will produce stable Markov chains, and the LTE will converge. However,

the MCMC chains will be unstable and the LTE will not converge to the maximizer of the

sample objective, if the sufficient condition of the instability theorem is satisfied. We obtain this

result by approximating the Hastings-Metropolis algorithm with the continuous time diffusion

process, and using the stability theory for stochastic differential equations. This conclusion can

be applied to the LTEs in finite samples as well as to the asymptotic behavior.

We illustrate our results by estimating a structural dynamic stochastic general equilibrium

model. We choose a simplified version of the model, where all structural parameters are point-

identified. The analysis of the convergence of the MCMC procedure for this model suggests

that the LTE converges from almost all points in the parameter support for very large samples.

However, for small sample sizes (e.g. smaller than 500 observations) the range of starting

values from which the LTE does not converge to the extremum of the sample minimum distance

objective is larger. The size of the instability region tends to decrease with the sample size.
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6 Appendix

6.1 Tables

Table 1: Model variables
Parameter Description
k Capital
y Production
c Consumption
g Government spending
i Investment
sp Price dispersion
sw Wage dispersion
λ Marginal utility of habit-adjusted consumption
l Labor supply
mc Marginal cost
w Wage rate
r Real interest rate
R Nominal interest rate
w̃ The wage rate of wage optimizing labor types relative to w
p̃ The relative price of optimizing firms
F Auxilary variable
X Auxilary variable
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Table 2: Calibration of model parameters
Parameter Description
β Discount factor 1.04−0.25

δ Depreciation rate 0.025
b Habit parameter 0.6
κ Investment adjustment cost 3
θ Labor share in output 0.7
αp Price rigidity 0.6
αw Wage rigidity 0.8
χp Indexation, price 0.5
χw Indexation, wage 0.5
ηp Dixit-Stiglitz aggregator, output 6
ηw Dixit-Stiglitz aggregator, labor 6
αR Monetary policy 0.7
απ Monetary policy 1.5(1-0.7)
αY Monetary policy 0.5(1-0.7)
π Inflation target 1.005
h Labor 0.3
q Shadow price of capital 1
SG Government consumption share 0.2
z Steady state technology 1
ρz Shock, autocorrelation 0.2
σz Shock, standard deviation 1
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6.2 Figures
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Figure 1: Expected population objective

Notes: The expected population objective is calculated assuming the random variable x in the example
from Section 3.1 is uniformly distributed in the interval [−a , a], and a = 1.
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Figure 2: Expected distance function profiles

Notes: The graphs show the cross section of the expected distance function along the dimensions of
the parameter space. The expected distance function was approximated by a simple average of distance
functions calculated using 100 artificially generated samples with size N = 10, 000.
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Figure 3: Test statistic for convergence of the estimator

Notes: The graphs show the distribution of the statistics (8) under the null hypothesis of the
stability for MCMC chains generated using the data samples of different lengths. The red dashed
line determines the 5 percent critical values for rejection of the null hypothesis. The vertical green
line shows the statistic for the estimate obtained as the average of the last 100 draws of the Markov
chain. A two-step procedure is used to calculate the statistics. In the first step, we run MCMC
chain to calculate θ∗ as the mean value, and Σθ as the estimated variance-covariance matrix of the
MCMC chain. The MCMC chain obtained in the second step provides θt to calculate the statistic.
The test reveals that for all sample sizes considered, the null hypothesis of stability cannot be
rejected.
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(a) Sample of 100 observations
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(b) Sample of 200 observations

Figure 4: Dependence of estimates on starting values, part 1

Notes: Each graphs shows the estimate of the parameter of interest depending on the starting
value for this parameter, for 13 parameters of the model. The starting value of the parameter of
interest is on the horizontal axis, the resulting estimate for this parameter is on the vertical axis,
and the star denotes the estimate from one MCMC chain. Every graph presents the results of
20 estimations (260 estimations in total). The starting values for all parameters other than the
parameter of interest were kept at true values.The estimate was obtained as a mean of the last
500,000 MCMC draws for this parameter out of the total 1 million draws.
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(a) Sample of 500 observations
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(b) Sample of 1000 observations

Figure 5: Dependence of estimates on starting values, part 2

Notes: Each graphs shows the estimate of the parameter of interest depending on the starting
value for this parameter, for 13 parameters of the model. The starting value of the parameter of
interest is on the horizontal axis, the resulting estimate for this parameter is on the vertical axis,
and the star denotes the estimate from one MCMC chain. Every graph presents the results of
20 estimations (260 estimations in total). The starting values for all parameters other than the
parameter of interest were kept at true values. The estimate was obtained as a mean of the last
500,000 MCMC draws for this parameter out of the total 1 million draws.
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Figure 6: Dependence of estimates on starting values, sample of 10000 observations

Notes: Each graphs shows the estimate of the parameter of interest depending on the starting
value for this parameter, for 13 parameters of the model. The starting value of the parameter of
interest is on the horizontal axis, the resulting estimate for this parameter is on the vertical axis,
and the star denotes the estimate from one MCMC chain. Every graph presents the results of
20 estimations (260 estimations in total). The starting values for all parameters other than the
parameter of interest were kept at true values. The estimate was obtained as a mean of the last
500,000 MCMC draws for the parameter of interest out of the total 1 million draws.
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Identifiability and the structure of the estimated model

In this paper we aim at studying the performance of the Metropolis-Hastings algorithm that is

applied to a quasi-likelihood of a structural model in the context of Markov Chain Monte-Carlo

inference. We only focus on the models that are identified. We consider identification on the

population level and in this section we introduce the notions of identifiability that we use. We

narrow our analysis to the models where we substitute the inference using the likelihood by

the inference using a vector of moments constructed from a structural model. We interpret

the term “structural” in a broad sense where the econometric model or its part depends on

the implicitly defined function that has to be evaluated numerically. We define the structural

econometric model as a p-dimensional vector of parameters θ, the structural function g, which is

derived from a model that presumably generates the data and the distribution of vector random

covariates Fz(·).
In the empirical part of the paper we consider the case where g is associated with an equilib-

rium of a DSGE model. In DSGE models, maximum likelihood approach to parameter estima-

tion is time-consuming. A convenient way of dealing with this problem is related to the method

of indirect inference developed in (Smith 1993) and (Gallant and Tauchen 1996). According to

the indirect inference method, rather than searching for the maximum of the entire likelihood

profile of the model, one can effectively obtain parameters by maximizing a quasi-likelihood

function, determined by only some characteristics of the model. Depending on the goals of the

estimation, this set of characteristics could include the second moments of variables of interest,

or impulse response functions. Such reduced quasi-likelihood problems belong to the class of

standard GMM problems with the moment vector m (z, θ, f), which depends on the random

variable z, finite-dimensional parameter of interest θ, and the numerical procedure f . The nu-

merical procedure may be a likelihood for maximum-likelihood problems, or a set of moment

conditions for GMM-type estimations.

In the subsequent discussion we will call a pair (θ, f) - the parameters of the model, and in

this pair θ is a Euclidean parameter of interest while f is a nuisance parameter denoting the

distribution of the covariate z. Thus, we consider the problem of semiparametric M-estimation
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where the true parameter (θ(0), f0) satisfies a semi-parametric moment condition:

E [m (z, θ(0), f0)] = 0.

The inference from the reduced model will only be possible if the numerical procedure is sensitive

to the parameter of interest. Moreover, for asymptotic validity of parameter estimates a unique

parameter must deliver the maximum to the quasi-likelihood in population. In this case, we say

that the parameter is identified by a model and data. We propose the following formal definition

of parameter identification.

Definition 3 The Euclidean parameter θ ∈ Θ (where Θ is a convex compact subset of a Eu-

clidean space Rk) is identified by the observable distribution of the data Fz(·) if the functional

correspondence (θ, f) 7→ Fz is injective.

For the purposes of this paper we impose a general identification assumption. We do not

exclude the possibility of irregular (or weak) identification as in (Stock and Wright 2000). Ir-

regular identification generally leads to the singularity of the information matrix of the model.9

However, it is still possible to estimate the parameter of interest using estimation procedures

converging at non-parametric rates. There is a line of research that studies asymptotic properties

of estimators under weak identification (see (Guerron-Quintana, Inoue, and Kilian 2009) among

others) In this paper, the focus is on finite-sample properties of identified (possibly weakly)

models. The aim of this research is to demonstrate that in finite samples, Bayesian estimation

of model parameters may fail even for strongly identified models. Thus, we restrict the analysis

to (locally) identified models.Parallel to (Stock and Wright 2000), we impose the following set

of assumptions on functions and parameters of the model to ensure the model of interest is

identified. We impose the following assumption that allows us to consider estimation separately

from the numerical procedure.

Assumption 3 A.1 1. θ ∈ Θ ⊂ Rk, where Θ is compact with respect to the Euclidean norm

in Rk

9In the setup of (Stock and Wright 2000) the empirical moment function contains a part that, first, contains
a (weakly identified) parameter of interest. second, it vanishes as the sample size increases. This leads to a zero
limit for the corresponding components of the information matrix.
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2. We consider a class of numerical procedures H endowed with a norm (e.g. numerical

tolerance level) such that for each f and f ′ with sup z, θ‖m (z, θ, f)−m (z, θ, f ′) ‖ =

o (‖f‖)
3. z ∈ Rp is a random variable with absolutely continuous density.

A.2 For each ε > 0 m (z, θ, f) is locally Lipschitz continuous in θ in the ε-neighborhood of θ(0)

for all ‖f‖ < ε. Moreover, the Lipschitz constant does not depend on f .

A.3 There exists a function Γ(z) such that E
[
‖Γ(z)‖2

]
< ∞ and a number ‖J0‖ < ∞ such

that

∂

∂θ
E [Γ(z)m (z, θ, f)]

∣∣∣∣
θ=θ(0)

= J0.

A.4 Equation E [m (z, θ, f)] = 0 has a unique solution in Θ at point θ(0) for a fixed f .

Consider a family of local perturbations of parameters θ(0) in the model with numerical algo-

rithm f . Index these perturbations bt t and form θt similar to Ibragimov and Has’minskii(1981)

and in the family of numerical procedures ft we reqire ‖ft‖ ≤ ‖ft′‖ for t < t′, f0 = f and:

θt = θ(0) + Γ(z)t∆θ.

Parameters θt are such that for each t ∈ [0, 1] and each numerical procedure ft :

Et [m (z, θt, ft)] = 0.

The paths along the local perturbations pass through (θ(0), f0). We can compute the deriva-

tive of the moment condition along the path indicated by local perturbations. In this case, λ(z)

is related to the score of the model St(z) along the parametrization path t. Then we can express

∆θ as:

J0 ∆θ = −E [(m (z, θ(0), f0) + δ(z))St(z)] . (43)

In this expression, the quantity ∆θ can be characterized as a normalized derivative of the Eu-
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clidean parameter along the path. For the expectation on the right-hand side of (43), the

standard projection results in Newey(1994) will hold, from which it follows that the estimator

for θ is locally asymptotically linear:

ψ(z) = −{m (z, β0, f0) + (δ(z)− E [δ(z)])} . (44)

Note that we assumed that the Lipschitz constant does not depend on the choice of the numerical

procedure, given that the tolerance ‖ft‖ = O (‖f‖). This means that 1√
n

∑n
i=1 (δ(zi)− E [δ(zi)]) =

op(1). We make an additional assumption which can be verified for a particular model by check-

ing that the model is sufficiently smooth and satisfies the Lindeberg condition.

Assumption 4 Suppose that a moment vector m (·) forms a system of moments that exactly

identifies the parameter θ. Empirical moment function evaluated at the true Euclidean parameter

value

√
nm̂(n) (θ(0)) d−→ N

(
0, σ2

m

)
.

The estimator θ̂ solves the system of equations:

m̂(n) (θ) = 0. (45)

Theorem 1 summarizes the properties of the estimator of interest:

Theorem 3 Suppose that Assumptions 3.1-3.5 and 4 are satisfied. Then
√

n
(
θ̂ − θ

)
is asymp-

totically linear. Moreover, the asymptotic variance of
√

n
(
θ̂ − θ

)
does not depend on the com-

putational procedure.

Proof:

Assumption 4and the definition of the estimator, we obtain that the estimator is asymptotically

normal. Then using the proof of Theorem 2.1 in (Newey 1994) we verify that the influence

function associated with the estimator will be defined by the locally linear representation above.

2

Theorem 3 proves that asymptotic properties of the semiparametric estimate of the finite-

dimensional parameters, normalized by the Jacobi matrix do not depend on a particular choice
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of the numerical procedure. The numerical procedure, however, will affect the variance of

unnormalized parameters. We consider local representations for coefficients with

θ̂n − θn =
(
θ̂n − θ(0)

)
− (

θn − θ(0)
)
.

We consider a normalization sequence γn such that

γ−1
n Jn = Jη

0 + op(1),

γn

(
θn − θ(0)

)
= hη + op(1).

We label both the bias and the normalized Jacobi matrix by η to indicate that, generally

speaking, these limits depend on the choice of structure used to estimate infinite-dimensional

nuisance parameter of the model. Then the asymptotic distribution of parameter of interest can

be expressed as:

γn
(
θ̂n − θ(0)

)
d−→ N

(
hη, (Jη

0 )−1 Ω(Jη
0 )−1

)

6.1 Technical implementation for continuous metropolis chains: Integration

of stochastic differential equations

From the theoretical point of view, Langevin algorithms are more attractive than standard

Metropolis-in-Gibbs procedures. However, numerical integration of diffusion-driven stochastic

differential equations is not equivalent to simple simulation from the appropriately adjusted

normal distribution. To see this, consider a general Itô equation of the form:

dX(t) = a (X(t)) dt + b (X(t)) dW (t).

The “naive” Euler-type approximation to this equation, frequently used in the literature10 is

given by:

Xk+1 −Xk = a (Xk) τ + b (Xk) ωk,

10A detailed treatment of approximations of stochastic differential equations is given in (Kloeden, Platen, and
Schurz 1994).
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with ωk ∼ i.i.d. N (0, τ). (Kloeden, Platen, and Schurz 1994) shows that the “naive” discretiza-

tion with the time step τ evaluates the solution with the absolute error of the order O (
√

τ),

that is:

E {|Xk −X (tk)| | X0 = x0} ≤ C
√

τ

Thus, the error accumulation for integration over long intervals of time can be quite significant.

A useful way to deal with this problem of order O
(
τ2

)
is based on the second-order Taylor-Itô

expansion of the solution to the stochastic differential equation, represented as the integral:

X(t) = X(0) +

t∫

0

[a (X(t)) dt + b (X(t)) dW (t)] .

The second order expansion leads to the discrete difference equation in the form:

Xk+1 −Xk = a (Xk) τ + b (Xk) ωk +
1
2
b (Xk)

∂b (Xk)
∂x

(
ω2

k − τ
)
.

The precision of this approximation is quadruple the precision of the naive integration algorithm.
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