

Integrating Theoretical Components: A Graphical Model for Graduate Students and Researchers

Journal:	BioScience
Manuscript ID:	11-0017.R2
Manuscript Type:	Thinking of Biology
Date Submitted by the Author:	n/a
Complete List of Authors:	Choate, David; University of Nevada, Las Vegas, School of Life Sciences Prather, Chelse; University of Houston, Department of Biology and Biochemistry Michel, Matt; St. Louis University, Department of Biology Baldridge, Ashley; University of Notre Dame, Department of Biological Sciences Barnes, Matthew; University of Notre Dame, Department of Biological Sciences Hoekman, David; University of Wisconsin, Department of Entomology Patrick, Christopher; University of Notre Dame, Department of Biological Sciences Rüegg, Janine; University of Notre Dame, Department of Biological Sciences Crowl, Todd; Utah State University, Department of Watershed Sciences
Key words:	domain, integration, philosophy of science, theory, ecology
Abstract:	Recent work identifies principles representing the broadest conceptual domains within ecology, which encompasses extremely broad spatial and temporal scales. These broad scales present challenges to maintaining conceptual and theoretical clarity yet theory development requires clear understanding of theoretical components. Although researchers often test hypotheses using existing theories, many endeavors could benefit from a formal structure for examining the theoretical underpinnings of their research. We present a graphical model to organize the theoretical components underlying any particular research effort. We provide an example and suggest that scientists use this framework to present their research in a robust theoretical context. The benefits of this approach include: accurately defining theoretical components used in research; identifying novel questions while avoiding redundancy; and explicitly linking constituent theories, thereby facilitating integration. Many scientists aspire to impact existing theory, and using this

1 2	
3 4 5	approach provides a succinct framework to identify how an individual's research affects ecological theory.
6 7	
8 9 10 11 12 13	SCHOLARONE™ Manuscripts
$ \begin{array}{r} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60 \end{array} $	For Reviewers Only

BioScience • Thinking of Biology

Integrating Theoretical Components: a Graphical Model for Graduate Students and Researchers

4 David M. Choate*, Chelse M. Prather*, Matt J. Michel, Ashley K. Baldridge, Matthew

5 A. Barnes, David Hoekman, Christopher J. Patrick, Janine Rüegg, Todd A. Crowl

David M. Choate (e-mail: choate.davidm@gmail.com) is a postdoctoral scholar in the School of Life Sciences at the University of Nevada, Las Vegas NV 89154. Chelse M. Prather is a postdoctoral associate in the Department of Biology and Biochemistry at the University of Houston, Houston TX, 77004. Matt J. Michel is a postdoctoral fellow in the Department of Biology at St. Louis University, St. Louis MO 63103. Ashley K. Baldridge, Matthew A. Barnes, Christopher J. Patrick, and Janine Rüegg are graduate students in the Department of Biological Sciences at the University of Notre Dame, Notre Dame, IN 46556. David Hoekman is a postdoctoral fellow in the Department of Entomology at the University of Wisconsin, Madison WI 53706. Todd A. Crowl is a professor in the Department of Watershed Sciences at Utah State University, Logan UT 84322. *These authors contributed equally to this manuscript.

18 Coauthor contributions: All coauthors wrote sections and edited drafts of this manuscript.
19 David Choate and Chelse Prather took the lead on a significant portion of the writing and editing
20 for this paper. Matt Michel worked on the section describing the model, tables and figures.
21 Ashley Baldridge and Matthew Barnes drafted the introduction. David Hoekman wrote the
22 section on the model example. Christopher Patrick and Janine Rüegg drafted the discussion.
23 Todd Crowl gave overall guidance on this project and edited several drafts. This manuscript is

the product of a graduate seminar on Philosophy of Ecology at the University of Notre Dame. Abstract Recent work identifies principles representing the broadest conceptual domains within ecology, which encompasses extremely broad spatial and temporal scales. These broad scales present challenges to maintaining conceptual and theoretical clarity yet theory development requires clear understanding of theoretical components. Although researchers often test hypotheses using existing theories, many endeavors could benefit from a formal structure for examining the theoretical underpinnings of their research. We present a graphical model to organize the theoretical components underlying any particular research effort. We provide an example and suggest that scientists use this framework to present their research in a robust theoretical context. The benefits of this approach include: accurately defining theoretical components used in research; identifying novel questions while avoiding redundancy; and explicitly linking constituent theories, thereby facilitating integration. Many scientists aspire to impact existing theory, and using this approach provides a succinct framework to identify how an individual's research affects ecological theory. *Keywords: domain, ecology, integration, philosophy of science, theory* Introduction Recently, scientists have suggested sets of fundamental principles representing the widest domains of biology in general (Scheiner 2010), and ecology specifically (Dodds 2009, Pickett et al 2007, Scheiner and Willig 2011). These domains, especially those encompassed by ecology,

47	span numerous levels of biological organization (e.g., microbes to mammoths) over extremely
48	broad spatial (individuals to ecosystems) and temporal (minutes to millenia) scales. As a result
49	of the wide spatial and temporal time scales that ecology attempts to explain, conceptual
50	confusion and the lack of clear, formalized theories represent a challenge to ecological science
51	(Shrader-Frachette and McCoy 1993, Pickett et al 2007, Reiners and Lockwood 2010). Context-
52	dependent results suggest to some that there are no general rules in ecology (Peters 1991,
53	Shrader-Frachette and McCoy 1993), but a fundamental need exists for ecologists to better
54	understand the broadest conceptual and theoretical frameworks that underpin their research to
55	address some of the conceptual challenges these broad domains present.
56	Belovsky et al. (2004) identified several conceptual issues and provided ten suggestions to
57	improve the advancement of ecological science. Several common themes emerged from their
58	assumptions including the need for: clearer definitions of concepts (but see Hodges 2008), better
59	links between theoretical and empirical research, and more comparative studies over space and
60	time. While Belovsky et al. (2004) provided a compelling list of suggestions and other scientists
61	and philosophers have been critical of progress in ecology (Peters 1991, Allen and Hoekstra
62	1992, Schrader-Frachette and McCoy 1993, Cuddington and Beisner 2005), they provided no
63	formal framework for individuals to facilitate ecological progress.
64	Many ecologists informally delineate the theory underlying their research hypotheses while
65	designing their research. This delineation of theoretical components is important to both
66	experiments that directly manipulate factors to test hypotheses, and observational work that
67	examines patterns of response variables over various levels of important factors (e.g. gradients of
68	latitude, moisture, biotic variation, etc). Increasingly, scientists seek to determine the relative
69	importance of different processes on already established patterns, for example, the relative role

BioScience • Thinking of Biology

of predators and nutrients on a prey species' population dynamics (see example below). In cases like these, where multiple factors are known to be important to a process, there might not be a specific a priori prediction (e.g., predation is 10x more important than nutrients), but rather a desire to test general hypotheses concerning the relative importance of multiple drivers (e.g., under what conditions are different drivers dominant). Graduate course work and committee members often lead students through the process of developing studies to effectively test hypotheses.

In a text widely used for experimental design courses, Ford (2000) extensively describes how students should use a scientific method for developing ecological hypotheses, and the role of existing theory in experimental design. However, the experimental design approach to ecology often emphasizes logistical realities over the theoretical foundation of research hypotheses. Consequently, many papers, presentations, and proposals seem to lack a solid understanding of basic ecological theories, a trend noticed by us as well as other authors (Cuddington and Beisner 2005). Cuddington and Beisner (2005) further attribute this phenomenon to the technological movement towards electronic papers leading to a loss of older literature, especially with younger researchers. Failure to understand prior work can lead to wasted research effort and resources, resulting from "reinvention of the wheel" and failure to make appropriate linkages to relevant sub-disciplines of ecology.

In their book, Ecological Understanding: the Nature of Theory and the Theory of Nature, Pickett et al. (2007) emphasized the need for the development of formal theory to encourage integration within and among disciplines. During discussions of this book in a graduate seminar, we found the crucial first step of defining the theoretical components and boundaries of our own research to be quite challenging (see also Prather et al. 2009, Crowl 2009). Like many other

BioScience • Thinking of Biology

students and faculty struggling through this process, we had many "eureka" moments of
realization when we understood how our individual research fit into theory developed by other
sub-disciplines of ecology or even entirely different disciplines. In this paper, we describe a
graphical model that can be used to help identify and organize the various facets of theory
underlying research endeavors. Explicitly mapping out these ideas greatly facilitates attaining
these "eureka" moments. Therefore, our objective is to provide a method for mapping out
conceptual pathways based on clear definitions for theoretical components.

To accomplish this objective, we first define the theoretical components of a graphical model, and describe how to use this model for integration. As a specific example, we utilize a study on the importance of top-down versus bottom-up effects in food webs (Hoekman 2010) to demonstrate how one proceeds through our modeling process. Even though we present this process in a step-wise fashion, scientists arrive at hypotheses through a variety of paths (Bump 2007). We suggest the goal should be to identify the theoretical drivers of our research questions prior to conducting research (Prather et al. 2009, Crowl 2009). We describe the benefits and pitfalls of using this approach, and suggest that using this type of approach may facilitate integration among different sub-disciplines of ecology and biology, where integration is the linkage of different theory components across different domains.

111 Constructing a model of theory

48 112

Theory components. A theory, most broadly, is a system of conceptual constructs that organizes
and explains the observable phenomena in a stated domain of interest (Pickett et al. 2007).
To litic a bla finition of fille provide the black of the provide the provide the black of the provide the providet the provide the providet the providet t

115 Traditional definitions of the components of theory do not lend themselves readily for use in

60

BioScience • Thinking of Biology

2		
3 4	116	ecology. Consequently, ecologists have modified these terms for better application to ecological
5 6 7	117	theory. For clarification, we present a description of classic philosophy of science definitions for
7 8 9	118	terms used in this text (Flew 1984, Lacey 1996), along with the basis for our usage (Pickett et al.
10 11	119	2007) and modified definitions (Ford 2000) used by ecologists (Table 1).
12 13	120	Hypotheses originate from the identification and assembly of conceptual constructs and
14 15 16	121	empirical facts pertinent to the proposed research question. Conceptual constructs are
17 18	122	abstractions of reality and include: (1) assumptions – speculations about the construction of the
19 20 21	123	study system, the interaction of its components and the manifestation of possible dynamics, (2)
22 23	124	concepts – specified ideas dependent on the identification of the assumptions (Table 1), and (3)
24 25	125	definitions – establishment of important parameters such as limits and units. Both concepts and
26 27 28	126	definitions arise from the assumptions of a theory. Similarly, the objects, interactions and states
29 30	127	that are the subject of theory must be clearly defined. As an example (from Pickett et al. 2007),
31 32	128	competition is a complex concept that may be defined as the process of concurrent use of a
33 34 35	129	limiting resource by more than one organism. This process-based definition determines how an
36 37	130	ecologist would measure the effect of competition: a difference in amount or availability of a
38 39 40	131	resource used by both organisms when together or separate. Alternatively, defining competition
40 41 42	132	as the negative effect of an interaction suggests measuring densities of the organisms when
43 44	133	together or separate. Therefore, careful specification of the conceptual constructs is essential -
45 46 47	134	many debates about the importance of ecological factors have occurred when researchers did not
48 49	135	clearly define what was tested (e.g., McIntosh 1985, Belovsky et al. 2004).
50 51 52	136	Empirical facts are confirmable observations (compare with "axiom" from Ford 2000,
52 53 54	137	Table 1), while the condensation of a large body of facts comprises confirmed generalizations.
55 56 57	138	Because facts are given meaning by the theory to which they contribute, it is useful to distinguish
58 59		

BioScience • Thinking of Biology

 between accepted facts that precede a theory, and the new observations under investigation(Pickett et al. 2007).

Laws and models (Table 1) are then derived from conceptual constructs and empirical facts, but are more sophisticated than these elements because they contain an internal logical structure and are capable of generating predictions. Laws are quantitative or verbal statements that specify an empirically supported correlation or causal relationship between two or more constructs or facts. The important feature of a law is generality throughout a specified domain (Table 1; for extensive discussion, see Kuhn 1962, Picket et al. 2007, Dodds 2009, and references therein). Models are constructs that explicitly distill assumptions, concepts, confirmed generalizations, and laws into a simplified representation of reality (Table 1). Several types of scientific models are recognized by ecologists including verbal, quantitative, graphical, or physical (Levins 1966, Haefner 1996, Williams et al. 2001). Even though many models can be idealized in a quantitative form, each represents a trade-off between generality, precision, and realism (Levins 1966).

Although laws and models may generate hypotheses, the abstractions they represent must be translated for application in the specific field or laboratory setting (e.g., species and study site) in which the hypotheses are to be tested. Translation requires the researcher to address issues such as how abstract concepts will be measured or how change will be detected. In this way, translation bridges the theoretical aspects of a research question with the realities of empirical testing. Proper translation of laws and models results in predictive statements—hypotheses— that are tested within the spatio-temporal domain specified by the researcher (see below). Biological, statistical, and theoretical results from the experimental tests of the hypotheses can then refine the set of concepts, facts, laws and models used to initially formulate the hypotheses,

Page 9 of 28

BioScience • Thinking of Biology

2		
3 4	162	denoted by bold back arrows in Figure 1, as well as refine theory components of other
5 6 7	163	domains-what we define as integration and inference (i.e., dashed output arrows).
, 8 9	164	Before discussing how integration occurs, we must first define the domain terms
10 11	165	represented in Figure 1. We propose that the domain (sensu Pickett et al. 2007, Table 1)
12 13	166	encompasses the space, time, phenomena, and level(s) of biological organization addressed by a
14 15 16	167	theory. For example, Scheiner and Willig (2011) define the broadest domain of ecology as the
17 18	168	'spatial and temporal patterns of the distribution and abundance of organisms, including causes
19 20	169	and consequences.' While the concept of domain is related to modeling scale, the domain
21 22 23	170	includes numerous sub-domains from which concepts, facts, laws or models are either distilled
24 25	171	from other domains or the present domain. The ways these sub-domains are linked reveal a key
26 27	172	benefit of our proposed graphical model: researchers can explore relationships among (sub-)
28 29 30	173	domains, enabling theory integration and identification of gaps in our understanding (i.e., poorly
31 32	174	understood linkages). Several constituent theories have been proposed such as population
33 34 25	175	dynamic theory and a metabolic theory of ecology (Pickett et al. 2007, Scheiner and Willig 2011,
35 36 37	176	Dodds 2009), and these may provide an initial standardized basis for ecological domains.
38 39	177	Results of a given study may then lead to expansion or refinement of a theory domain, and could
40 41 42	178	even suggest the need for development of new theoretical domains.
42 43 44	179	In Figure 1, the spatio-temporal extent in which the hypothesis formulated by the
45 46	180	researcher is tested forms the sub-domain A. For simplicity, we suggest that the researcher
47 48	181	limits the scope of the sub-domain A by the extent of the hypothesis. A criterion for inclusion of
49 50 51 52	182	an element within a domain is whether the understanding of the item can be directly refuted or

184 aid in the formulation of the hypotheses but reside outside the scope of the domain in which the

 changed by a hypothesis test within the domain. Therefore, concepts, facts, laws or models that

hypothesis is tested (e.g., sub-domain A) are assigned to other sub-domains (e.g., B and C). Similarly, it is this sub-domain A where the spatio-temporal extent of a study is defined, for example, as the areal extent of a specific study site (e.g., a wildlife refuge) during a given time period (e.g., summer months over 3 years) when one or more interacting focal species are present (e.g., specific ungulate prey and their predators). In this example, models from predation theory (e.g., Lotka-Volterra predation) would reside in a different sub-domain (B or C), as would results from prior testing of food web theory. **Integration.** Integration occurs when theory components are linked across different domains through their distillation as sub-domains. While formulating a hypothesis, four avenues of integration (Integration Routes – IR, dashed lines in Figure 1) among domains are possible: IR 1: Results from the test of a hypothesis in sub-domain B refine the concepts and facts of sub-domain A. Example: Results from studies examining the non-consumptive effects of predators on the habitat choice of prey populations combined with results from studies that demonstrate differences in susceptibility to disease of the prey based on habitat choice can be combined to form a new hypothesis on the effects of predation risk on disease transmission of the host-prey population. IR 2: Results from the test of a hypothesis in sub-domain B refine the laws and models of sub-domain A. Example: A researcher has developed a model of primary productivity for streams. Recent research from terrestrial systems suggests that the different decomposition rates of leaves have a strong impact on nutrient cycling. The researcher then derives a new model that incorporates variables for fast and slow decomposing species of allochthonous inputs.

Page 11 of 28

B	ioS	Science	• TI	hinl	king	of	Biol	logy
---	-----	---------	------	------	------	----	------	------

1
2
3
4
5
6
7
2 Q
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
20
30 20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
55
04 57
55
56
57
58
59
60

208	• IR 3: The researcher derives a new law or model for sub-domain A from concepts and
209	facts established in sub-domain C. Example: A researcher interested in predicting
210	optimal foraging strategies under the risk of predation may draw from economic concepts
211	(e.g., cost-benefit, diminishing returns) to model the foraging decision process as a trade-
212	off between foraging and predator avoidance. The distinction between IR 2 and IR 3 is
213	how different components (i.e., results from hypothesis testing vs. established concepts
214	and facts) from other sub-domains influence the laws and models of sub-domain A.
215	• IR 4: The researcher translates a law or model from sub-domain C into a testable
216	hypothesis in sub-domain A. Example: Within sub-domain A, a researcher has
217	developed a species-specific model for trading off feeding time in particular
218	environments with minimizing heat stress in those environments. In order to translate
219	that model into testable hypotheses, the researcher utilizes thermodynamics models of
220	heat exchange between organisms and their environments to make specific testable
221	predictions related to heat stress while foraging.
222	We do not include integration routes between identical components (e.g., laws and models of
223	sub-domain C to laws and models in sub-domain A), under the assumption that these are already
224	part of the current theory domain (sub-domain A). Furthermore, the conceptual constructs must
225	be precisely defined as described above; otherwise the integration routes may collapse into IR 1.
226	After a study is completed, results can not only refine components within the specified sub-
227	domain (bold arrows in Figure 1), but also link theory components with other domains through
228	various output integration routes (dashed arrows in Figure 1).
229	

230 An example application of the model: the relative importance of top-down vs. bottom-up

231 effects in food webs

Here we illustrate the use of this graphical model with an example from our own research which focused on factors that modulate the relative importance of top-down (i.e., predator effects on prey) and bottom-up (i.e., resource availability effects on consumers) control in food webs (Hoekman 2010). Specifically, this study began by asking how temperature affects the relative importance of predators and resources in regulating population density of species. We then focused on the species residing in pitcher plants, Sarracenia purpurea. The domain for this research (Hoekman 2010) included numerous sub-domains (food web theory, population regulation theory, metabolic theory) from which conceptual constructs, facts, laws or models were distilled (Fig. 2). These components aided in the formulation of the hypotheses but reside outside the scope of the sub-domain in which the hypotheses were tested – the pitcher plant sub-domain. This nomenclature does not imply that the sub-domain is only spatially defined, but refers to all of the theoretical structural and functional components of pitcher plant communities. The *concepts* of top-down and bottom-up control have been well developed by prior researchers (Carpenter et al. 1985, Hunter and Price 1992), including predation, competition, decomposition, and nutrient cycling (DeAngelis 1992). These concepts include assumptions about the interactions between species (e.g., the species are proximate) and were defined for the pitcher plant sub-domain. For example, top-down and bottom-up effects were measured via changes in species density (protozoa) or biovolume (bacteria). The *empirical facts* pertinent to this research describe the model system employed, the pitcher plant inquiline community. This community consists of mosquito larvae that consume protists and bacteria which consume detritus (reviewed in Miller and Kneitel 2005). The spatio-temporal extent was defined by these

 BioScience • Thinking of Biology

small aquatic communities within pitcher plants, which grow in bogs and other wetlands
throughout Eastern North America. Although the seminal work on top-down and bottom-up
effects demonstrated that they can occur in lakes (Carpenter et al. 1985), the *sub-domain* A of
inference of this particular study is limited to small aquatic habitats (pitcher plants, Fig. 2). This
study may also expand the domain of population regulation theory by top-down and bottom-up
control.

Laws and models were derived from the conceptual and empirical components described above and from integration with other sub-domains (food web theory, Fig. 2). Food web models provided a framework for the interactions of community members. Using the concepts and empirical facts above we *derived* a food web model for a pitcher plant inquiline community incorporating both nutrient inputs through decomposition (DeAngelis 1992) and predation (Hairston et al. 1960, Schmitz 1992). Furthermore, drawing from observed relationships between temperature and metabolism (i.e., empirical facts) which form the basis of metabolic scaling laws (metabolic theory, Fig. 2), we made predictions about the effects of temperature on the members of this community.

These laws and models were *translated* into specific *hypotheses*. Applying the metabolic scaling laws to the derived inquiline food web, we hypothesized that an increase in temperature would accelerate top-down processes via predator metabolism resulting in increased feeding rates. An increase in temperature was also hypothesized to accelerate bottom-up processes by promoting greater bacterial productivity resulting in faster decomposition rates. Furthermore, the relative strength of top-down versus bottom-up effects would depend on temperature. Translating these hypotheses further, top-down influences were defined as the number of predators (mosquito larvae) whereas bottom-up influences were manipulated by the density of

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
23	
20	
24	
20	
20	
27	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
40	
44	
45	
46	
47	
48	
49	
50	
51	
50	
52	
23	
54	
55	
56	
57	
58	
59	

60

resources (ant carcasses). These hypotheses were *tested* with factorial experiments manipulating
top-down and bottom-up effects across a range of temperatures (Hoekman 2010).

279

1

280 **Illustrating Integration Routes.** When first developing this study, the questions were 281 approached from the perspective of a graduate student of community ecology – working from 282 within the domain of food web theory. While the importance of climate on ecological 283 interactions was appreciated, formally mapping out linkages between food web and metabolic 284 theory provided a key insight into understanding this system. A central component of metabolic 285 theory consists of scaling laws derived from empirical facts collected from a wide range of 286 spatial and temporal sub-domains (e.g., Brown et al. 2004). By translating these scaling laws to 287 the pitcher plant inquiline community we linked metabolic theory to our theory through IR 4 288 (Fig. 1). For example, our hypotheses about how invertebrates in pitcher plants would respond 289 to experimental warming were based on a general relationship, or law, that is itself based on 290 multiple published accounts of metabolic responses to temperature. Results from testing 291 hypotheses about top-down and bottom-up effects in different communities provide the 292 conceptual constructs for our model through IR 1. Food web models developed from results of 293 hypothesis testing in different systems were modified for application to pitcher plant 294 communities via IR 2. Results from this study may be applied to other aquatic or detritus-based 295 systems via output integration routes (e.g., IR 1, 2 for another sub-domain). For example, the 296 strength of top-down effects was found to increase with temperature in this sub-domain. This 297 result provides an empirical fact (i.e., the measured response in this study), as well as a 298 conceptual construct (i.e., increased temperature increases top-down control) in a specific 299 community (i.e., pitcher plant inquilines). Drawing from predation theory, one could derive a

BioScience • Thinking of Biology

300 temperature-dependent functional response model and relate this to inquiline food webs to 301 develop new hypotheses. Consequently, a key insight gained through this process was to link 302 components of metabolic theory through predation concepts to food-web models to generate 303 novel hypotheses, thereby broadening conceptual horizons for the researcher.

Applications of the model by researchers

Outlining a new research project is a daunting task regardless of prior experience. The model presented here is intended to help structure the design process by sharpening the focus of research based on existing theory. This approach will enable scientists to form meaningful and novel questions, and facilitate the integration of their work with other research. We suggest that scientists from all levels of experience should use this framework to graphically organize and present their research in an explicit theoretical context, and we promote including these graphical models as publication supplements to facilitate integration. The way researchers approach the model will vary depending on where they are in their career, and below we discuss how this model may be applied at different points in a research career.

Beginning graduate students. After a general question is identified (for suggestions on
generating novel questions see May 1999, Belovsky et al. 2004, Bump 2007) the student needs to
return to the literature and address several questions to develop a model. 1) Has this question
been answered before in another domain? 2) What are the conceptual constructs I am employing
in asking this question? 3) What are the confirmed generalizations I am employing and how do
they influence my sub-domain? 4) What existing laws and models are incorporated in my

BioScience • Thinking of Biology

Page 16 of 28

question and how are they derived from my conceptual constructs and empirical facts? At this point the student should use the answers to amend the rest of the model, fill in the 'laws' and 'models' boxes and then use translation modes to formulate a testable hypothesis. **Experienced graduate students.** Students who have already tested their hypotheses or are midway through their research can develop the model retrospectively. After developing their model, students should proceed with a thoughtful analysis to answer the following questions. 1) Are there logically weak points in the project? 2) Does the research address any missing components in the theory? 3) How can the results be generalized to return to the original theory? 4) What components of the theory are changed by these generalizations? These questions should enable the student to visually identify how their research project fits into current theory. This process may identify additional questions to complement the existing project or help to identify weak areas. Rather than be discouraged, identification of conceptually weak points in the research can be viewed as an opportunity to directly address potential gaps before reviewers point them out. Students may use the model as a guide to integrate the different dissertation research chapters with each other as well as relate their work back to the larger body of literature. **Established researchers.** Implicitly, scientists with greater experience have the advantage of intimately knowing the conceptual constructs related to their favorite study organism/system/process. From experience, they may typically employ well-established laws and models derived from these conceptual constructs. Still, it can be advantageous for established researchers to adopt this graphical model for the visualization of where their current work fits into existing theories, and envision linkages with other sub-domains. By identifying

BioScience • *Thinking of Biology*

1		
2 3 4	346	the broader impacts of their research, investigators can strengthen the theoretical foundations for
5 6 7	347	new research, for example, in grant proposals.
7 8 9	348	
10 11	349	Benefits and pitfalls of using this approach
12 13 14	350	
15 16	351	To evaluate both benefits and pitfalls of using this graphical approach, we employ a point-
17 18 19	352	counterpoint analysis. Many benefits described overlap with Belovsky et al.'s (2004)
20 21	353	suggestions to advance ecological science (marked with an "*").
22 23	354	
24 25 26	355	• Benefit: Mapping out explicit linkages of theoretical components will help to correct a
27 28	356	perceived lack of appreciation of classic literature* and provide better links between
29 30 31	357	empirical, theoretical*, and natural history*. In completing this graphical model,
32 33	358	researchers will trace the theoretical roots of their hypotheses to the older papers that
34 35	359	newer researchers often ignore when using digital databases, including the more purely
36 37 38	360	theoretical papers that can easily be ignored by those interested in empirical research and
39 40	361	vice versa.
41 42 43	362	• Pitfall: Devoting time to catching up on the classics could detract time from reading
43 44 45	363	current literature. However, this better understanding of classic research and how it
46 47	364	relates to what younger researchers perceive as novel ideas could also allow for
48 49 50	365	avoidance of bandwagons*, i.e. research topics that go in and out of vogue without much
51 52	366	resolution. It would also prevent the unintended repetition of previously conducted
53 54	367	studies (Belovsky et al.2004).
55 56 57 58 59 60	368	

Page 18 of 28

17

BioScience Pre-Publication--For Reviewers Only

BioScience • Thinking of Biology

1 2		
3 4	369	• Benefit: The process of defining concepts while mapping out a theoretical framework
5 6 7	370	can help identify multiple meanings or ambiguities of concepts in the literature. A
8 9	371	thorough review could lead to a publication that clarifies the issue(s) or helps to resolve
10 11	372	disputes in the literature.
12 13 14	373	• Pitfall: Devoting time to clarifying a conceptual issue could detract time from primary
15 16	374	research, and be considered a less useful endeavor for students or junior researchers.
17 18 19	375	
20 21	376	• Benefit: Understanding how multiple studies across different spatial and temporal scales
22 23	377	expand the domain of a theory could increase replication over time and space in
24 25 26	378	ecological studies*. This can lead to greater rigor if researchers follow similar methods
27 28	379	as the studies they are attempting to replicate.
29 30 21	380	• Pitfall: In replicating published studies, researchers run the risk of having their studies
31 32 33	381	rejected by high impact journals – a consideration that is often so important in acquiring
34 35	382	jobs and in the tenure process. This phenomenon could also lead effectively to scientists
36 37 38	383	being caught in what Kuhn (1962) called periods of "normal science" as opposed to
39 40	384	research that leads to scientific revolutions, i.e. ever more specific refinement of existing
41 42	385	theory rather than pushing the limits to explore new terrain beyond established theoretical
43 44 45	386	grounds. In attempting to make ecology a more rigorous scientific discipline with better
46 47	387	resolved concepts, surely greater replication of experiments which expand the domains of
48 49 50	388	existing ecological theories is necessary.
50 51 52	389	
53 54	390	• Benefit: This graphical process may open new avenues for integration across disciplines,
55 56 57 58 59 60	391	and show instances where new theoretical domains could be developed. Seasoned

2		
3 4	392	researchers may reassess the sub-domains of their work, and identify linkages between
5 6 7	393	their individual projects and potentially new avenues for investigation. Indeed, some of
7 8 9	394	the most new and exciting theoretical developments in ecology have come from using
10 11	395	theoretical constructs from very different domains (e.g. the use of economic models for
12 13	396	foraging theory).
14 15 16	397	• Pitfall: Using different methods from very different disciplines can be time consuming
17 18	398	and frustrating especially in the early stages, and use many research resources.
19 20	399	
21 22 23	400	Theory integration and scientific progress
24 25	401	
26 27 28	402	The graphical model we present here provides a way for researchers to articulate the theoretical
28 29 30	403	components of their research. For example, carefully describing conceptual constructs including
31 32	404	concepts, definitions and assumptions will facilitate communication among researchers (Grimm
33 34	405	and Wissel 1997, Belovsky et al. 2004, but see also Hodges 2008). By the time the results are
35 36 37	406	analyzed, an explicitly defined sub-domain provides the inference space for generalization, and
38 39	407	the framework may directly point towards the next question(s) worthy of investigation. Making
40 41 42	408	components explicit eases tests for logical consistency and agreement with results. Testing weak
42 43 44	409	links (e.g. testing an assumption based on weak support from data) efficiently enables rapid
45 46	410	progress of maturing theories by evaluating the pillars on which they are built. While this
47 48	411	approach may enhance progress within a sub-discipline, the graphical model also highlights the
49 50 51	412	links with components of other theory domains (e.g., ecological sub-disciplines) through the
52 53	413	integration routes of its components. Understanding these integration routes may enhance the
54 55	414	dialogue between empiricists and theorists, by elucidating the interaction between data and
57 58		

models (e.g., Kareiva 1989, Belovsky et al. 2004). Integration follows by investigating the linkages either among or within sub-disciplines. For example, studies employing the same theory but applying it in a different geographical region or system (e.g., moving from lakes to forests), may reinforce (if the data do not support) or expand (if consistent) the current domain of the theory. An explicit framework will also enable direct comparisons across studies in order to refine component models or laws. Rather than contributing to a debate about whether ecology has general laws as in other sciences (Lawton 1999, Turchin 2001, Colyvan and Ginzburg 2003, O'Hara 2005), reproducing studies in light of this graphical model provides a means for evaluating the invariance (Lange 2005) of the laws (as model components) across new spatio-temporal domains (i.e., against "counterfactual perturbations," Lange 2005). To the extent that the laws would be invariant under repeated tests of their translated predictions, they would gain support, aiding in maturation of existing theories while enhancing scientific progress – especially in ecology. Acknowledgements This manuscript is the product of a graduate seminar on Philosophy of Ecology at the University of Notre Dame, and other seminar participants contributed to discussions of these ideas. We thank S. Scheiner, T. Miller, and several anonymous reviewers for insightful comments on earlier drafts. **References cited**

BioScience • Thinking of Biology

2		
3 4	438	Allen TFH, and Hoekstra TW. 1992. Toward a Unified Ecology. New York: Columbia
5 6 7	439	University Press.
7 8 9	440	Belovsky GE, Botkin DB, Crowl TA, Cummins KW, Franklin JF, Hunter ML, Joern A,
10 11	441	Lindenmayer DB, MacMahon JA, Margules CR, and Scott JM. 2004. Ten suggestions to
12 13	442	strengthen the science of ecology. BioScience 54: 345-351.
14 15 16	443	Brown JH, Gillooly JF, Allen AP, Savage VM, and West GB. 2004. Toward a metabolic theory
17 18	444	of ecology. Ecology 85: 1771-1789.
19 20	445	Bump JK. 2007. Pyramid of ideas: the art of generating novel research questions. Frontiers in
21 22 23	446	Ecology and the Environment 5: 555-556.
24 25	447	Carpenter SR, Frost TM, Kitchell JF, Kratz TK, Schindler DW, Shearer J, Sprules GW,
26 27 28	448	Vanni MJ, and Zimmerman AP. 1991. Patterns of primary production and herbivory in
20 29 30	449	25 North American lake ecosystems. Pages 67-96 in Cole JJ, G Lovett, and S Findlay,
31 32	450	eds. Comparative Analyses of Ecosystems: Patterns, Mechanisms, and Theories. New
33 34 35	451	York: Springer-Verlag.
36 37	452	Carpenter SR, Kitchell JF, and Hodgson JR. 1985. Cascading trophic interactions and lake
38 39	453	productivity. BioScience 35: 634-639.
40 41 42	454	Colyvan M, and Ginzburg LR. 2003. Laws of nature and laws of ecology. Oikos 101: 649-653.
43 44	455	Crowl, T.A. 2009. Putting the "Ph" back into "PhD": framing graduate research in a theoretical
45 46	456	context – Faculty Response. Frontiers in Ecology and the Environment 7:391.
47 48 49	457	Cuddington K, and Beisner B, eds. 2005. Ecological paradigms lost: routes of theory change.
50 51	458	New York: Elsevier Acadmic Press.
52 53	459	DeAngelis, DL. 1992. Dynamics of Nutrient Cycling and Food Webs. London: Chapman and
54 55 56	460	Hall.
57 58		
59 60		

2	
3 4	461
5 6	462
7 8 9	463
10 11	464
12 13	465
14 15 16	466
17 18	467
19 20 21	468
22 23	469
24 25	470
26 27 28	471
29 30	472
31 32 33	473
33 34 35	474
36 37	475
38 39 40	476
40 41 42	477
43 44	478
45 46 47	479
48 49	480
50 51	481
52 53 54	482
55 56	
57 59	
59	
60	

461	Dodds W. 2009. Laws, Theories, and Patterns in Ecology. Berkeley: University of California
462	Press.
463	Ellison AM, Gotelli NJ, Brewer JS, Cochran-Stafira DL, Kneitel JM, Miller TE, Worley AC, and
464	Zamora R. 2003. The evolutionary ecology of carnivorous plants. Pages 1-74. Advances
465	in Ecological Research, Vol 33: Academic Press.
466	Flew A. 1984. A Dictionary of Philosophy. New York: St. Martin's Press.
167	Ford ED. 2000. Scientific Method for Ecological Research. Cambridge: Cambridge University
468	Press.
169	Fretwell SD. 1977. Regulation of plant communities by food-chains exploiting them.
470	Perspectives in Biology and Medicine 20: 169-185.
471	Grimm V, and Wissel C. 1997. Babel, or the ecological stability discussions: An inventory and
472	analysis of terminology and a guide for avoiding confusion. Oecologia 109: 323-334.
473	Haefner JW. 1996. Modeling Biological Systems: Principles and Applications. New York:
474	Chapman & Hall.
475	Hairston NG, Smith FE, and Slobodkin LB. 1960. Community structure, population control, and
476	competition. American Naturalist 94: 421-425.
477	Hodges KE. 2008. Defining the problem: terminology and progress in ecology. Frontiers in
478	Ecology and the Environment 6: 35-42.
479	Hoekman D. 2008. Top-down and bottom-up effects in a detrital food web: the pitcher plant
480	inquiline community as a model food web. PhD dissertation. University of Notre Dame
481	Hoekman D. 2010. The effect of temperature on the relative importance of top-down and
482	bottom-up effects. Ecology 91: 2819-2825.

Page 23 of 28

BioScience • Thinking of Biology

1 2		
3 4	483	Hunter MD, and Price PW. 1992. Playing chutes and ladders - heterogeneity and the relative
5 6 7	484	roles of bottom-up and top-down forces in natural communities. Ecology 73: 724-732.
8 9	485	Kareiva P. 1989. Renewing the dialogue between theory and experiments in population ecology.
10 11	486	Pages 68-88 in Levin SA, ed. Perspectives in Ecological Theory. Princeton (NJ):
12 13 14	487	Princeton University Press.
15 16	488	Kuhn TS. 1962. The Structure of Scientific Revolutions. Chicago: University of Chicago Press.
17 18 19	489	Lacey AR. 1996. A Dictionary of Philosophy. London (United Kingdom): Routledge.
20 21	490	Lange M. 2005. Ecological laws: what would they be and why would they matter? Oikos 110:
22 23	491	394-403.
24 25 26	492	Lawton JH. 1999. Are there general laws in ecology? Oikos 84: 177-192.
27 28	493	Levins R. 1966. The strategy of model building in population biology. American Scientist
29 30 31	494	545:421-431.
32 33	495	Lindeman RL. 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399-418.
34 35 26	496	Mautner T. 1996. A Dictionary of Philosophy. Oxford (United Kingdom): Blackwell Reference.
30 37 38	497	May R. 1999. Unanswered questions in ecology. Philosophical Transactions of the Royal Society
39 40	498	of London Series B-Biological Sciences 354: 1951-1959.
41 42 43	499	McIntosh RP. 1985. The Background of Ecology. Cambridge: Cambridge University Press.
44 45	500	Miller TM, and Kneitel JM. 2005. Inquiline communities in pitcher plants as a prototypical
46 47 48	501	metacommunity. Pages 122-145 in Holyoak M, MA Leibold, and RD Holt, eds.
40 49 50	502	Metacommunities: Spatial Dynamics and Ecological Communities. Chicago: University
51 52	503	of Chicago Press.
53 54 55	504	O'Hara RB. 2005. The anarchist's guide to ecological theory. Or, we don't need no stinkin' laws.
56 57 58 59	505	O1Kos 110: 390-393.

STA. 1999. The culture of synthesis: habits of mind in novel ecological integration.

1 2		
2 3 4	506	Peters RH. 1991. A Critique for Ecology. Cambridge: Cambridge University Press.
5 6 7	507	Pickett STA. 1999. The culture of synthesis: habits of mind in novel ecological inte
7 8 9	508	Oikos 87: 479-487.
10 11	509	Pickett STA, Kolasa J, and Jones CG. 2007. Ecological Understanding: The Nature
12 13 14	510	and the Theory of Nature. San Diego: Academic Press.
15 16	511	Prather, CM, Choate, DM, and Michel, MJ. 2009. Putting the "Ph" back into "PhD
17 18	512	graduate research in a theoretical context. Frontiers in Ecology and the Env
19 20 21	513	7:389-390.
22 23	514	Reiners WA, and Lockwood JA. 2010. Philosophical Foundations for the Practice of
24 25	515	Cambridge: Cambridge University Press.
26 27 28	516	Scheiner SM. 2010. Towards a conceptual framework for biology. The Quarterly Re
29 30	517	Biology 85: 293-318.
31 32 22	518	Scheiner SM, and Willig MR (eds). 2011. The theory of ecology. Chicago: University
33 34 35	519	Chicago Press.
36 37	520	Schmitz OJ. 1992. Exploitation in model food-chains with mechanistic consumer re
38 39 40	521	dynamics. Theoretical Population Biology 41: 161-183.
41 42	522	Schrader-Frechette KS, and McCoy ED. 1993. Method in Ecology: Strategies for C
43 44	523	Cambridge: Cambridge University Press.
45 46 47	524	Turchin P. 2001. Does population ecology have general laws? Oikos 94: 17-26.
48 49	525	Williams BK, Nichols JD, and Conroy MJ. 2002. Analysis and Management of Ani
50 51 52 53	526	Populations: Modeling, Estimation, and Decision Making. New York: Acad
55 56		
58 59		
60		

Oikos 87: 479-487. STA, Kolasa J, and Jones CG. 2007. Ecological Understanding: The Nature of Theory and the Theory of Nature. San Diego: Academic Press. r, CM, Choate, DM, and Michel, MJ. 2009. Putting the "Ph" back into "PhD": framing graduate research in a theoretical context. Frontiers in Ecology and the Environment 7:389-390. s WA, and Lockwood JA. 2010. Philosophical Foundations for the Practice of Ecology. Cambridge: Cambridge University Press. er SM. 2010. Towards a conceptual framework for biology. The Quarterly Review of Biology 85: 293-318. er SM, and Willig MR (eds). 2011. The theory of ecology. Chicago: University of Chicago Press. tz OJ. 1992. Exploitation in model food-chains with mechanistic consumer resource dynamics. Theoretical Population Biology 41: 161-183. ler-Frechette KS, and McCoy ED. 1993. Method in Ecology: Strategies for Conservation. Cambridge: Cambridge University Press. n P. 2001. Does population ecology have general laws? Oikos 94: 17-26. ms BK, Nichols JD, and Conroy MJ. 2002. Analysis and Management of Animal Populations: Modeling, Estimation, and Decision Making. New York: Academic Press.

Page 25 of 28

BioScience Pre-Publication--For Reviewers Only

BioScience • Thinking of Biology

Table 1. Comparison of definitions of common philosophy terms. Words in italics are

synonyms used by the source for the given term.

Term	Classical philosophy	Ford (2000)	Pickett <i>et al.</i> (2007)
Concept	Sentences, statements, propositions, beliefs, theories, and doctrines that can be said to be true or false ^a	Any object or idea to which we can give a name and define, and so enable things to be understood in a particular way	Labeled regularities in phenomena
Confirmed generalization	<i>Universal generalization</i> - An inference from a premise true of any arbitrarily chosen individual, to a conclusion about every individual ^a	<i>Over-arching axiom</i> - A fundamental proposition, used as an axiom, which states broad assumptions of the theory and cannot be challenged directly by single investigations	The condensation of a large body of facts
Domain	Set of the individuals which enter into the argument of a function ^a	The limitations to the importance and application of concepts	The scope in space, time, and phenomena addressed by a theory ^b
Empirical fact	Usually, that which corresponds to a statement or makes it true ^c	Axiom - A proposition assumed to be true on the basis of previous research, observations, or information, and is used in defining the working part of the theory that is the foundation for the research	Confirmable record of phenomena
Hypothesis	A prediction based on theory; an educated guess derived from various assumptions, which can be tested using a range of methods, but is most often associated with experimental procedure ^d	A statement that will be tested by investigation	Testable statements derived from or representing various components of theory
Integration	<i>Synthesis</i> - combination of separate parts into a unified whole ^a	<i>Scientific inference</i> - conducted for a specified question using the following procedures and standards:	The explicit joining of two or more areas of understanding into a single conceptual-

he synthesis provides a ntific explanation of why ething exists or occurs cientific explanation must oherent, explaining new previously obtained rmation empirical relationship yeen two or more septs, established by surement, and asserted to niversally true	Conditional statement of relationship or causation, statements of identity, or statements of process that hold within a universe of discourse Conceptual
cientific explanation must oherent, explaining new previously obtained rmation empirical relationship veen two or more cepts, established by surement, and asserted to niversally true	Conditional statement of relationship or causation, statements of identity, or statements of process that hold within a universe of discourse Conceptual
empirical relationship veen two or more septs, established by surement, and asserted to niversally true	Conditional statement of relationship or causation, statements of identity, or statements of process that hold within a universe of discourse Conceptual
cribes important features simplified representation	Conceptual
system and can be used ustrate how interactions take place to produce cular outcomes	construct that represents or simplifies the structure and interactions in the material world
<i>a statement</i> - 1) defines acientific procedure to be in investigating a ulate, 2) specifies the surements to be made for concept of a postulate 3) specifies the irements of the data for statistical test to be ied	Procedures and concepts needed to move from the abstractions of a theory to the specifics of application or test or vice versa
	<i>a statement</i> - 1) defines cientific procedure to be in investigating a ulate, 2) specifies the surements to be made for concept of a postulate 3) specifies the irements of the data for statistical test to be ied from the one used in pape

BioScience • Thinking of Biology

Figure 1. Graphical model of theory integration. Abbreviations represent: Cpt. Cst =conceptual constructs, E. facts = empirical facts, L, m = laws, models, Hyp. = hypotheses: testing. The focal study is represented in Sub-domain A with all theory components interacting as explained in the text (theory component interactions = solid lines), and draws components from both Sub-domains B and C through four different Integration routes (integration routes = dashed lines). Results from the study conducted in Sub-domain A can inform studies within the same sub-domain for refinement or studies within other sub-domains (output integration routes).

Figure 2. An example of the graphical model filled out to summarize a paper based on a chapter in a dissertation (Hoekman 2010). While this figure only encompasses a single sub-domain, its components are derived from multiple domains.

101x67mm (300 x 300 DPI)

theory

IR1

