Midterm Exam 2 - 6 questions. All sub-questions carry equal weight. You need to show how you arrive at your conclusions-answers like "yes" or "no" without further elaboration will get 0 points.)

1. (24\%) Consider two random variables X and Y . Assume they both are discrete and that both X and Y can take the values 1,2 , and 3 . The probabilities for (X, Y) are shown in the following table:

	$\mathrm{X}=1$	$\mathrm{X}=2$	$\mathrm{X}=3$
$\mathrm{Y}=1$	$2 / 24$	$3 / 24$	$7 / 24$
$\mathrm{Y}=2$	$1 / 24$	$3 / 24$	$2 / 24$
$\mathrm{Y}=3$	$1 / 24$	$2 / 24$	$3 / 24$

i) Find the marginal probabilities of X and Y . Mark clearly which are the marginal probabilities of X and which are the marginal probabilities of Y. Explain what the marginal probabilities measure.
ii) Find the mean and the variance of Y.
iii) Are the events $\mathrm{X}=1$ and $\mathrm{Y}=1$ independent events?
iv) Are the random variables X and Y independent?
v) Find the probability $P(\{X>2\} \cap\{Y \leq 2\})$
vi) Find the conditional distribution of X given $Y=2$.
vii) Find the random variable $E(X \mid Y)$.
viii) Find $\operatorname{Var}(X \mid Y=2)$.
2. (16%) Consider the density $f(x, y)=2 ; 0<y<x<1$. Find the bivariate CDF $F(x, y)$. (Hint: treat the cases $x<y$ and $y<x$ separately).
3. (20%) Assume $X \sim N(1,4), Y \sim N(2,9)$, and the covariance between X and Y is 1 .
i) What is $E(X \mid Y=2)$? (State the formula you use and then the number.)
ii) What is $\operatorname{Var}(X \mid Y=3)$?
4. (10%) If X and Y are jointly normally distributed and the marginal distribution of both X and Y are standard normal and X and Y are independent, what is the value of the joint CDF at the point $(0,0)$? (I.e., what is $F(0,0)$?)
5. (15%) Prove the law of iterated expectations (you can do the discrete or the continuous case).
6. (15%) If X and Y are jointly normally distributed, derive the conditional distribution of X given Y. (To cut down on clutter, you may - if you so choose - assume that both X and Y have mean 0.)

