Midterm Exam 2, April 5 — 4 questions with a total of 102 points. All sub-questions carry equal weight.

1. (30%) Consider the AR model

$$y_t = 30 + 0.8y_{t-1} + u_t \,, \tag{1}$$

where u_t is white noise.

a) Is this model stable?

Now assume that you have the model for income:

$$y_t = 13 + u_t + 0.2u_{t-1} + .4u_{t-2}. (2)$$

- b) Calculate the variance of y_t and all auto-covariances.
- c) Consider model (1). If $y_0 = 20$ and $y_{-1} = 100$, what is E_0y_1 ? What is E_0y_2 ? What is (approximately) E_0y_{1000} ?
- d) Consider model (2). If $u_0 = 10$, $u_{-1} = 0$, and $u_{-2} = 10$, what what is E_0y_1 ? What is E_0y_2 ?
- e) Assume that Hall's PIH-model holds and assume the rate of interest is 10%. Assume asset holdings at the beginning of period 0 are zero. Find the level of consumption C_0 in year 0 (still using model (2) for income).
- f) Assume that $u_1 = 20$. Find C_1 .
- 2. (20%) For Hall's PIH-model explain:
- a) What is meant by Excess Sensitivity of Consumption?
- b) What is meant by Excess Smoothness of Consumption?
- c) Suggest a way to test for Excess Sensitivity of Consumption.

PLEASE TURN OVER

3. (20%) A consumer lives for 3 periods and maximizes

$$\log C_1 + \frac{1}{1.1} \log C_2 + \frac{1}{1.21} \log C_3$$
.

- a) Assume the consumer optimally choose $C_1 = 20$ and $C_2 = 22$. What is the safe rate of interest from period 1 to period 2?
- b) If the safe rate of interest from period 2 to period 3 is 10%, what is C_3 ?
- 4. (32%) Consider the CAPM-model.

Assume the world only have two outcomes ("states of the world"). Let X be an asset whose payout PO_X is 100 if "shine," a situation where the market return is 10 percent. "Shine" has probability 0.5. If "rain," the pay-out to the asset is 50 and the market return is 0; "rain" also has probability 0.5. Assume that the safe rate of interest is 1 percent.

- a) What is the expected return (ER_X) to an investment in X?
- b) What are the possible returns R_X and their probabilities (in other words, what is the distribution of R_X)?
- c) What is the price of asset X in the initial period?

Now assume that Y is an asset whose payout PO_Y is 200 if "shine" and 100 if "rain."

d) What is the expected return ER_Y ? (Hint: you can provide the answer easily, if you consider the relation between the payout to X and the payout to Y.)