Midterm Exam 2 - 5 questions. All sub-questions carry equal weight.

NOTE: We need to be able to follow your calculations, so just giving a number is not considered a full answer (if we really can't follow your reasoning, it is not even a partial answer).

1. (35%) Consider two random variables X and Y . Assume they both are discrete and that X can take the values 1 and 2 while Y can take the values 1,2 , and 3 . The probabilities for (X, Y) are shown in the following table:

	$\mathrm{X}=1$	$\mathrm{X}=2$
$\mathrm{Y}=1$	$0 / 12$	$3 / 12$
$\mathrm{Y}=2$	$2 / 12$	$1 / 12$
$\mathrm{Y}=3$	$2 / 12$	$4 / 12$

i) Find the marginal distribution of X.
ii) Find the mean and the variance of X .
iii) Are the random variables X and Y independent?
iv) Find the probability $P(\{X>1\} \cap\{Y \leq 2\})$.
v) Find the conditional distribution of X given $Y=1$.
vi) Find $E(X \mid Y)$ for $Y=1$.
vii) Find the distribution of $X^{2} Y$.
2. (20%) Let X be a vector random variable with mean μ and variance matrix Σ.
i) Prove that Σ is positive semi-definite.
ii) Prove that the distribution of $A X$ is $A \Sigma A^{\prime}$. (You may use expressions for Σ that we derived in class.)
3. (20%) Let

$$
\Sigma=\left(\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right)
$$

be the variance matrix of a vector X where $X=\left(X_{1}, X_{2}\right)^{\prime}$.
i) Find real numbers a, b and c such that $Y_{1}=a X_{1}$ and $Y_{2}=b X_{1}+c X_{2}$ are uncorrelated and each have variance 1 .
ii) Find $\Sigma^{1 / 2}$.

PLEASE TURN OVER

4. (15%) Let A be an n-dimensional symmetric matrix such that $A^{2}=A$. Prove that if X_{1}, \ldots, X_{n} is a vector of normally distributed random variables that are independent of each other and have variance 1 , then $X^{\prime} A X$ is distributed as χ^{2} with degrees of freedom equal to the rank of A.
5. (10%) Let X, Y follow a bivariate normal distribution. Assume that the covariance of X and Y is -2 , and the variance of X is 9 and the variance of Y is 4 . Further assume that the mean of X is -20 and the mean of Y is 0 . If you are told that $Y=5$, what is the distribution of X ?
