Midterm Exam 2 - 5 questions. All sub-questions carry equal weight.

NOTE: We need to be able to follow your calculations, so just giving a number is not considered a full answer (if we really can't follow your reasoning, it is not even a partial answer).

1. (18%) Assume X and Y are independent standard exponentially distributed random variables. Derive the density of $X+Y$.
2. (18%) Let

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

If X_{1} and X_{2} are independent, standard $\mathrm{N}(0,1)$, normally distributed random variables, what is the distribution of $Y=A X$, where $X=\left(X_{1}, X_{2}\right)^{\prime}$.
3. (18%) Assume that Y is binomially distributed with $n=2$ and $p=0.4$. If $E(X \mid Y)=Y^{2}$, what is $E(X)$?
4. (20%) If X is an n-dimensional vector distributed as $N(\mu, \Sigma)$, where Σ has full rank, explain in detail why $\left(X^{\prime}-\mu^{\prime}\right) \Sigma^{-1}(X-\mu)$ is $\chi^{2}(n)$ distributed.
5. (26\%) Assume that X and Y follow a bivariate Normal distribution with non-zero correlation ρ. Denote the mean, variance of X and Y by μ_{X}, σ_{X}^{2} and μ_{Y}, σ_{Y}^{2}, respectively.
a) State the joint density for X, Y.
b) Derive the conditional distribution of Y given X.

