Midterm Exam 1, March 1—3 questions. All sub-questions carry equal weight except where otherwise indicated.

1. (30%) Assume that y_t follows the AR(2) process

$$y_t = 200 + 0.5y_{t-1} + 0.3y_{t-2} + e_t \quad (*)$$

where e_t is white noise with variance 4.

- a) (8%) Is this process stable? (You need to show why).
- b) (8%) Find the mean and variance of y_t assuming that y_t is stationary.

Assume that you are told that $y_1 = 500$ and $y_0 = 400$. (But for question d) you should still think of these as realizations from the stationary distribution.)

- c) (6%) What is the conditional expectation $E(y_3|y_0,y_1)$?
- d) (8%) Prove that $E(y_1|y_0) = E(y_0|y_1)$? (Hint: One way is to make the assumption that y_1 and y_0 are jointly normally distributed and drawn from the stationary distribution and use what you know from 6331.)
- 2. (35%) The Fischer model.
- a) (20%) Derive the formulas for prices as a function of m_t and lagged expectations of m_t in the Fischer model. (Start from the assumption that the desired price level in log terms is $p_t^* = 0.5m_t + 0.5p_t$.)
- b) (15%) Assume that monetary policy is described by the AR(2) process

$$m_t = 10 + 0.5m_{t-1} + 0.3m_{t-2} + e_t$$
.

Also assume you observe $m_t = 10$, $m_{t-1} = 20$, and $m_{t-2} = 40$. What is the predicted level of y_t and p_t in the Fischer model?

PLEASE TURN OVER

3. (35%) Assume that a representative agent has a utility function

$$U(C, L) = C - \delta \exp(L)$$
,

where δ is a positive parameter. Assume that agent *i* supplies output Q_i produced by the production technology Q = L. The agent sets the relative price P_i/P , where P is the aggregate price index (assume there a many agents so a change in P_i doesn't change P) and faces a demand function

$$Q_i = Y\left(\frac{P_i}{P}\right)^{-\eta} .$$

The agent supplies labor L_i to the market at the equilibrium wage rate W and hires labor in the amount of Q_i .

- a) Find the optimal relative price $\frac{P_i}{P}$ (where the agent takes P as given).
- b) Find the agent's labor supply as a function of the real wage.
- c) Find the equilibrium level of output in the economy.
- d) Does the equilibrium level of output increase or decrease with the parameters δ and η ? Explain the intuitive logic underlying your answer.