Midterm Exam 1, March 3—4 questions. All sub-questions carry equal weight except where otherwise indicated.

1. (20%) Assume that y_t follows the AR(2) process

$$y_t = 200 + 0.5y_{t-1} + 0.1y_{t-2} + e_t \quad (*)$$

where e_t is white noise with variance 2.

a) (8%) Find the mean and variance of y_t assuming that y_t is stationary.

Now assume that you are told that $y_1 = 200$ and $y_0 = 200$.

- b) (4%) What is the conditional expectation $E(y_2|y_0,y_1)$?
- c) (4%) What is the conditional expectation $E(y_3|y_0,y_1)$?
- d) (4%) What is the conditional expectation $E(y_1|y_0)$? (Hint: Make the assumption that y_1 and y_0 are jointly normally distributed and use what you know from 6331.)
- 2. (30%) Assume output in an economy is determined by the equilibrium condition that aggregate demand E is equal to total output Y. Assume that E = C + I + G where consumption C = 2 + .6*(Y T) (T is net taxes), investment is exogenous at 1, and government consumption is exogenous at 2. T equals 2. Assume that inflation and expected inflation is 0 and that P = 1. Money supply is exogenous at 10, and the demand for money is P*L(Y,r) where L(Y,r) = Y 0.1*r. (The numbers are not chosen to give reasonable values for the solution, so don't worry about "crazy" interest rates etc.)
- a) Derive the IS curve (meaning give the equation with the actual intercept and slope implied by the numbers given).
- b) Derive the MP-curve (in Romer's notation) (equivalent to the LM curve here where inflation is
- 0). Again, we need the actual equation with intercept and slope.
- c) Solve the model for the equilibrium level of output and interest rate.
- d) What happens if M doubles to 20? (Find the new level of output and interest rate.)
- e) Assume that government consumption and net taxes both doubles to 4. What is the effect on output?

PLEASE TURN OVER

3. (20%) If one estimates the consumption function

$$c_{it} = \beta_0 + \beta_1 y_{it} + u_{it}$$

for a sample of individuals where c_{it} is non-durable consumption and y_{it} is current income of individual i at period t, one gets a very low (positive, but closer to 0 than to 1) estimate of β_1 .

a) Explain why this might be (follow Friedman's explanation).

It was also observed that when one estimates the model

$$c_t = \alpha_0 + \alpha_1 y_t + w_t ,$$

using aggregate data, one gets a larger estimate of α_1 than one gets using individual data.

- b) What was Friedman's explanation for this?
- 4. (30%) Consider an economy with a large number of agents where the utility of agent i is determined by a utility function

$$U(C_i, L_i) = E \log C_i - \alpha L_i ,$$

where L_i is labor supplied, C_i is agent i's consumption (a basket of goods in fixed proportions) and α is a positive parameter (E is the expectations operator). Assume that agent i supplies output Q_i produced by the production technology Q = L. The agent is a price taker and the price of the single good agent i produces is denoted P_i . The aggregate price index (price of consumption) is P = 1 so $C_i = P_i * Q_i$. Assume there are many goods so a change in P_i doesn't change P. Agent i faces a demand function

$$Q_i = Y P_i^{-1} Z_i,$$

where Y is aggregate output and Z_i is log-normally distributed with mean $e^{\sigma_z^2/2}$, where $\sigma_z^2 = 2$ is the variance of $\log(Z_i)$. Assume that the Z_i random variables are independent of each other and independent of Y. Assume that the agent has to decide on his labor supply before he or she knows Z_i (otherwise there will no uncertainty at all).

- a) (15%) Find the equilibrium level of output in the economy. (You need to solve the model. Hint: If you consider the relation between normal and log-normal random variables, you can figure out what is the distribution of Z_i^{-1} .)
- b) (5%) Explain intuitively why output goes up/goes down/stays the same, when α increases. You can get full points if you explain what must happen even if you couldn't solve part a).

Now assume instead that

$$U(C_i, L_i) = E\{C_i - \kappa \frac{1}{2}C_i^2\} - \alpha L_i .$$

c) (10%) Find the level of output using this utility function (assume that the magnitudes of κ and α are such that a positive solution exists).