Midterm Exam $1-5$ questions. All sub-questions carry equal weight.

NOTE: We need to be able to follow your calculations, so just giving a number is not considered a full answer (if we really can't follow your reasoning, it is not even a partial answer).

1. (28%) Consider a uniform distribution on the closed interval $[0,1]$. Assume a random variable X follows this distribution.
a) Find the mean of X.
b) Find the distribution of $Y=\log (X)$. (Be specific about all details of the distribution.)
c) Find $P(Y<-0.5)$.
d) Find $E(Y)$.
2. (20%) Suppose that you consider 3 events: A: You pass the core exam. B: You get an A in statistics. C: The Astros (Houston sports team) wins the World Series. Assume that $P(A)=1 / 3, P(B)=1 / 2$ and $P(C)=1 / 5$.
Further assume that the event C is independent of both A and B (and all subsets of these). Finally, we assume that $P(A \mid B)=2 / 3$.
a) What is the probability that you will pass both the core exam and the statistics exam?
b) What is the probability that either the Astros win or you get an A in statistics or you pass the core?
c) Assuming that a clairvoyant tells you that you will pass the core. Given that, what will be the probability that you will get an A in statistics?
d) What is the probability $P(A \cup C \mid B)$?
3. (20%) a) Explain (give the precise expression) what is meant by excess kurtosis.
b) Does a uniform distribution on $[-5,5]$ have excess kurtosis?
4. (20\%) Derive the Moment Generating Function for a normal distribution with mean μ and variance σ^{2}.
5. (12\%) Assume that X is binomially distributed with $p=0.2$ and $n=2$.
a) Find $P(X>2)$
b) Find the probability distribution for $Y=2+X^{2}$.
