ECONOMETRICS I, SPRING 2016

Homework 3. Due Tuesday March 22. (NOTE: Do as much as you can. We will give full grade for effort. I need to figure out how far you are. I believe you should be able to solve this, but I may be wrong. The sooner you give me feed-back, the better for everybody.)

1. Suppose that in a population of n individuals the **true** relationship between two variables, x and y, is:

$$y_i = \alpha + \beta * x_i + u_i = 10 - 1 * x_i + u_i, \quad i = 1, \dots, 100$$

where the above relationship satisfies all the assumptions of the linear regression model. Suppose also that you know a priori that the variance of $\hat{\beta}$ is equal to 1.

Now consider a test of the hypothesis, $H_0: \beta = 0$ (and the alternative $H_1: \beta \neq 0$) in which the hypothesis is rejected if the absolute value of the estimated coefficient, $\hat{\beta}$, is greater than some critical value k. That is, the null hypothesis is rejected if $|\hat{\beta}| > k$, where k is the critical value of the test.

- a) What critical value would you choose for this test if you wanted a 5% level of significance?
- b) Given this test and a 5% level of significance, what is the probability of making a type II error?
- c) By repeating the kind of calculation that you did in b) make a rough sketch of the power function.
- 2. Let $x_1 = 2$, $x_2 = 0$, $x_3 = 3$, $x_4 = 2$ and let $y_1 = 2$, $y_2 = 0$, $y_3 = -2$, $y_4 = 4$.
- a) Find \bar{x} , \bar{y} , S_{xx} , S_{yy} , and r_{xy} (put your calculations in a little table so I can see what you do).
- b) Plot y against x (just do a little sketch by hand) relate that to the value you found for r_{xy} .
- c) Find the estimated regression line and the estimated standard deviation for the slope.
- d) Perform a t-test for the significance of the slope. (Show all the steps so we can see what you did).
- 3. Matrix exercises.
 - 1. Prove that

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^{-1} = \begin{pmatrix} A_{11}^{-1}B & -A_{11}^{-1}A_{12}F \\ -FA_{21}A_{11}^{-1} & F \end{pmatrix}$$
 (1)

where $B = I + A_{12}FA_{21}A_{11}^{-1}$ and $F = (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1}$.

- 2. Let A be a symmetric idempotent matrix. Prove that $trA = \rho(A)$.
- 3. Prove that $\operatorname{tr} A'A = \sum_{i} \sum_{j} a_{ij}^2$.
- 4. Show $\sum_{(y_i \bar{y})^2} = y' M^0 y$ with $M^0 = I_N \frac{1}{N} \iota_N \iota'_N$. (ι_N is an N-dimensional vector of ones, I_N an N-dimensional identify matrix.)