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1 The Kalman Filter

We assume that we have a model that concerns a series of vectors αt, which are called “state

vectors”. These variables are supposed to describe the current state of the system in question.

These state variables will typically not be observed and the other main ingredient is therefore

the observed variables yt. The first step is to write the model in state space form which

is in the form of a linear system which consists of 2 sets of linear equations. The first set of

equations describes the evolution of the system and is called the “Transition Equation”:

αt = Kαt−1 + Rηt ,

where K and R are matrices of constants and η is N(0, Q) and serially uncorrelated. (This

setup allows for a constant also.) The second set of equations describes the relation between

the state of the system and the observations and is called the “Measurement Equation”:

yt = Zαt + ξt ,

where ξt is N(0, H), serially uncorrelated, and E(ξtηt−j) = 0 for all t and j.

It turns out that a lot of models can be put in the state space form with a little imagination.

The main restriction is of course on the linearity of the model while you may not care about

the normality condition as you will still be doing least squares. The state-space model as it is

defined here is not the most general possible—it is in principle easy to allow for non-stationary

coefficient matrices, see for example Harvey(1989). There is also extension of Kalman filter

methods to non-linear models. These are known as extended Kalman filters and they are also

treated in Harvey (1989) – be aware, however, that extended Kalman filters usually can not

be used to evaluate likelihood functions exactly; but only gives an approximation.

As an example, let us look at a model where the economy consists of two sectors producing

a homogeneous product, where we only observe the aggregate output subject to measurement

error. Assume that the output of the 2 sectors follow a VAR(1) model. Then the state-space

system becomes as follows. Transition equation:(
α1
t

α2
t

)
=

(
a11 a12

a21 a22

)(
α1
t−1
α2
t−1

)
+

(
1 0

0 1

)(
η1t
η2t

)
,
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and measurement equation:

yt = (1 1)

(
α1
t

α2
t

)
+ ξt ,

ARMA processes can also be written in State-Space form and we will use the Kalman filter

to estimate the likelihood function for ARMA processes. In the case of a general ARMA

process, one can use several representations; but the most compact (and useful) one is the

following. Assume that we have given the scalar ARMA process (where I leave out the mean

for simplicity):

xt = a1Xt−1 + ... + akXt−m + ut + b1ut−1 + ... + blut−l ,

where m = max{k, l + 1}. This process can be represented in the following state space form:

Transition equation

αt =



a1 1 0 . . . 0

a2 0 1 . . . 0
...

...
...

. . .
...

am−1 0 0 . . . 1

am 0 0 . . . 0


αt−1 +



1

b1
...

bm−2

bm−1


ut ,

and measurement equation

xt = (1, 0, . . . , 0) αt .

Example. The MA(1) model has the state-space representation

αt =

(
0 1

0 0

)
αt−1 +

(
1

b1

)
ut .

If αt = (α1t , α2t)
′, then α2t = b1ut and α1t = α2,t−1 + ut = ut + b1ut−1.

It is an exercise to show that the general ARMA-case does indeed have the state-space repre-

sentation given above.

The Kalman filter is very useful when you want to calculate the likelihood function. You

will typically have a general maximization algorithm at your disposal (e.g. the OPTMUM

algorithm in GAUSS). Such an algorithm takes as input a subroutine that evaluates the value

of the likelihood function for a given set of parameters. This is where you will use the Kalman

filter algorithm.

For a start, look at the general likelihood function:

f(yT , ..., y1; θ) ,
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where θ is a vector of parameters. One can always factor such a likelihood function (indepen-

dent of which model or distribution that generates the variables), as

f(yT , ..., y1; θ) = f(yT |yT−1, ..., y1; θ)f(yT−1, ..., y1; θ) .

Iterating this formula we find

f(yT , ..., y1; θ) = ΠT
t=p+1f(yt|yt−1, ..., y1; θ)f(yp, ..., y1; θ) ,

From which we find the log-likelihood function in recursive form as

L = ln f =
T∑

t=p+1

ln f(yt|yt−1, ..., y1; θ) + ln f(yp, ..., y1; θ) .

In the case of the normal likelihood function this becomes

L =
T∑

t=p+1

−1

2
ln |Ft| −

1

2
ν ′tF

−1
t νt + constant + ln f(yp, ..., y1; θ) ,

where

νt = yt − E(yt|yt−1, ..., y1) and Ft = E[νtν
′
t|yt−1, ..., y1] .

Now if we knew Ft and νt we would have a quite convenient way of evaluating the likelihood

function. (Note that in the stationary case, variance matrices, such as Ft will be constant and

not have a time index.) This is what the Kalman filter equations below are designed to do.

At this stage note the following aside. The likelihood equations in recursive form allows you

to evaluate the “impact” of a new observation arriving, in the sense that it immediately shows

the conditional likelihood. In engineering it is often important to be able to update a pa-

rameter estimate instantly when a new observation occurs—and hopefully without having to

reestimate using all the data. The Kalman Filter does exactly that and it is therefore used

extensively by engineers. More surprising is the fact that it at the same time is so convenient to

use that it is also a good choice to use for the purpose of a single estimation on a given data set.

The ingredients of the Kalman filter (besides the state-space representation) consist of pre-

dicting equations and updating equations.

For any vector xt define xt|t−1 = E(xt|yt−1, ..., y1), where yj are the observed variables. This

definition gives the best guess of xt based on all the information available at time t−1, xt|t−1 is

the prediction of xt at t−1. As you may guess, the Kalman filter evolves around predicting and

updating the prediction of the state vector. Also define Pt|t−1 = E{(αt−αt|t−1)(αt−αt|t−1)
′}—

Pt|t−1 is the conditional variance of the “prediction error” αt − αt|t−1.
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We will first describe the Kalman filter and then derive it.

The prediction equations take the form

αt|t−1 = Kαt−1|t−1

yt|t−1 = Zαt|t−1

Pt|t−1 = KPt−1|t−1K
′ + RQR′ .

If we define

νt = yt − yt|t−1 ,

the variance matrix

Ft = Et−1{νtν ′t} = Et−1{(yt − yt|t−1)(yt − yt|t−1)′} = ZPt|t−1Z
′ + H .

This follows since

yt − yt|t−1 = Z(αt − αt|t−1) + ξt .

To finish the Kalman filter we need the updating equations:

αt|t = αt|t−1 + Pt|t−1Z
′F−1t νt

Pt|t = Pt|t−1 − Pt|t−1Z
′F−1t ZPt|t−1 .

The interpretation of the updating equations is that νt contains the new information (from yt)

and we update our estimate of αt based on y1, ..., yt−1 (i.e. αt|t−1) to a new estimate that is

based on y1, ..., yt−1 and yt (the new estimate is αt|t), and we calculate the conditional variance

Pt|t of αt|t. The term

Pt|t−1Z
′F−1t νt ,

is called the Kalman gain. Any new information enters the system through the Kalman gain.

The Kalman filter can be derived from the rules of the Normal distribution:

We can write

νt = Z(αt − αt|t−1) + ξt

αt = αt|t−1 + (αt − αt|t−1) ,

From our definitions we have(
νt

αt

)∣∣∣∣∣
yt−1,...,y1

= N
((

0

αt|t−1

)
,

[
Ft ZPt|t−1

Pt|t−1Z
′ Pt|t−1

])
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Recall the following rule for the conditional Normal distribution (or see e.g. Lütkepohl (1991),

pp. 480-81). If (
x1

x2

)
∼ N

((
µ1

µ2

)
,

[
Σ11 Σ12

Σ21 Σ22

])
,

then the conditional distribution of x1 given x2 is

N(µ1 + Σ12Σ
−1
22 (x2 − µ2), [Σ11 − Σ12Σ

−1
22 Σ21]) .

Using this rule on the conditional distribution of (νt, αt) we find

L(αt|yt, ..., y1) = L(αt|νt, yt−1, ..., y1) = N(αt|t−1+Pt|t−1Z
′F−1t νt, Pt|t−1−Pt|t−1Z

′F−1t ZPt|t−1) ,

which is the updating equation.

One problem is how to initialize the filter. It is natural to choose αt|t−1 = 0 since this is

the unconditional mean of αt. It is often also natural to choose the stationary value of the

variance as the initial value for the variance, even though this is only an option in the stable

case). Other choices are possible, for example you may want to condition on initial values as

discussed earlier; but in that case the special cases has to be considered one by one. One can,

however, find the stationary variance by the following method.

Combining the updating and the prediction equations we find

Pt+1|t = KPt|t−1K
′ − KPt|t−1Z

′(ZPt|t−1Z
′ + H )−1ZPt|t−1K

′ + RQR′ ,

which is known as the Riccatti equation. If the model is stable Pt|t−1 will converge to the

solution P̄ of the algebraic Ricatti equation

P̄ = KP̄K ′ − KP̄Z ′(ZP̄Z ′ + H )−1ZP̄K ′ + RQR′ .

In order to apply the Kalman filter one has to choose a set of starting values. The most

natural choice for a stable system is the unconditional mean and variance. Since

αt = Kαt−1 + Rηt ,

has the form of an AR(1) model, we will then choose α1|0 = 0 (or as suitable if you included

a constant in the system) and P0|0 such that

vec(P0|0) = (I − K ⊗K)−1vec(RQR′) .

If you want, you can choose other initial conditions, for example chosen from a Bayesian prior,

or if you want to condition on initial values. In the non-stationary case it is obviously not
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possible to choose the initial distribution from the stationary distribution.

Example: The state-space representation for an AR(2) model is(
xt

a2xt−1

)
=

(
a1 1

a2 0

)(
xt−1

a2xt−2

)
+

(
1

0

)
ut ,

so here conditioning on inital observations just corresponds to an initial variance of zero; but in

the ARMA case one has to be a bit more sophisticated unless one want to condition on initial

values of the innovation terms to be zero. This is not always advisable as discussed previously.

Now in order to use the Kalman filter you will need a general optimization routine as OPT-

MUM in GAUSS. Such a routine need a subroutine that returns the criterion function and

the optimization algorithm will then use some specified algorithm to minimize (or maximize)

the value of the criterion function. Let me sketch how a subroutine using the Kalman filter

for evaluating a Normal likelihood function would look. Assume the subroutine evaluating the

likelihood function is called CRITFUNC. If we evaluate the value of the likelihood function for

a scalar ARMA model if will have the parameters a1, ...ak, b1, ..., bl, σ of the ARMA model as

arguments. The structure of a GAUSS/Matlab/whatnot subroutine would be something like

this:

CRITFUNC(a1, ...ak, b1, ..., bl, σ);

@ First create the matrices that is used in state-space form @

K[1, 1] = a1;

K[1, 2] = a2;

etc.

@ Initialize @

L = 0 @ L is the value of the likelihood function @

t = 0

@Initialize the Kalman Filter.@

P0 = ..

etc.

@ Loop @

DO UNTIL t == (T-1)

Prediction Equations for time t

Evaluate the condition likelihood = L(yt|yt−1, ..., y1)
L = L + L(yt|yt−1, ..., y1)
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Updating equations for t ;

ENDO ;

@return the value of the likelihood function for all points@

RETURN(L);

END OF CRITFUN

Kalman Smoother

Sometimes you want the best “estimate” of αt for some purpose. (An example that is very

common in consumption/labor is one where income is the sum of a random walk and a white

noice or MA(1) component. In this case, you may want to normalize the data with the random

walk component in order to get stationary data before estimation.) The best estimate is of

course the estimate that uses all available information; i.e., αt|T . We will derive the formulas

for this:

The thing to notice is that the relation αt = Kαt−1 + Rξt implies that future values of α

are informative about previous values of α. (All information comes from y, but the Kalman

filter has “extracted” the information of α contained in y.) To “go backwards” in a AR-type

relation, we have to (again) use the formula for conditional expections. Consider the joint

distribution of αT |T and αT |T−1 conditional on T − 1 information. We have(
αT |T

αT−1,T−1

)
∼ N

((
αT |T−1

αT−1|T−1

)
,

[
PT |T−1 KPT−1|T−1

PT−1|T−1K
′ PT−1|T−1

])
,

Using the formula for the conditional expection, we get

αT−1|T = αT−1|T−1 + PT−1|T−1K
′/, P−1T |T−1(αT |T − αT |T−1 .

and now you can “run the recursion backwards.” Because all future information about αT−2

is included in αT−1, the next step will be

αT−2|T = αT−2|T−2 + PT−2|T−2K
′/, P−1T−1|T−2(αT−1|T − αT−1|T−2 ,

etc.
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List of symbols

• αt that state variable of our model

• yt the data observation

• xt|s is (for generic x) the expected value of xt conditional on y1, ..., ys (s can be smaller

or larger or equal to t)

• νt = yt − yt|t−1 is the innovation to y and it contains the new information arriving at

period t

• Ft is the variance of νt

• Pt|s is the variance of αt conditional on y1, ..., ys, It is not a function of the data

• αt = Kαt−1 +Rηt

• The variance of ξt is Q

• yt = Zαt + ξt

• The variance of ξ is H.
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List of equations

The prediction equations:

αt|t−1 = Kαt−1|t−1

yt|t−1 = Zαt|t−1

Pt|t−1 = KPt−1|t−1K
′ + RQR′ .

The updating equations:

αt|t = αt|t−1 + Pt|t−1Z
′F−1t νt

Pt|t = Pt|t−1 − Pt|t−1Z
′F−1t ZPt|t−1 .

The smoothing equations:

αt−1|T = αt−1|t−1 + Pt−1|t−1K
′ P−1t|t−1(αt|T − αt|t−1 .
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