ECONOMICS 7344, Spring 2016 Bent E. Sørensen

HOMEWORK 8. Wednesday April 6, Due Wednesday April 13.

- 1. Consider an agent with income ("output" in Obstfeld-Rogoff) $Y_1=10, Y_2^A=18$, and $Y_2^B=2$, where A and B are states of the world with $\pi^A=0.5$ and $\pi^B=0.5$. Assume $p^A=p^B, \, r=10\%$ and the discount rate is $\beta=\frac{1}{1+r}$.
- a) Assume the agent has quadratic utility and that the agent can trade in Arrow-securities for both state A and state B. Does the "PIH-relation" $C_1 = EC_2$ hold?
- b) Find C_2^A/C_2^B .
- c) How many units of each Arrow-security does the agent purchase and how many units of the period 1 good? (this can be a negative number so "purchase" may mean sell.)

Now assume that the agent has utility function $U(C) = -\frac{1}{3}C^{-3}$.

- d) Find C_2^A/C_2^B . (Give the intuition for why it does or does not change from the answer in part b). [This is probably a hard question]).
- e) Find C_1 .
- f) Now assume $\frac{p^A}{p^B} = \frac{2}{3}$. Now find C_1 and C_2^S for S = A, B and check if $C_1 = EC_2$.
- 2. Consider the case of an economy with four states-of-the-world. Assume that an asset S_1 exists that pays 2 units in period 1 if state A occurs, 1 unit if state B occurs, and nothing if state C or D occurs. Another asset S_2 exists which pays 1 unit in period 1, if state C occurs, and nothing in states A, B, and D. A third asset S_3 pays 0 units in period 1 if state C occurs, and 2 units in states A, B, and D. Finally, a discount bond paying one unit in period 1 for sure can be traded.
- a) Is the set of assets equivalent to a full set of Arrow securities?
- b) Now assume that asset S_3 instead pays 1 unit in period 1, if state A occurs, and 0 units in states B, C, and D. Are the markets perfect (equivalent to a full set of Arrow securities) in this case?