## ECONOMICS 7344 - MACROECONOMIC THEORY II, Spring 2015

Homework 1. Wednesday January 21. Due Wednesday January 28.

1. Define the lag polynomial  $a(L) = a_0 + a_1 L$  and  $b(L) = b_0 + b_1 L + b_2 L^2$ . (Notice: in the notes, and in class, it is often assumed  $a_0 = 1$  and  $b_0 = 1$ . This is just for simplification and doesn't matter for any results since you can always re-scale the data and the lag-polynomial such that the first coefficient becomes unity (write a(L) as  $a_0 a'(L)$  where the lag polynomial  $a'(L) = 1 + \frac{a_1}{a_0} L$  and similarly for b(L)). The constant  $a_0$  will not affect the properties of the lag-polynomial that we care about. Also notice: The coefficients are real numbers (occasionally complex numbers) and can be negative or positive, it is therefore purely a matter of taste if you write  $a(L) = a_0 + a_1 L$  or  $a(L) = a_0 - a_1 L$ .)

Assume  $a_0 = 4$ ,  $a_1 = -1$ ,  $b_0 = 1$ ,  $b_1 = -7$ , and  $b_2 = 1$ .

- i) If  $x_{t-1} = 2$ ,  $x_{t-2} = -3$ ,  $x_{t-3} = -2$ , and  $x_{t-4} = 9$ , what is  $a(L)x_t$ ? and  $b(L)x_t$ ?
- ii) What is c(L) = a(L)b(L)? You have to do that by finding  $a(L)b(L)x_t$  [for general  $x_t$  not the specific realizations given] using the definition that  $a(L)b(L)x_t = a(L)[b(L)x_t]$  and simplifying).

Define  $a(x) = a_0 + a_1 x$  and  $b(x) = b_0 + b_1 x + b_2 x^2$ .

- iii) Find a(x)b(x) and compare the coefficients with a(L)b(L).
- iv) Find the roots of c(L). Is the AR-model  $c(L)x_t = 8 + u_t$  stable?
- 2. Define the polynomials a(x) = 1 + .2x and  $b(x) = 1 .5x .5x^2$  and find the roots [meaning the solution(s) to, say, a(x) = 0] in each polynomial. What are the roots of the polynomial c(x) = a(x) \* b(x)?