HOMEWORK 11. Due Wednesday April 23.

- 1. Consider the case of an economy with four states-of-the-world. Assume that an asset S_1 exists that pays 2 units in period 1 if state A occurs, 1 unit if state B occurs, and nothing if state C or D occurs. Another asset S_2 exists which pays 1 unit in period 1, if state C occurs, and nothing in states A, B, and D. A third asset S_3 pays 0 units in period 1 if state C occurs, and 2 units in states A, B, and D. Finally, a discount bond paying one unit in period 1 for sure can be traded.
- a) Is the set of assets equivalent to a full set of Arrow securities?
- b) Now assume that asset S_3 instead pays 1 unit in period 1, if state A occurs, and 0 units in states B, C, and D. Are the markets perfect (equivalent to a full set of Arrow securities) in this case?
- 2. (20% of final, 2010) An econometrician finds a relation

$$\Delta \log C_{it} - \Delta \log C_t = 0.4 \, \Delta Y_{it-1} ,$$

where C_{it} is the consumption of individual i and Y_{it} is the income of individual i and C_t is aggregate consumption. (Assume aggregate consumption growth is not equal to individual consumption growth; in other words: the left-hand side side is not 0.)

Assuming the coefficient 0.4 is statistically significant what does this results imply about the validity of

- a) the Permanent Income Hypothesis?
- b) Perfect Risk Sharing (under the standard assumption that all agents have identical CRRA utility functions)?
- 3. (60% of final 2008) Consider the case of a 3 agents ("Home," "Foreign," and "Really Foreign"), 2 periods, 2 states-of-the-world model where agents can trade using a full set of Arrow securities. Assume that all agents have quadratic utility functions $U(C_0) + \beta E_0 U(C_1)$, where $U(C_t) = C_t \frac{1}{200}C_t^2$ and $\beta = \frac{1}{1.1}$.

Assume that the endowment of the first agent is $y_0 = 3$, that of the second agent in period 0 is $y_0^* = 3$, and that of the third agent $y^{**} = 6$.

The following table gives the possible endowments and the probabilities for Home, Foreign and Really Foreign:

	Home		Foreign				Really Foreign	
State of the world:	A	В	_	A	В	_	A	В
period 1 endowment	2	7		7	2		9	9
probability:	.5	.5		.5	.5		.5	.5

- a) Find the prices of the Arrow-Debreu assets for each of the 2 states of the world.
- b) Find the rate of interest.
- c) Argue in economic terms why the interest rate is larger or smaller than 0 and larger or smaller than the discount rate.
- d) Assume that now only bonds can be traded. Find the rate of interest?
- e) Find the consumption in period 1 and period 2 of the Home agent. (If you write down one equation in one unknown, that is considered a full answer, don't spend time on solving.)
- f) Assume that now there again are Arrow-Debreu securities but $U(C) = \log(C)$. Find the prices of the Arrow-Debreu securities.
- g) Find the rate of interest.
- h) Find the consumption of all agents in all periods and all states of the world.
- i) Assume that the agents only have access to a bond. State 3 equations in 3 unknowns that would determine the consumption of the agents and the interest rate. (The equations are messy to solve, so do not solve them.)
- j) Assume now that agents have access to an Arrow-Debreu security that pays out one unit in state A and the agents also have access to a bond. Find the consumption of all agents in all states of the world. (Hint: If you think carefully about this, you may not have to do a lot of calculations.)