ECONOMICS 7344 – MACROECONOMIC THEORY II, Spring 2013

Homework 3. Wednesday January 30, due Monday February 4.

1. Romer 6.5.

2. (30% of midterm 1, 2008) Consider an economy with a large number of agents where the utility of agent *i* is determined by a utility function

$$U(C_i, L_i) = E \log C_i - \alpha L_i$$

where L_i is labor supplied, C_i is agent *i*'s consumption (a basket of goods in fixed proportions) and α is a positive parameter (*E* is the expectations operator). Assume that agent *i* supplies output Q_i produced by the production technology Q = L. The agent is a price taker and the price of the single good agent *i* produces is denoted P_i . The aggregate price index (price of consumption) is P = 1 so $C_i = P_i * Q_i$. Assume there are many goods so a change in P_i doesn't change *P*. Agent *i* faces a demand function

$$Q_i = Y P_i^{-1} Z_i,$$

where Y is aggregate output and Z_i is log-normally distributed with mean $e^{\sigma_z^2/2}$, where $\sigma_z^2 = 2$ is the variance of $\log(Z_i)$. Assume that the Z_i random variables are independent of each other and independent of Y. Assume that the agent has to decide on his labor supply *before* he or she knows Z_i (otherwise there will no uncertainty at all).

a) (15%) Find the equilibrium level of output in the economy. (You need to solve the model. Hint: If you consider the relation between normal and log-normal random variables, you can figure out what is the distribution of Z_i^{-1} .)

b) (5%) Explain intuitively why output goes up/goes down/stays the same, when α increases. You can get full points if you explain what must happen even if you couldn't solve part a).

Now assume instead that

$$U(C_i, L_i) = E\{C_i - \kappa \frac{1}{2}C_i^2\} - \alpha L_i .$$

c) (10%) Find the level of output using this utility function (assume that the magnitudes of κ and α are such that a positive solution exists).

3. Derive the formula for "b" (the slope in the Lucas supply curve) in terms of the deep structural parameters, γ , η , Var(z) and Var(m).

4. (This was question 2 in the 2005 final with a weight of 20%) Consider the Lucas imperfect information model.

Assume that shock to individual demand (z_i in the text) have a variance σ_z^2 . Now assume that demand follow one of the two following models

$$m_t = 1 + .2m_{t-1} + u_t$$
; $var(u_t) = 4$, (A)

or

$$m_t = 3 + .6m_{t-1} + u_t$$
; $var(u_t) = 2$. (B)

(The process for individual demand is the same in both cases.) Assume that agents observe m_{t-1} before making decisions in period t; i.e., at time $t m_{t-1}$ is given. Then assume that the shock u_t takes the value 1. Now would the impact of the shock be larger if monetary policy is described by model A or by model B. (Explain the logic of your answer).