ECONOMICS 7344, Spring 2011
 Bent E. Sørensen
 February 24, 2012

HOMEWORK 5. Wednesday February 22, due February 27.

1. A consumer lives for 2 periods and earns $Y_{1}=15 \$$, in period 1, and in period 2 he or she earns $Y_{2}=10 \$$ with probability $1 / 2$ and $Y_{2}=20 \$$ with probability $1 / 2$. The consumer maximizes

$$
U\left(C_{1}\right)+\beta E_{1} U\left(C_{2}\right),
$$

where

$$
U(C)=100 C-\frac{1}{2} C^{2}
$$

a. Assume that the rate of interest is 0 and the discount factor is 1 and find C_{1} and C_{2} (for each of the period 2 outcomes).
b. What is the solution if the interest rate is 10 percent and the discount factor is still 1 ?
c. What is the solution if the discount rate is 10 percent and the interest rate is 10 percent?
d. And if the discount rate is 10 percent and the interest rate is 0 ?
e. What is your answer to part a if instead $Y_{2}=2 \$$ with probability 0.5 and $Y_{2}=8 \$$ with probability 0.5 ?
2. Repeat question 1 assuming log utility.
3. $\left(40 \%\right.$ of midterm 2, 2008) Assume that y_{t} follows the stationary $\mathrm{AR}(1)$ process

$$
y_{t}=200+0.2 y_{t-1}+u_{t}
$$

where u_{t} is white noise with variance 2 .
a) (5%) Find the mean and variance of y_{t}.

Now assume that the PIH holds such that $\Delta C_{t}=\alpha u_{t}$. Assume the rate of interest is 10%.
b) (10%) Find the value of α (this should be a number).
c) (5%) What is the variance of consumption growth?

Now you are told that $y_{2}=210, y_{1}=200$ and $y_{0}=200$. (This holds for the remaining questions.)
d) (5\%) What is ΔC_{2} ?
e) (10%) Assume that the consumer has assets $A_{2}=0$ at the beginning of period 2. What is C_{2} ?
f) (5%) What is the conditional expectation $E\left\{C_{3} \mid y_{2}, y_{1}, y_{0}\right\}$?
4. (20% of 2010 , second core exam, January 2011) Assume that income follows the time-series process

$$
y_{t}=3+0.5 y_{t-1}+e_{t},
$$

where e_{t} is white noise with variance 4 .
a) Assume that the PIH holds. Find the asymptotic value of the coefficient β in the (OLS) regression

$$
c_{t}=\alpha+\beta y_{t}+u_{t},
$$

where c_{t} is (PIH-) consumption and u_{t} an error term.
b) If x_{t} is white noise measurement error with variance 4 , with distribution is independent of that of y_{s} (for all s) and we define $z_{t}=x_{t}+y_{t}$. Assume you estimate the OLS regression

$$
c_{t}=\alpha+\gamma z_{t}+u_{t} .
$$

What is the asymptotic value of γ ?

