Bent E. Sørensen

ECONOMICS 7344 - MACROECONOMIC THEORY II, Spring 2012

Homework 1. Monday January 23. Due Monday January 30.

1. Define the lag polynomial $a(L)=a_{0}+a_{1} L$ and $b(L)=b_{0}+b_{1} L+b_{2} L^{2}$. (Notice: in the notes, and in class, it is often assumed $a_{0}=1$ and $b_{0}=1$. This is just for simplicity and doesn't matter for any results since you can always re-scale the data and the lag-polynomial to to have the first coefficient being unity (write a(L) as $a_{0} a^{\prime}(L)$ where the lag polynomial $a^{\prime}(L)=1+\frac{a_{1}}{a_{0}} L$ and similarly for $\left.b(L)\right)$. The constant a_{0} will not affect the properties of the lag-polynomial that we care about. Also notice: The coefficients are real numbers (occasionally complex numbers) and can be negative or positive, it is therefore purely a matter of taste if you write $a(L)=a_{0}+a_{1} L$ or $\left.a(L)=a_{0}-a_{1} L.\right)$

Assume $a_{0}=5, a_{1}=-3, b_{0}=1, b_{1}=-7$, and $b_{2}=3$.
i) If $x_{t-1}=2, x_{t-2}=-2, x_{t-3}=-2$, and $x_{t-4}=9$, what is $a(L) x_{t}$? and $b(L) x_{t}$?
ii) What is $c(L)=a(L) b(L)$? You have to do that by finding $a(L) b(L) x_{t}$ [for general x_{t} not the specific realizations given] using the definition that $a(L) b(L) x_{t}=a(L)\left[b(L) x_{t}\right]$ and simplifying).

Define $a(x)=a_{0}+a_{1} x$ and $b(x)=b_{0}+b_{1} x+b_{2} x^{2}$.
iii) Find $a(x) b(x)$ and compare the coefficients with $a(L) b(L)$.
iv) Find the roots of $c(L)$. Is the AR-model $c(L) x_{t}=8+u_{t}$ stable?
2. Define the polynomials $a(x)=1+.2 x$ and $b(x)=1-.5 x-.5 x^{2}$ and find the roots [meaning the solution(s) to, say, $a(x)=0$] in each polynomial. What are the roots of the polynomial $c(x)=a(x) * b(x)$?
3. (24% of midterm 1, Spring 2005) Assume that income follows the $A R(1)$ process

$$
y_{t}=2+0.4 y_{t-1}+e_{t} \quad(*)
$$

where e_{t} is white noise with variance 3 .
a) Is this time-series process stable?
b) Assume that y_{0} is a random variable. For what values of the mean $E\left(y_{0}\right)$ and the variance $\operatorname{var}\left(y_{0}\right)$ will the time series $y_{t} ; t=0,1,2, \ldots$ be stationary?
c) What is $E_{1} y_{3}$ if $y_{1}=5$ and $y_{0}=2$?
d) Write the infinite Moving Average model that is equivalent to the $\operatorname{AR}(1)$ model (*) [assuming that the process now is defined for any integer value of t. (Half the points are from getting the correct mean term.)
4. (4\% Core Spring 2004) Assume that income follows the AR process

$$
y_{t}=3+2.0 y_{t-1}+e_{t}
$$

where e_{t} is white noise.
a) Is this time-series process stable?
b) If $y_{0}=2$, what is $E_{0} y_{1}$?
5. Assume that income follows the ARMA process

$$
y_{t}=3+0.3 y_{t-1}+e_{t}
$$

where e_{t} is white noise.
a) Is this time-series process stable?
b) What is $E_{t-2} y_{t}$ if $y_{t-2}=5$ and $y_{t-3}=10$?
c) What is $E_{t-1} y_{t}$ if $y_{t-2}=5$ and $y_{t-3}=10$?
6. Let

$$
x_{t}=\alpha_{0}+u_{t}+0.5 * u_{t-1}+u_{t-2}
$$

where u_{t} is white noise.
Find the auto-covariances for x_{t} in terms of σ_{u}^{2} (the variance of u_{t}).

