Homework 4. Wednesday February 16, do by Monday February 21 (don't turn in).

1. (Final 2004—12%) Assume that income follows the ARMA process

$$y_t = 3 + 0.3y_{t-1} + e_t$$

where e_t is white noise.

a) Is this time-series process stable?

b) What is $E_{t-2}y_t$ if $y_{t-2} = 5$ and $y_{t-3} = 10$?

2. (Make-up final, 2004—12%) Assume that income follows the ARMA process

$$y_t = 3 + 0.3y_{t-1} + e_t + 2e_{t-1}$$

where e_t is white noise.

a) Is this time-series process stable?

b) What is $E_{t-2}y_t$ if $y_{t-2} = 5$ and $y_{t-3} = 10$?

3. (Midterm 2, 2004, 12%) Let

$$x_t = 17 + u_t + 3 * u_{t-1} ,$$

where u_t is white noise. a) If $u_{-1}=10$, and $x_0 = 4$, what is $E_0(x_1)$ and $E_0(x_2)$?

Given the AR(1) process

 $x_t = 3 + 0.5 * x_{t-1} + u_t$

b) Is this process stable? (Explain your answer.)

c) Assume u_t has variance 1 and X_0 is given as a stochastic variable having mean 6 and variance 4/3.

Is the time-series X_0, X_1, X_2, \dots stationary?

4. (Midterm 1, 2004–12%) Let y_t be a stationary time series, and $\gamma(k)$ the k-th order autocorrelation.

a) Prove that $\gamma(k) = \gamma(-k)$.

b) If a(L) is the lag polynomial 1 + .5 * L, find the inverse of a(L).

c) If $b(L) = 1 + .3 * L - 2 * L^2$ find a(L) * b(L).

5. (Midterm 1, 2003–20%) Consider the AR model

$$y_t = 37 + 0.8y_{t-1} + u_t ,$$

where u_t is iid. a) Is this model stable?

Now assume that you have the model

$$y_t = 13 + u_t + 0.2u_{t-1} + .4u_{t-2}$$
.

b) Calculate the variance of y_t and all auto-covariances.

c) Consider the model in a). If $y_0 = 10$, what is $E_0 y_1$? What is $E_0 y_2$?

d) Consider the model in b). If $u_0 = 10$, $u_{-1} = 0$, and $u_{-2} = 10$, what what is E_0y_1 ? What is E_0y_2 ?