HOMEWORK 9. Due Monday April 19.

1. Obstfeld-Rogoff 5.2 (note that this is a bit of a "trick-question" since there isn't a single solution to the problem, explain why that is).
2. Obstfeld-Rogoff 5.3 (parts a and c).
3. Assume that 2 agents live for 2 periods in an economy with perfect Arrow-Debreu markets and no storage. Assume that the endowment of the first agent is $y_{0}=1, y_{1}=2$ and that the endowment of the second agent in period 0 is $y_{0}^{*}=1$ and in period 1 his or her endowment is $y_{1}^{*}=3$ in the "good state" g. In the "bad state" b the endowment of the second agent is $y_{1}^{*}=1$. Assume that the good state happens with probability $1 / 2$.
Assume each agent maximizes a utility function

$$
\log \left(C_{0}\right)+E_{0} \log \left(C_{1}\right)
$$

a) Find the period 0 prices of the Arrow securities that pays out one unit in the good and the bad state, respectively. (I suggest that you follow Obstfeld-Rogoff and parameterize such that the period 0 price of 1 unit delivered in the good state is $p^{g} /(1+r)$ and in the bad state it is $p^{b} /(1+r)$ which implies that $p^{g}+p^{b}=1$ when r is the safe rate of interest. The price of a unit of period 0 consumption is normalized to 1 .)
b) Find the safe rate of interest r.
c) Find the consumption of both agents in period 0 , and in period 1 in the good state and in the bad state. (Hint. Use the Arrow securities to find the value of the endowment stream of each agent.)

