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1 Asymptotic theory and testing.

Maximum likelihood theory was developed for models with independent identical observations,
but it turns out that most of the standard results and asymptotic formulae emerge in exactly
the same way for time series models as they do for iid models. This statement is only true for
stable models, so until further notice it is implicitly assumed that all the models are stable.
The results below are asymptotic so initial values will likewise be ignored.

A general result in maximum likelihood theory is that if ψ is a vector of parameters and
L(ψ) is the likelihood function for a single observation then the maximum likelihood estimator
ψ̃ has an asymptotically normal distribution with the true parameter as the mean and the
inverse information matrix as the variance.
The information matrix is defined as

I(ψ) = −E(
∂2logL

∂ψ∂ψ′
) ,

where L is the likelihood function corresponding to a single observation, and in the iid case
one can show that √

T (ψ − ψ̃) ⇒ N(0, I(ψ)−1) ,

subject to regularity conditions. The most important regularity conditions are sufficient dif-
ferentiability of the likelihood function (typically 2 times differentiable with continuous second
derivative) and that the likelihood function has a unique solution for ψ, i.e. that ψ is identified.

In the time series case we define the asymptotic information matrix

IA(ψ) = −plimT−1(
∂2logLT

∂ψ∂ψ′
) ,

where LT (ψ) is the likelihood function corresponding to the full set of observations. Under
regularity conditions (see below) one can then show that

√
T (ψ − ψ̃) ⇒ N(0, IA(ψ)−1) ,
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where ⇒ indicates convergence in distribution for the sample size (T) going to infinity.
Following Harvey (1980,1989) I will express this as

ψ̃ ∼ AN(ψ, T−1IA(ψ)−1) .

Example For an AR(1) model with N(0,σ2)errors, it is straightforward to find the asymptotic
information matrix as

IA(a, σ2) =

(
1

1−a2

1
2σ4

)
.

I will show it in detail for this example. The contribution from a single observation xt is:

logL(xt|xt−1) = −1
2
logσ2 − (xt − axt−1)2

2σ2
.

We find that

∂logL

∂a
=

(xt − axt−1)xt−1

σ2

∂logL

∂σ2
= − 1

2σ2
+

(xt − axt−1)2

2σ4

∂2logL

∂a∂a
= −x2

t−1

σ2

∂2logL

∂σ2∂a
= −(xt − axt−1)xt−1

σ4

∂2logL

∂σ2∂σ2
=

1
2σ4

− (xt − axt−1)2

σ6
.

Now, by the law of large numbers, the asymptotic information matrix can be found by taking
the mean of the contribution to the likelihood function from a single observation.

In the general ARMA case it will still be the case that the estimator of the error variance
will be distributed independently of the parameters in the lag polynomials. If ψ is the vector
of parameters a1, ..., ak, b1, ..., bl of an ARMA(k,l) model with normally distributed error terms
then (as in the example above) we find

∂2logL

∂ψ∂ψ′
= −ztz

′
t

σ2
,

where zt = −∂ut
∂ψ .

Example For the MA(1) we have
ut = xt − but−1 ,
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from which we find the recursion equation

∂ut

∂b
= −b

∂ut−1

∂b
− ut−1 .

Now use the following very elegant argument. The recursion implies that zt follows an AR(1)
process

zt = bzt−1 + ut−1 ,

where ut−1 is uncorrelated with zt−1 (why?). Now from our results fom AR(1) models we find
that

E(z2
t ) = var(zt) =

σ2

1− b2
,

from which we conclude that b̂ is asymptotically normally distributed with mean b and variance
1− b2.

For the ARMA(1,1) the same type of reasoning can be applied, see Harvey (1980) p. 131
where it is shown that the asymptotic variance Avar(a,b) of

√
T (a, b) is

Avar(a, b) =
1 + ab

(a + b)2

(
(1− a2)(1 + ab) −(1− a2)(1− b2)
−(1− a2)(1− b2) (1− b2)(1 + ab)

)
.

The formulae become more complicated for higher order processes, and one way around this
is to evaluate the asymptotic covariance matrix numerically, rather than analytically. Harvey
(1989) p. 140-143, shows how one can extend the Kalman filter to include the derivatives of
the likelihood function in the updating and predicting loops so as to arrive at an estimate of
the asymptotic variance.
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