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Structural VAR’s∗

1. STRUCTURAL VS. BEHAVIORAL MODELS

The original meaning of a “structural” model in econometrics is explained in an
article by Hurwicz (1962). A model is structural if it allows us to predict the effect
of “interventions” — deliberate policy actions, or changes in the economy or in na-
ture of known types. To make such a prediction, the model must tell us how the
intervention corresponds to changes in some elements of the model (parameters,
equations, observable or unobservable random variables), and it must be true that
the changed model is an accurate characterization of the behavior being modeled
after the intervention.

In the traditional simultaneous equations models that Hurwicz had in mind, the
intervention was ordinarily taken to correspond to changing the parameters in an
equation or block of equations in the model. The simplest conceptual example, cor-
responding to the monetary VAR literature, is where one block of equations de-
scribes policy behavior and another describes private sector behavior. The model is
claimed to be structural because one set of policy equations can be replaced by an-
other, while leaving the private sector equations unchanged, to obtain a prediction
about the behavior of the economy with the new monetary policy.

However, there is no need for the intervention to correspond to changing an equa-
tion. In a model derived from a general equilibrium, for example, the natural pa-
rameters of the model (from utility functions, production functions, policy makers’
objective functions) are likely to appear in many equations of the model. Such a
model will claim to be structural relative to changes in at least some of these nat-
ural parameters — policy makers’ objective functions, for example. One way to
describe the Lucas critique of econometric policy advice is to say that he pointed
out that parameters characterizing monetary policy behavior are likely to appear,
via expectations, in many equations of the model, not just in the “policy equations”.
Thus an attempt to predict the effects of a policy change by changing only the pol-
icy equation, holding other equations in the model fixed, will fail, because the other
equations will in fact change when the policy changes.

There is no sharp distinction among interventions that change equations, change
parameters in equations, change disturbance terms in equations, or change the value
of variables in the system. For example, in a monetary policy model there may be a
reaction function describing monetary policy behavior, say

rt = α + Xtβ + εt , (1)
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where Xt is a vector of explanatory variables. We might claim that the model is
structural relative to changes in monetary policy, with these changes represented as
changes in the monetary policy equation. Then we might ask what would be the dis-
tribution of the variables in the VAR system over the period t0 to t0 + s, conditional
on policy setting rt equal to some non-random fixed path r̄t over this period. To do
so, we could replace the policy equation (1) with the equation rt = r̄t, or we could re-
place the time path of the disturbance to the policy equation with ε̄t = r̄t − α− Xtβ,
or we could replace the fixed α and β in the equation with a sequence αt, βt satisfying
r̄t = αt + Xtβt and set εt to zero. These would all deliver exactly the same implica-
tions for the behavior of the economy, because all retain the non-policy equations of
the model unchanged, while fixing rt at the r̄t path.

Nowadays a model is often called “structural” when its parameters have behav-
ioral interpretations, regardless of whether the old definition of the term applies,
and on the other hand models that are in fact structural in the old sense are thought
of as “reduced form” because they contain parameters or equations that do not have
unique behavioral interpretations. Monetary policy VAR’s, which single out a policy
block and a non-policy block of equations, are certainly structural in the old sense
(or at least claim to be), but because the separate equations in the non-policy block
are often left uninterpreted, they are thought of as non-structural. Some real busi-
ness cycle models, in contrast, are specified without explicit variables or equations
representing monetary and fiscal policy, but are nonetheless calibrated to match
some aspects of the behavior of macroeconomic data. There is no apparent inter-
esting intervention with respect to which such models are structural in the original
sense, but because all the parameters in the models have explicit behavioral inter-
pretations, they are often referred to as structural.

My own preference is to reserve “structural” for its original meaning, and to use
“behavioral” to characterize models with complete behavioral interpretations.

2. STRUCTURAL VAR’S AND SIMULTANEOUS EQUATIONS MODELS (SEM’S)

Both these classes of models can be thought of as versions of the general linear
stochastic difference equation model

Γ(L)
n×n

yt = c + εt , (2)

where Γ is a matrix-valued polynomial in positive powers of the lag operator L
and Γ0 is full rank. The usual structural VAR framework specializes this setup by
requiring that the elements of the εt vector be independent (in the Gaussian case
that Σ = Var(εt) be diagonal). In most of the structural VAR literature it is assumed
also that εt spans the space of the y(t) innovation vector, i.e. that if we multiply the
system through by Γ−1

0 to arrive at

Γ−1
0 Γ(L)yt = B(L)yt = Γ−1

0 c + Γ−1
0 εt = γ + νt , (3)
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the result is the autoregressive representation of y, with Γ−1
0 εt the innovation in yt.

The usual SEM framework has two standard forms. In one, the system satisfies a
Granger causal ordering, i.e. it can be written as

[
Γ11(L) Γ12(L)

0 Γ22(L)

] [
xt
zt

]
=

[
εxt
εzt

]
, (4)

with Σ block diagonal conformably with the x, z partition of the y vector. In this
case the z’s are called exogenous, or strictly exogenous. And in this case there is no
requirement that εxt be an innovation. What is required is only that the full sample’s
{εxt} vector be unrelated to (uncorrelated with, or independent of, depending on the
context) the full sample’s {zt} vector.

In the other standard form, only Γ110 is block triangular, Σ is block diagonal as be-
fore, and the εt vector is assumed to be the innovation vector. In this case {zs | s ≤ t}
are predetermined.

In both cases traditional treatments of the theory usually do not make explicit the
z block of equations, assuming predeterminedness or strict exogeneity directly.

For both types of models the usual claim for a structural interpretation is that an
equation or block of equations can be altered or replaced to represent a particular
intervention, for example a change in policy behavior. The most important differ-
ence between their standard specifications is that SVAR’s usually assert diagonality
of Σ. Because SEM’s do not usually assert diagonality, they leave an ambiguity as to
how to interpret “changing a structural equation”.

Consider the most common use of stochastic models to develop alternative pol-
icy scenarios. Usually this is done by setting aside the policy equation or block of
equations and fixing a hypothetical time path for “policy variables”. In monetary
policy analysis this most commonly involves fixing a time path for an interest rate
thought to be controlled by policy. In a standard SVAR, it is natural to suppose that
this intervention leaves the joint distribution of the non-policy disturbances in the
system unaffected. But in a standard SEM, the model implies that in the past distur-
bances to policy were correlated with disturbances elsewhere in the system. So how
should we “hold constant” the distribution of the non-policy disturbances when we
fix a time path for r? We could simply hold the joint distribution of non-policy dis-
turbances constant. This would imply that we interpret the historical correlation
of disturbances as reflecting causal influence of non-policy shocks on policy behav-
ior. At the opposite extreme, we could use the hypothetical time path of r and the
original policy equation to generate an implied sequence of policy equation distur-
bances, then use the historical correlation patterns to generate an implied time path
for the vector of non-policy disturbances. This would imply that we interpret the
historical correlation of disturbances as reflecting causal influence of policy shocks
on non-policy behavior.

Neither of these approaches is satisfying. If we think that historical correlations
of policy with non-policy disturbances reflect influences of private sector behavior
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on policy, then these influences ought to be accounted for in our policy behavior
equations, and vice versa if we think causality has run the other way. So long as
disturbances are correlated, the model does not provide a complete description of
how to model a policy change.

While this is an important difference between the actual practice of most SEM
modelers and SVAR modelers, it is possible to incorporate restrictions on Σ into
an SEM framework1, and it is possible to use exogeneity and predeterminedness
assumptions in an SVAR framework. The boundaries between the two types of
model are indistinct.

3. STRUCTURAL VAR AND SEM IDENTIFICATION

In both forms of model we assume Γ0 is full rank, so the reduced form (3) exists.
This is the assumption that the model is complete. It implies that the system can be
solved to determine y(t) from past values of y and current shocks ε(t). In the SVAR
model and the SEM model with predetermined z’s, the conditional distribution of
y(t) given past y’s is therefore determined by the coefficients in the reduced form lag
polynomial B(L), by γ = Γ−1

0 c, and by the parameters of the conditional distribution
of ν(t) = Γ−1

0 ε(t) given past y’s. In the SVAR case, the conditional distribution
of ν(t) is N

(
0, Γ−1

0 (Γ−1
0 )′

)
. Many matrices A will satisfy AA′ = Γ−1

0 (Γ−1
0 )′. One

way to see why is to note that there are only (n + 1)n/2 free elements of Γ−1
0 (Γ−1

0 )′,
because of its symmetry, while Γ0 itself has n2 free elements. Thus we could never
solve for Γ0 if given the covariance matrix of ν(t), because we would have fewer
equations than unknowns. But since B0 = I by construction, and otherwise the
number of paraemters in B(L) matches the number in Γ(L), the reduced form as
a whole has (n − 1)n/2 fewer parameters than the standard structural form (2).
Since the properties of the data are determined by the reduced form parameters,
any attempt to determine the structural parameters from properties of the data will
face indeterminacy, unless we can find (n2 − n)/2 identifying restrictions.

For an SEM model, there is a similar indeterminacy. The standard SEM implies
that the only connection between Γ0 and Σ = Var(ν(t)) is that Γ0 must be block tri-
angular under the same ordering of variables that makes Σ block diagonal. Usually
it is assumed that the equations in the lower block, determining the z variables, are
not structural, so that indeterminacy in that block is resolved by arbitrary normaliz-
ing assumptions (if that block is estimated at all). The upper block then has Γ11(L),
Γ12(L), and Σ11 as free parameters. The corresponding part of the reduced form
has fewer parameters by n2

1, where n1 is the number of variables in the upper block
(i.e., the number of endogenous variables in the usual terminology). So in general
we need n2

1 a priori restrictions or normalizations to eliminate indeterminacy in the
SEM model.

1And indeed, via exogeneity and predeterminedness assumptions, the SEM framework already
does so.
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Another way to see the same point is to note that if (2) represents a standard
SVAR, then we can multiply it through on the left by an arbitrary orthonormal ma-
trix Q and have a model, with parameters Γ∗(L) = QΓ(L) and c∗ = Qc, that has the
same implications for the behavior of the data and remains in the standard SVAR
class. An orthonormal matrix of order n has (n− 1)n/2 free parameters.

In a standard SEM, the upper block can be multiplied through by an arbitrary
non-singular matrix, to produce a new model that is in the standard SEM form and
has the same implications for the data’s behavior as the original model. Such a
matrix has n2

1 free coefficients, where n1 is the number of endogenous variables.

4. SVAR CONTEMPORANEOUS RESTRICTIONS

Much of the SVAR literature works with restrictions on Γ0 alone. One reason for
this is substantive. Such restrictions usually have an interpretation as assumptions
about delays in the reaction of particular classes of agents to disturbances originat-
ing outside their own sector. While this kind of restriction does not flow from any
fancy economic theory, it is relatively easy to assess and argue about based on ob-
servations of real people and institutions.

But at least as important in the popularity of this type of restriction is that it in-
teracts conveniently with the structure of the likelihood function. The model can be
thought of as parameterized in terms of B(L) and Γ0, with Γ0 simply determining
the reduced form residual covariance matrix. If disturbances are Gaussian, the log
likelihood then has the form

`(B, Γ0) = −1
2 T log(2π) + T log |Γ0| − 1

2
trace

(
S(B, γ)Γ′0Γ0

)
,

where

ut(B, γ) = B(L)yt − γ , S(B, γ) =
T

∑
t=1

ut(B, γ)ut(B, γ)′ .

The maximum likelihood estimator of (B, γ) is found by equation-by-equation OLS,
so long as (B, γ) is unrestricted, regardless of the value of Γ0. This is just a version
of the standard “seemingly unrelated regressions” result that when all equations in
a system have the same right-hand-side variable list, equation-by-equation OLS is
the MLE, regardless of the covariance matrix of residuals.

If we integrate the likelihood (or, with a conjugate prior, the posterior pdf) with
respect to (B, γ), the resulting log marginal pdf for Γ0 is proportional to

−1
2(T − k) log(2π) + (T − k) log |Γ0| − 1

2 trace
(
S(B̂, γ̂)Γ′0Γ0

)
, (5)

where k is the number of right-hand-side variables in each regression and B̂, γ̂ are
OLS estimates. If instead we concentrate the likelihood with respect to (B, γ) (i.e.,
maximize it with respect to (B, γ), holding Γ0 fixed), we get the same expression
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except with T rather than T − k multiplying the first term. (It is common for re-
searchers to use |Γ0|k as an improper reference prior in these models, so that con-
centrated likelihood and marginal posterior coincide).

The result is that to maximize the likelihood, or the marginal posterior for Γ0, one
can proceed in two steps. First apply OLS to obtain estimates of (B, γ) and construct
S(B̂, γ̂). Then maximize (5) with respect to Γ0. This latter step is likely (unless the
model is exactly identified) to require numerical non-linear maximization, but the
number of parameters to be handled is many fewer than would have to be consid-
ered jointly if the optimization were over all the parameters in Γ(L).

This special structure of the likelihood also simplifies making draws from the
posterior pdf. The marginal distribution for Γ0 is non-standard and may therefore
require MCMC methods, but the distribution of (B, γ) given Γ0 is Gaussian.

5. LONG RUN RESTRICTIONS

Some of the SVAR literature (Blanchard and Quah, 1989, e.g.) uses what are called
“long run restrictions”. These are restrictions on sums of coefficients in Γ−1(L) and
thus do not fit within the restrictions-on-Γ0-only framework of the previous section.
These restrictions usually are said to arise from somewhat more elegant economic
theory than the “delayed reaction” theory underlying most zero restrictions on Γ0.

For example, it might be argued that the long run effects of a monetary policy
shock on M, P and W (money stock, prices, and wages, in logs) should all be the
same. This might then be taken to mean that, in a system where these variables
appear in differenced form, the column of Γ−1(1) corresponding to the monetary
policy shock, the elements corresponding to these three variables should all be the
same.2

Blanchard and Quah (henceforth BQ) consider a system in the two variables ∆y
and u, the growth in the log of output and the unemployment rate respectively,
postulate that it is driven by two orthogonal structural shocks (“supply” and “de-
mand”), and argue that a demand shock should have no permanent effect on the
level of output, whereas a supply shock should.

Restrictions on Γ(1)−1 generally translate into nonlinear restrictions on Γ(1) itself
and thus on the coefficients in Γ(L), which is inconvenient. The BQ restrictions,
though, because their system is so small, are not so inconvenient. They amount to
requiring (if the demand shock is second) that the upper right element in their two
by two Γ−1(1) matrix be zero, i.e. that that matrix be lower triangular. But triangu-
larity is preserved under inversion, so the restriction is equivalent to requiring that
Γ(1) be lower triangular, which is a linear restriction.

2 Here we are using the common convention that Γ−1(z), when its argument is a number or a
numerical variable instead of the lag operator L, is evaluated as a polynomial on the complex plane
instead of as a polynomial in the lag operator.
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Most applications of long run restrictions work with exactly identified models.
That is, they work with models in which the number of restrictions is exactly enough
to create a one-one mapping between the restricted Γ and the reduced form param-
eters B, Ω, where Ω is the covariance matrix of reduced form residuals. This means
that estimation is by OLS, followed by solving a set of nonlinear equations. If instead
the model has more restrictions, the whole estimation process becomes a nonlinear
optimization, jointly over all the coefficients in Γ(L).

The theory underlying this type of restriction is shakier than it may seem. Neu-
trality restrictions, for example, have no implications for the coefficients in a sta-
tionary model. What theory is usually taken to assert, at least approximately, is
that if random disturbances to policy produce a permanent shift in the level of the
money stock, then all other nominal variables should change in proportion. But if,
in the data at hand, money stock has been stationary about a deterministic trend,
this theory makes no assertions about the coefficients in the representation of the
data. Or, if the nominal data are non-stationary, but policy shocks themselves are
not the source of the non-stationarity, then again the theory places no restrictions on
the coefficients of the monetary policy shock in the impulse responses of the model.

In the BQ model, identification rests not only on the claim that demand shocks
have no long run effects on the output level, but also on the claim that the other
shock does have such long run effects. Conditional on the model specification, there
is actually strong evidence that supply shocks have permanent effects on the level
of output, as can be seen from the analysis of the model in Sims and Zha (1998).3

However, BQ did not include a constant term in their model and made no com-
parison of their specification to one that had log output stationary about a linear
trend. Other researchers have found it hard to distinguish a trend-stationary from a
unit-root model for log output in the US. It is therefore arguable that the identifying
assumptions in the model are dubious, even if the model is accepted as correct.

An even stronger criticism is that few believe that in real economies there are just
two, orthogonal, “aggregate demand” and “aggregate supply”, behavioral shocks.
If, for example, there were two types of technology shocks (“weather” and “sci-
ence”, e.g.), only one of which produced non-stationary effects on output, then the
BQ identification scheme would fail.

6. SEM’S IN PRACTICE

The description here of SEM’s applies to an idealized version of such models that
scarcely exists today. Large models that are descendants of SEM’s do exist and play
an important role in the policy process. The US Federal Reserve Board, the ECB, the
British NIESR, the commercial groups DRI and Wharton Econometrics, all main-
tain descendants of SEM’s. However these models are in practice cut free from the

3The error bands shown in the original BQ article are incorrect, and thus can’t be used to consider
this kind of question.
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SEM statistical theory that developed in the 1950’s. They are estimated equation by
equation for the most part, with no consideration of the joint likelihood of all the
variables the model implies need to be considered simultaneously. They also in-
clude “forward-looking” terms — variables in the form EtXt+1 — which are treated
more or less carefully in model simulation but are not integrated into a multivariate
inference framework.

It is an interesting question why these models retain their appeal to policy-making
institutions and how they have sustained some credibility even as their claims to
being probability models of the data have been abandoned.

7. IDENTIFICATION VIA IMPULSE RESPONSES

In the applied SVAR literature the explicit identifying restrictions on Γ0 or Γ(1)
are not the only information that is in fact used in identification. Researchers exper-
iment with the model specification until results start to look “reasonable”. In the
monetary policy SVAR literature, reasonable behavior is usually taken to mean that
monetary contraction should at least on impact raise interest rates, at least in the
long run lower prices and money stock, and lower, or least not increase, output.

The search for models that produce such results is actually part of the estimation
process, and the “reasonableness” criteria are actually identifying restrictions. It is
a recognized defect of the literature that it does not handle this identifying infor-
mation formally, whether by imposing deterministic restrictions or using priors that
express the belief in reasonableness.

The ideal solution to this problem would be to incorporate a strong belief in these
properties into a prior on the model parameters. But the mapping between parame-
ters and impulse responses in the 6-10 variable models that dominate this literature
is so nonlinear and complicated that there are apparently no published papers that
have actually implemented such a prior. There are a few papers that have made
more formal use of this kind of identifying information in other ways (Uhlig, 2001;
Faust, 1998, e.g.). It seems that if priors were introduced in the form of “dummy
observations” (i.e., multiplicative factors) on linear functionals of the impulse re-
sponses, an internally consistent Bayesian analysis incorporating “reasonableness
priors” should be possible, but it hasn’t been done yet.

8. THE LUCAS CRITIQUE

Use of SVAR’s to analyze the effects of variations in monetary policy is some-
times taken to be “subject to the Lucas Critique”. The Lucas critique observed
that SEM-style models that assume that private agents’ expectations are fixed lin-
ear functions of lagged data are likely to be mistaken in projecting the effects of
systematic changes in monetary policy. Such a policy change would be likely to
change the optimal forecasting formula, and thus to change the dynamics of private
sector behavior, according to the SEM models themselves.
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The interventions a monetary policy SVAR is designed to analyze are precisely
the sort of thing Lucas warned could lead to inconsistencies — changes in monetary
policy behavior equations. However, SVAR’s, unlike the old SEM’s, do not contain
fixed-coefficient expectational rules. They are best thought of as giving linear ap-
proximations to the behavior of the private sector and monetary authorities. The
private behavior they model thus implicitly includes dynamics arising from revi-
sion in forecasting rules as well as other sources of dynamics.

Suppose for example that policy alternates at random but fairly long intervals be-
tween two distinct linear behavioral rules for interest-rate setting. The private sector
will therefore constantly be assessing the history of interest rate changes, trying to
decide which rule is currently in effect. There will be some local linear approxi-
mation to the actual nonlinear behavioral rule, and disturbances from that linear
approximation will have effects both directly and indirectly through their effects on
the public’s assessment of the probabilities of the two regimes. An approximate lin-
ear SVAR may do quite well in projecting the effects of its identified monetary policy
shocks, so long as the model’s nonlinearity is not too severe. A setup like this was
modeled by Cooley, Leroy, and Raymon (1984). The same arguments would apply
even if the policy regimes jumped in a non-stationary way from one linear rule to
another instead of varying over a given finite set.

Of course if policy is jumping between linear rules and the public is trying to
assess when the rule changes and how, the entire model will be nonlinear, so that
linear approximations could be inaccurate. How inaccurate they are will depend
on how great the nonlinearity is and on exactly what sequence of shocks is fed into
the model. If the model appears to fit historical data well and shows little sign of
nonlinearity in the sample period, then policy changes that produce policy equation
disturbances in patterns similar to what has been observed in the past are likely to be
projected accurately by the model, even if they have been generated by a “change in
rule”, in the sense of a change in the coefficients in a linear policy behavior equation.

Issues of this type are discussed at more length in Leeper and Zha (2001) and Sims
(1987).
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