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1 Introduction

A planner desires to allocate a number Dg of discrete units of a resource to heterogenous

groups g = {1, . . . , N}, with resulting outcomes Hg(Dg) assumed to increase with Dg at

non-increasing rates. Each group is typically identified by a vector of covariates, but a

group can be a single individual. The planner has a constraint on the total number of

transfers, faces limits on how many units can be transferred to each group, and evaluates

the distribution of outcomes using a CES index over group outcomes. We derive a closed-

form solution for optimally allocating a fixed budget in such situations.

More formally, we consider the following optimization problem

max
{Dg≤Dg≤Dg}Ng=1

 N∑
g=1

βg (Hg(Dg))λ
 1

λ

, (1)

subject to an aggregate resource constraint. Here, {Dg, Dg} are group-specific lower and

upper bounds on allocations, βg is a weight that allows for certain groups to be prioritized

by the planner, and λ ∈ (−∞, 1] parameterizes the strength of the planner’s aversion to

inequality in outcomes. We show that for given inputs to the algorithm (i.e., calculated

increments in Hg(Dg)), there exists a closed-form solution to this problem which takes the

form of an optimal allocation queue that lists the order in which each increment should

be allocated until aggregate resources are exhausted. The optimal allocation queue is a

sorted list of these increments, where successive values in the queue can involve the same

or different groups.

We illustrate our method by applying it to study the optimal allocation of “stimulus

checks” (or “support checks”) from the U.S. government to groups of households defined

by covariates such as income and civic status. The two applications that we consider

are the Economic Stimulus Act of 2008—where households received stimulus checks in

the form of tax rebates in an effort to stimulate the economy in the wake of the Great

Recession—and the Coronavirus, Aid, Relief, and Economic Security (CARES) Act of

2020/American Rescue Plan (ARP) Act of 2021—where the government issued stimulus

checks in the form of cash transfers as part of an effort to insure households against the
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economic fallout brought about by the COVID-19 pandemic. We compare actual and

optimal allocations under alternative household limits on tax rebates and check amounts.

Motivated by the actual policies, we assume that the government in 2008 focused on

stimulating aggregate consumption, whereas the government in 2020–2021 focused on the

lifetime utility, or welfare, of check recipients.

To apply our framework and solve for the optimal allocations, we need inputs from

a consumer model. For the 2008 tax rebates, we need to know the effect of increments

in the rebates on each group’s consumption, and for the 2021 cash transfers, we need to

know the effect of increments in the transfers on each group’s lifetime utility. We derive

these inputs by formulating a life-cycle consumption-savings model where consumers are

ex-ante heterogeneous in marital status, educational attainment, number of children, and

rate of time discounting. Consumers face idiosyncratic shocks to income and fertility over

their life-cycle. Unemployment probabilities and unemployment insurance are calibrated

to the relevant crisis-periods, and the marginal utility of consumption is assumed to be

temporarily reduced during the COVID-19 pandemic due to the lockdown. We use the

model to predict the impact of each $100 increment in tax rebates or check amounts for

different household types: single or married, having 0–4 children under age 18, of different

ages and income-levels.

A key feature of our approach is to break the problem into two steps. First, approximate

the allocations by an integer number of increments (in our application, $100 increments),

and use data, regressions, or a model (in our application, the life-cycle model applied to a

typical member of a group) to compute each group’s gains (as evaluated by the planner)

from each allocation increment within the given limits. Second, based on the matrix of

gains for each potential increment, sort those gains across both increments and groups in a

descending sequence and optimally allocate from the beginning till the budget is exhausted.

While we focus on the optimal allocation of tax rebates and checks, our solution

method can be applied in several settings where a government or agency needs to allocate

limited resources among heterogeneous recipients. Resources may come in discrete units or

in continuous units for which discrete approximations are reasonable (as in our examples),
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and there may be bounds on how much the recipients can and/or must receive. Examples

are job training programs for displaced workers and nutritional aids for children who are

at risk of undernourishment. Moreover, the framework easily allows for different planner

objectives: in our examples, maximizing aggregate consumption and maximizing a CES

index over the welfare of recipients. The inputs required by the algorithm can be output

from structural models, regressions, experiments, or data. The companion code package

efficiently solves for the optimal allocation queue along with aggregate outcome statistics

for any value of planner inequality-aversion for given inputs.

Our algorithm requires non-increasing impacts of increments, which may rule out some

applications, for example, consumer models with threshold wealth needed for acquiring

a durable good, and it does not allow for direct spillover effects between groups, which

precludes it from being used to evaluate the benefits of, for example, vaccinations which

protect recipients as well as those around them.1

Related literature

Our main contribution, which rests on solving for optimal policies, is conceptually similar to

the large literature that applies quantitative macroeconomic models to evaluate alternative

policies. Comparing a broad range of potential policies, however, quickly becomes

computationally costly, unless our approach of constructing an optimal allocation queue

is applied. Our approach trivially allows one to study a large number of potential policies,

each of which might differ in detailed group-specific constraints imposed by the planner,

without having to recalculate the underlying inputs required by the algorithm.

For the second step of evaluating the queue, our approach is reminiscent of the

“sufficient statistics for welfare analysis” literature. Unlike this literature, which typically

relies on first order conditions for maxima (see Chetty (2009) for a summary), our approach

allows for discrete returns to allocations and can handle policies with a large number of
1In the case of consumption stimulus and welfare, some consumers may be at “thresholds” where an
extra check allows them to buy a car or even a residence. In our applications, we believe that the
groups that we consider based on income, marital status, children, and age, are large enough that such
threshold effects will average out over the members of the group; although this might not be the case in
an application where checks are based on very detailed recipient characteristics.
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group-specific constraints, for which standard Lagrangian methods may be infeasible or

computationally costly to apply.

Our approach is also related to the optimal treatment literature. For example, recent

papers have considered optimal treatment rules given budget and policy constraints—see

for example Bhattacharya and Dupas (2012) and Kitagawa and Tetenov (2018). This

literature often studies convergence to an optimal allocation when allocation rules are

based on observations from a finite sample—an issue that we do not address in our paper—

and typically studies binary treatment rules. The idea of the allocation queue might be

useful in this context, in particular in settings beyond the binary treatment case.

Our life-cycle consumption-savings model with heterogeneous consumers builds on

the incomplete markets literature. Recent papers have utilized these models to study

the COVID-19 pandemic. Carroll et al. (2021) estimate the consumption response to

stimulus checks using a buffer-stock model similar to ours where consumers are impatient

and credit constrained, but they do not consider how to optimally allocate the checks. We

follow their modeling of the impact of COVID-19 on the marginal utility of consumption.

Similarly, several papers study the effects of the fiscal response to the pandemic; for

example, Bayer et al. (2020) who use a HANK model and Faria-e-Castro (2021) who uses

a two-agent DSGE model—see Falcettoni and Nygaard (2021) for a more comprehensive

review of this literature.

We briefly summarize select papers that study the consumption response to the 2008

and 2020 tax rebates/stimulus checks. For the 2008 tax rebate, Sahm, Shapiro, and

Slemrod (2010) surveyed consumers and found that about a third of tax rebates were

spent after a year, with significant heterogeneity among consumers.2 Broda and Parker

(2014), using combined survey and scanner data, find even larger consumption responses,

especially among consumers with low liquid wealth. Graziani, van der Klaauw, and Zafar

(2016) find an average MPC out of the 2008 tax rebates and the 2011 payroll tax cuts of

around one-third after a year.
2In our paper, we will refer to this as the average propensity to consume (APC), noting that this APC differs
by tax rebate amount, and we will use the term marginal propensity to consume (MPC) to refer to the
marginal increase in consumption following a $100 incremental increase in the tax rebate or check amount.
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For the COVID-19 stimulus checks, Baker et al. (2020) find that consumers making

less than $1,000 a month spent about 40 percent of the check within a few weeks,

while individuals making more than $5,000 a month spent about 20 percent. Coibion,

Gorodnichenko, and Weber (2020) conduct a large-scale survey of U.S. consumers and

find that consumers spent about 40 percent of the check. Consistent with our model’s

predictions, they find that younger, poorer, and larger households spent more. They point

out that “stimulus payments were less effective because they were larger than previous

ones. As the size of one-time transfers to households rises, diminishing returns induces

individuals to consume smaller fractions of their temporarily higher income”—a key

feature of our consumption model. Karger and Rajan (2021) compare spending on credit-

and debit cards over the two weeks before and after the checks were deposited and find

average spending impacts of around 40 percent.

The paper proceeds as follows. Section 2 presents the allocation problem and its

solution. Section 3 presents the life-cycle model and the calibration during non-crisis

periods. Section 4 applies the algorithm to the 2008–2009 Great Recession and derives

the optimal allocation of tax rebates. Section 5 applies the algorithm to the 2020–2021

pandemic and derives the optimal allocation of cash checks. Section 6 concludes the paper.

The appendix provides the proof for the optimal allocation queue. Further details about

the calibration, additional results, and further technical details are provided in the online

appendix.

2 Allocation problem

2.1 Planner’s allocation problem

Consider the problem of a planner whose objective is to allocate a discrete amount of

resources, Dg, among N groups indexed by g. Assume the planner has Atkinson-CES

preferences over group-specific outcomes, Hg(Dg), assumed to increase with Dg at non-

increasing rates (Atkinson 1970). This section shows that there exists a closed-form

solution to the optimal allocation problem characterized by an optimal allocation queue.
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This queue solves the planning problem for any value of planner inequality-aversion,

group-specific weights and allocation constraints, and allows for both continuous and non-

continuous returns to allocations.

The constraint set is

CD ≡

Dg ∈ N0, Dg ≤ Dg ≤ Dg,
N∑
g=1

Dg ≤ W

, (2)

where W is an integer equal to the number of increments that fits within the budget. It is

generally not possible to solve this discrete allocation problem by comparing the value

under all possible allocations because the size of CD grows factorially with N and Dg, and

evaluating all combinatorial possibilities therefore becomes computationally infeasible.3

Let Ag denote Hg(0) and define αg,l as the increase in Hg due to allocation increment

number l ≥ 1; i.e., αg,l = Hg(l ε)−Hg([l − 1] ε).4 For convenience, we define αg,0 = 0.5

We can then express Hg(Dg) as Hg(Dg) = Ag +∑Dg
l=1 αg,l. We define the solution to the

discrete optimal allocation problem as follows:

Definition 1 Given N groups, the solution to the discrete optimal allocation problem is

a set of allocation functions D∗j
(
W,λ, {βg}Ng=1 , {Ag}

N
g=1 ,

{
{αg,l}Dgl=0

}N
g=1

,
{
Dg, Dg

}N
g=1

)
:

N × (−∞, 1]× (0, 1)N × RN × R
∑N

g=1 Dg
+ × N2N

0 →
{
Dj, Dj + 1, . . . , Dj

}
such that the

vector (D∗1, ..., D∗N) satisfies

max
{Dg≤Dg≤Dg}Ng=1

 N∑
g=1

βg

Ag +
Dg∑
l=0

αg,l

λ


1
λ

, (3)

subject to ∑N
g=1Dg ≤ W.

As shown in Definition 1, Ag and αg,l reduce the state space of the underlying dynamic

programming problem to a dimension-reduced allocation space.
3At the lower-end, where Dg = 1, the number of allocation possibilities is binomial, N !

(N−W )!W ! . At the
upper-end, where Dg = W , the number of allocation possibilities is multinomial, (W+N−1)!

(N−1)!W ! .
4In the stimulus problem in Section 4, with consumers’ initial consumption at Cg, αg,l = [Cg +
Σls=1MPCg,s]− [Cg + Σl−1

s=1MPCg,s] = MPCg,l.
5In the welfare problem in Section 5, Ag is consumer g’s lifetime utility when receiving no checks (Dg = 0)
and αg,l is the increase in expected lifetime utility when receiving the l’th check increment conditional
on having already received l − 1 increments.
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While the discrete allocation problem differs from a continuous allocation problem, the

solution to the discrete allocation problem converges to the solution of a corresponding

continuous allocation problem as the size of the allocation increments goes to zero as

long as the corresponding H-functions are continuous on a compact support. Many

allocation problems are discrete or can naturally be formulated as a decision on how many

discrete units to allocate to each recipient. For example, in our empirical applications we

consider each tax rebate or check to be an integer number, each of which represents a

$100 increment in tax rebate or check amount.

2.2 Solution to the discrete allocation problem

We impose three restrictions on αg,l and Ag:

Assumption 1 For all g and all l > 0, marginal effects αg,l for the l’th increment of Dg

on Hg are: (1) positive, αg,l > 0; and (2) non-increasing, αg,l ≤ αg,l−1 for all l > 1. (3)

Ag > 0 for all g.

Assumption 1 imposes no functional form or parametric assumptions on the underlying

reduced form or structural model. The first restriction trivially holds in many applications

and is typically easily verified. The second restriction accommodates both constant returns

and arbitrary step functions of decreasing returns. The third restriction can be replaced

by Ag +∑Dg−1
l=0 αg,l > 0, which generally allows for Ag < 0, if the planner first allocates the

resources required for the cumulative effects of the allocations to lead to positive outcomes.

Our solution concept will be in the form of an optimal allocation queue:

Definition 2 The allocation queue is a ranking of allocation increments assigned to groups.

We define Qg,l ∈ {1, . . . ,W} as the position of the l’th increment to group g in the queue.

Theorem 1 Suppose that Assumption 1 holds and that Dg = 0 for all g. Then the

solution to the planner’s allocation problem, (D∗1, ..., D∗N), is given by

D∗g(W ) =
Dg∑
l=1

1 {Qg,l ≤ W} , (4)
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where Qg,l is the position of the l’th increment to group g in the optimal allocation queue:

Qg,l =
N∑
j=1

Dj∑
k=1

1

βjβg

(
Aj +∑k

s=0 αj,s
)λ
−
(
Aj +∑k−1

s=0 αj,s
)λ

(
Ag +∑l

s=0 αg,s
)λ
−
(
Ag +∑l−1

s=0 αg,s
)λ
 ≥ 1

 . (5)

The proof of Theorem 1 is in the Appendix.

There are three key parts to Theorem 1.6 First, the ranking of allocation increments

along the optimal allocation queue, Qg,l, is based on a comparison of the level of group

outcomes with and without the next allocation increment. Accordingly, for group g’s

l’th allocation increment, only βg
[(
Ag +∑l

s=0 αg,s
)λ
−
(
Ag +∑l−1

s=0 αg,s
)λ]

needs to be

evaluated.7 Second, while aggregate resources govern what allocations are feasible, the

optimal allocation queue is invariant to aggregate resources. That is, the ranking of

allocation increments does not vary with the total budget, W . Third, the optimal

allocation queue allows one to compute the resource cost of misallocation, for example

measured as the percentage of resources that can be saved by allocating optimally. This

measure, which we refer to as Resource Equivalent Variation (REV), is given by:

W o
(
1−∆REV

)
= min

W :

∑N
g=1 βg

(
Ag +∑Dg

l=0 (αg,l1 {Qg,l ≤ W})
)λ

∑N
g=1 βg

(
Ag +∑Dog

l=0 αg,l
)λ ≥ 1

 . (6)

REV provides a common scale in resource units by which alternative allocations can

be compared with the optimal allocation.8 Similarly, various statistics such as the Gini

coefficient of recipient outcomes can be expressed as functions of the optimal allocation

queue (see Online Appendix Section A.5 for details).
6Theorem 1 allows for ties and group-aggregation. When the number of candidate recipients of the same
type increases, the relative rankings across types are preserved.

7In the case where βg = 1
N and λ = 1, Equation (5) simplifies to a descending sort over αg,l. Conversely,

when λ→ −∞, the allocation queue simplifies to an ascending sort over Ag,l ≡ Ag +
∑l
s=1 αg,s.

8Let
{
V ∗g (W )

}N
g=1 denote the optimal allocation when the budget isW. Consider an alternative allocation{

V 0
g

}N
g=1. The Resource Equivalent Variation then follows from the expenditure minimization dual

problem:
∆REV ≡ 1− min{W :V ({Hg(V ∗g (W ))}N

g=1)≥V ({Hg(V o
g )}N

g=1)}∑N

g=1
V o

g

. In Section 4, we use REV to show the potential

savings from implementing the optimal policy, keeping the amount of stimulus constant. In Section 5,
REV could similarly be used to quantify the potential savings from implementing the optimal policy,
keeping the government’s CES-index over consumer welfare constant.
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Given inputs αg,l and Ag for all (g, l), the computational implementation of Theorem 1

in the companion code package solves for optimal allocation queues along with aggregate

outcomes for any value of planner preferences.

3 Empirical application: stimulus checks

We illustrate our algorithm by means of two applications. In Section 4, we derive the

optimal allocation of stimulus checks in a setting where the objective of the planner is to

stimulate consumption. This application is motivated by the Economic Stimulus Act of

2008, whereby households received stimulus checks in the form of tax rebates in an effort

to stimulate the economy in the wake of the Great Recession. In Section 5, we derive the

optimal allocation of stimulus checks in a setting where the objective of the inequality-

averse planner is to maximize welfare. This application is motivated by the CARES Act

of 2020 and the ARP Act of 2021, in which the government issued stimulus checks in the

form of cash transfers as part of their efforts in insuring individuals against the economic

fallout brought about by the COVID-19 pandemic. For the first application, we need

to know each household-type g’s marginal propensity to consume out of different tax

rebate amounts. For the second application, we need to know the households’ marginal

change in lifetime utility from different check amounts as well as their level of lifetime

utility in the case of no allocations. These inputs correspond to household g’s Ag and

αg,l values. We obtain these inputs from a life-cycle consumption-savings model with

heterogeneous consumers, which predicts household-specific consumption responses to

tax rebates and checks. Consumers are forward looking and may save part of these

transfers for either retirement, future child expenses, or to buffer future income risk.

Single and married consumers have different propensities to save due to different income

and family size transition probabilities. The consumption needs of a household grow less

than proportionally with the number of household members due to economies-of-scale.

The following section presents the problem solved by the households during non-crisis

periods. Further modeling details about the problem solved by the consumers during the
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periods of the 2008–2009 and 2020–2021 crises are given in Sections 4 and 5, respectively.

3.1 Model

Households—The economy is populated by heterogeneous households. The idiosyncratic

state of the household head (referred to as the agent) is denoted by ω = (j, a, η, e,m, k, δ, ν) ,

where j is age, a is non-negative assets, η is stochastic labor productivity, e is educational

attainment, m is marital status, k is the number of children under age 18, δ is the discount

factor, and ν is the stochastic labor productivity of the spouse in the event that the agent

is married. Both productivity shocks follow Markov processes. Educational attainment

is permanent and takes two values: college or non-college. Similarly, marital status is

permanent and takes two values: married or single. The number of children under age 18

follows a Markov process that depends on the agent’s current number of children, age,

educational attainment, and marital status. The discount factor is permanent and takes

two values: δ ∈ {δ, δ}. Agents retire at age jR and live at most J periods. The probability

of survival varies with the agent’s age, ψj.

Income—Labor productivity varies with the agent’s age, educational attainment, and

stochastic labor productivity, εj,η,e. There is little evidence that individuals reduced

their labor-supply in 2008 and during the pandemic in response to the one-time stimulus

checks, which is the focus of our analysis. We therefore simplify the analysis by assuming

that labor is supplied inelastically.9 Retired agents receive Social Security benefits from

the government. To reduce computational costs, we build on De Nardi, Pashchenko,

and Porapakkarm (2018) and Nygaard and Raveendranathan (2021) and assume that

Social Security benefits are tied to the agent’s fixed productivity type as given by their

educational attainment, SSe. Spousal income varies with the spouse’s labor productivity

shock and with the household head’s age, educational attainment, number of children,

and income, Bj,e,k,η,ν .
9As discussed in Sections 4 and 5, we model the one-time stimulus checks as unexpected policies and
there is thus no “moral hazard” effects in the model whereby agents internalize how their choices affect
eligibility for the stimulus checks. It is beyond the scope of our model to analyze permanent policies of
supporting households during economic recessions, for which a more comprehensive consumer model
where these moral hazard effects are internalized is required.
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Government—The government provides Social Security and consumes goods, G. The

latter is included to equalize total government expenditures in the model and the data,

thereby ensuring that the tax burden in the model is consistent with the data. The

government finances its expenditures by means of progressive income taxes, Ty, where y

is household income.

Agent’s problem—At time t, agents choose how much to consume, ct, and how much

to save, at+1. For notational simplicity, we drop time subscripts and use ′ to denote next-

period variables. The value function is given by:

V (ω) = max
c≥0,a′≥0

u (c,m, k) + δψjEη′|ηEν′|νEk′|(j,e,m,k)V (ω′)

s.t. c+ a′ = a+ y − Ty

y = ra+ 1j<jRθεj,η,e + 1j≥jRSSe + 1m=1Bj,e,k,η,ν ,

(7)

where θ denotes aggregate labor productivity, r is the real interest rate, 1j<jR (1j≥jR) are

indicator functions that equals one for an agent younger than (at least as old as) jR, and

1m=1 is an indicator function that equals one for a married agent.10

3.2 Calibration

This section discusses the calibration of the model during non-crisis periods. See Online

Appendix Section A.1 for further details. Calibration details for the crisis periods are

given in Sections 4 and 5.

Life-cycle parameters—Agents enter the economy at age 18, retire at 65, and survive

until at most age 100. We use U.S. life-tables for 2020 to obtain age-specific survival

probabilities and data from the Panel Study of Income Dynamics (PSID) to derive the

probability of being college-educated, the probability of being married, and the initial

distribution of children.

Following OECD recommendations, we apply the square-root scale in the model
10Agents in our model are finitely lived, face age-specific mortality risk, and have heterogeneous discount
factors. The assumption that agents cannot borrow simplifies our analysis by ruling out the possibility
of strategically accumulating debt in anticipation of death. We believe the optimal allocation results
presented in Sections 4 and 5 are robust to a more comprehensive consumer model whereby agents can
borrow but face age-specific borrowing limits.
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to account for economies-of-scale in consumption. The agent’s utility from household

consumption c is given by

u (c,m, k) =

(
c√

HH(m,k)

)1−γ

1− γ , (8)

where HH (m, k) is the number of household members. We set γ equal to 2 to match an

intertemporal elasticity of substitution of 0.5.

Technology parameters—We normalize aggregate productivity, θ, such that median

household income is equal to 1 in the steady state. The interest rate, r, is set to 4 percent

per year following McGrattan and Prescott (2003). Recall that agents have heterogeneous

discount factors, δ ∈ {δ, δ}. We set δ equal to 0.95 and δ equal to 0.60, where the latter

value implies that the consumer strongly prefers to consume rather than save. This is

motivated by Jappelli and Pistaferri (2014), who show that a version of the Aiyagari model

in which a fraction of consumers follow the model-implied optimal consumption rule and

the rest follow a rule-of-thumb in which consumption equals income in each period (often

labeled “hand-to-mouth” behavior) can replicate observed MPC patterns (see also Aguiar,

Bils, and Boar 2020). Following Jappelli and Pistaferri (2010), we assume that 10 percent

of college-educated agents and 40 percent of non-college-educated agents are δ-types.

Transition probabilities for number of children—We use data from the PSID to derive

transition probabilities for the number of children (under age 18) by estimating an ordered

logistic regression of the number of children at time t+ 1 conditional on the household

head’s age, marital status, college attainment, and number of children at time t.

Income—The labor productivity of an agent of type ω is given by εj,η,e = h (j, e) exp (η),

where h (j, e) is age- and education-specific deterministic labor productivity and η is a

stochastic labor productivity shock given by

η = ρη−1 + µ, µ ∼ N
(
0, σ2

µ

)
. (9)

We use the age- and education-specific life-cycle labor productivity profiles estimated
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by Conesa et al. (2020). Following Pashchenko and Porapakkarm (2013), we set the

persistence of stochastic productivity shocks, ρ, equal to 0.980 and the variance of the

shocks, σ2
µ, equal to 0.018.

We use data for married individuals in the PSID to estimate spousal income, Bj,e,k,η,ν .

We regress the logarithm of spousal income on the household head’s age, college attainment,

number of children, and the logarithm of the household head’s income to obtain both the

type-specific mean and variance of spousal income.

Taxes and transfers—We calibrate Social Security benefits for non-college and college-

educated consumers to match the corresponding average benefits in the Current Population

Survey. We calibrate government consumption to match data from the Bureau of Economic

Analysis (BEA) on the ratio of government consumption expenditures to GDP. Following

Gouveia and Strauss (1994), we use the income tax function

Ty = a0

(
y −

(
y−a1 + a2

)− 1
a1

)
. (10)

We use their estimates for a0 and a1, and adjust a2 period-by-period to balance the

government budget.

4 Optimal allocation of stimulus checks: Economic

Stimulus Act of 2008

The Economic Stimulus Act of 2008 contained several provisions to boost the economy in

the wake of the Great Recession. One of these provisions was a tax rebate which consisted

of a basic payment and, conditional on eligibility, a supplemental payment of $300 per

child. To be eligible for the basic payment in 2008, households had to have positive net

income tax liability or sufficient qualifying income on their 2007 tax return. As discussed

by Parker, Souleles, Johnson, and McClelland (2013), the minimum payment for eligible

households was $300 for single filers ($600 for married couples filing jointly) or, if larger,

the amount of their tax liability with a maximum of $600 ($1,200). The tax rebates
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phased out with income at a rate of 5 percent for single filers with income exceeding

$75,000 ($150,000 for married couples filing jointly). This section applies our algorithm to

study the optimal allocation of these tax rebates and quantifies the budget savings that

the government could have achieved by implementing the optimal policy.

4.1 Consumer problem during the 2008–2009 Great Recession

We start by describing the problem solved by the consumers and the planner. Data from

Sahm, Shapiro, and Slemrod (2010) show that nearly all tax rebates were disbursed during

the months of May, June, and July of 2008, during which the unemployment rate was still

below 6 percent. Motivated by this timing, we model the Great Recession as a two-period

shock, where a period in the model is one year. In the first period, agents receive stimulus

checks in the form of tax rebates, where both eligibility and the amount received are tied

to the household’s income and size (and hence tax liability) in the previous (non-crisis)

period. In the second period, agents are subject to unemployment risk which varies with

their age and educational attainment, πU (ω). The probability of unemployment, which

is assumed to be known to the agents during the first crisis-period, affects the agents’

propensity to consume out of the tax rebates. Let ξ ∈ [0, 1] govern the duration of the

unemployment spell. Unemployed agents are eligible for UI benefits which replace a share

b ∈ [0, 1] of lost earnings.11

Agent’s problem—Let V U (ω) denote the value function for an agent of type ω that is

unemployed for at least part of the second crisis-period, ξ < 1, details of which is given

in Appendix A.3.1. Similarly, let V W (ω) denote the value function for an agent of type

ω that is employed during the second crisis-period, ξ = 1. Finally, let V̂ (ω;D) denote

the value function for an agent of type ω during the first crisis-period that receives an
11We use the average age- and education-specific unemployment probability in 2009 as reported by the
Bureau of Labor Statistics (BLS). The duration of the unemployment spell, 1− ξ, is calibrated to match
the average unemployment duration in that year from the BLS. We calibrate the UI replacement rate, b, to
match the ratio of aggregate UI benefits to aggregate wages and salaries as reported by the BEA in 2009.
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amount D ≥ 0 in tax rebates, modeled as direct transfers to the agents:

V̂ (ω;D) = max
c≥0,a′≥0

u (c,m, k) + δψjEη′|ηEν′|νEk′|(j,e,m,k)

×
[
πU (ω′)V U (ω′) + (1− πU (ω′))V W (ω′)

]
s.t. c+ a′ = a+ y − Ty +D

y = ra+ Ij<jRθεj,η,e + Ij≥jRSSe + Im=1Bj,e,k,η,ν .

(11)

4.2 Planner problem during the 2008–2009 Great Recession

Let c (ω;D) denote consumption of an agent’s household of type ω who receives an

amount D in tax rebates. Because the amount received under the actual policy varied

with household income and family size (and hence tax liability) as reported on their

most recent tax return, we focus on the optimal allocation of 2008 tax rebates given 2007

(pre-crisis) household characteristics. Let c̃ (y, j,m, k;D) denote the ex-ante expected

household consumption in 2008 of an agent with income y, age j, marital status m, and

number of children k in 2007 that receives D:

c̃ (y, j,m, k;D) = ψjEη′|ηEν′|νEk′|(j,e,m,k)Eδ|eE(a,η,e,ν)|(y,j,m,k)

×c (j + 1, a′ (ω) , η′, e,m, k′, δ, ν ′;D) ,
(12)

where a′ (ω) is next period’s assets, Eδ|e is the expected discount factor given the agent’s

educational attainment, and E(a,η,e,ν)|(y,j,m,k) is the expected value given the probability

distribution over assets, stochastic labor productivity, and educational attainment on the

agent’s income, age, marital status, and number of children.

The planner chooses the amount, Dg, for each group g ∈ {1, . . . , G}, where groups are

defined by marital status, number of children, age, and income.12 Let Ωg denote the set

of agents of type s = (y, j,m, k) that belongs to group g:

Ωg ≡
{
s = (y, j,m, k) : y ∈

[
y
g
, yg

]
, j ∈

[
j
g
, jg
]
,m = mg, k = kg

}
. (13)

12The conditioning on age allows us to study optimal age-specific allocations (see our companion website
for results). Section 4.3 studies non-age-specific optimal allocations.
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Let W denote the total budget available. The planner’s choice set is given by:

CD ≡

D = (D1, . . . , DG) : Dg ∈
{
Dg, . . . , Dg

}
,
G∑
g=1

(∫
µ (s)1s∈Ωgds ·Dg

)
≤ W

 ,
(14)

where µ(s) is the number of agents of type s and Dg ≥ 0 and Dg ≥ Dg are group-specific

lower and upper bounds on transfers to capture that the maximum tax rebates under the

actual policy varied with household characteristics such as income and civic status. We

then get the following expression for the planner’s optimization problem:

max
D∈CD

∫
c̃

s; G∑
g=1

Dg · 1s∈Ωg

µ (s) ds. (15)

4.3 Optimal consumption stimulus allocation

The consumption stimulus effect will be maximized for a given budget by allocating

the tax rebates to consumer-groups with the highest marginal propensity to consume

(MPC)—taking into account that as rebates get larger, the MPC declines.13 This will

typically imply that rebates are given to consumers with a priori low consumption, as we

illustrate in Figure 1. This figure shows on the X-axis average consumption per household

member (for brevity, referred to as per-capita consumption below) before receiving tax

rebates and on the Y-axis the corresponding MPCs out of the first $100 in tax rebates for

different demographic groups: single or married with 0–4 children (averaged over other

idiosyncratic states such as age and educational attainment using population weights).

The size of each marker corresponds to the group’s relative population weight.

We see that for all groups the MPCs decline steeply with per-capita consumption, but

that the slope varies across groups. Whereas MPCs decline near-linearly with average

per-capita consumption for married households, the slope is non-linear for singles without

children who account for the largest fraction of the population, in particular at low to

moderate consumption levels. The MPCs for a given level of per-capita consumption

are lower for married than single households, which is partially due to the two group’s
13The consumption stimulus planner corresponds to a planner with λ = 1.
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different family size transition probabilities. In particular, married households are more

likely to have a child in the near future, following which they will have more mouths to

feed and lower average spousal income (see Online Appendix Section A.1 for details).

The queue for the optimal consumption stimulus allocation is based on a ranking of

MPCs. In Table 1, we illustrate the queue as it would look for coarser income categories

and fewer household types (see the companion website for the full MPC table). For each

household type, the planner needs to know the entire “path” of MPCs as the size of the

tax rebate increases. The top panel of Table 1 displays, in the left-most column, predicted

initial per-capita consumption before receiving tax rebates and, in the right-most columns,

MPCs out of an additional $100 increase in tax rebates for different household types:

single or married with 0 or 2 children and different household income levels (averaged over

other idiosyncratic states using population weights).14 For example, the column labeled

$1,000 shows the MPC for a household that has already received $1,000 in tax rebates,

measured as the amount by which consumption will increase if the household’s tax rebate

increases from $1,000 to $1,100.

Table 1 shows that the MPC for singles without children making less than $20,000 per

year receiving a tax rebate of $100 takes a value of 60.2 percent. In the same row, the

column labeled $3,000 shows an MPC of 48.1 percent, which implies that the consumption

of this household type is predicted to increase by an additional $48.1 if the tax rebate

increases from $3,000 to $3,100 (“the MPC when receiving $3,000”). MPCs for higher-

income households are much smaller for small tax rebates, but decline more slowly with

the amount, and are also higher for households with more children. It is also evident that

for given household income and number of children, the MPCs for the smallest checks for

married households are lower than for corresponding singles. This follows because couples

are older on average and because they are more likely to have children in the near future.

However, for married households the MPCs decline relatively slower with the size of the

tax rebate.15

14The columns report the expected value of MPC$100(g;D) = ∆c(g)
(D+$100)−D , where ∆c(g) is the change in

consumption of a household of type g whose transfer increases from D ≥ 0 to D + $100.
15The decline in MPCs for, say, singles with 2 children, is initially very steep followed by a flat segment
when tax rebates increase from $500 to $3,000. This pattern is largely due to the coarseness of the
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The MPC panel illustrates our search for the allocation that maximizes the stimulus

effect on consumption. For example, a single with two children and income in the $40,000–

$60,000 range tentatively assigned a $3,000 tax rebate will be queued ahead of a single

without children and income in the $0–$20,000 range tentatively assigned a tax rebate

of $2,000 because the $100 increment results in a consumption increase of $52.2 for the

former and $48.3 for the latter.

The bottom panel of Table 1 shows the average propensity to consume (APC) for the

same household types conditional on the transfer amount.16 As these are averages of the

MPCs, they decline more slowly with transfer amounts. For example, for singles without

children in the lowest income category, they decline from 60.2 to 53.1 percent as the transfer

amount increases from $100 to $3,100, compared to a corresponding MPC reduction from

60.2 to 48.1 percent. What matters for the optimal stimulus allocation is each household

type’s path of MPCs, not the APCs that are more commonly observed in data.17

Figure 2 compares the actual allocation to the optimal consumption stimulus allocation,

assuming the government increased the maximum tax rebate amount to $900 per adult

and the maximum supplemental child payment, conditional on eligibility, to $600 per

child.18 Not surprisingly, the optimal allocation is tilted more towards the poorest (due

to their higher MPCs) who receives the maximum amount (to the extent that their tax

liability is as large). However, most of the reallocation from the actual rebate takes the

form of larger rebates to singles with children. Because we evaluate the optimal allocation

for a given budget, the money needs to be reallocated from married couples due to their

relatively lower MPCs, for which only the lowest income groups receive the maximal

amount, while higher-income households would receive no tax rebates. The phase-out

occurs around $50,000 for couples with 0–1 children and around $70,000 for couples with
asset grid and MPCs decline with income in the underlying finer categories from which the MPCs in
Table 1 are generated as averages. For the optimal allocations, we consider no less than 67,070,640
MPCs, see Technical Appendix Section A.4.

16The columns report the value of APC(g;D) = ∆c(g)
D , where ∆c(g) is the change in consumption of a

household of type g who receives a tax rebate of D > 0.
17One exception is Fagereng, Holm, and Natvik (2021), who estimate MPCs out of different lottery
amounts using Norwegian register data.

18More formally, we increase the tax rebate limit for single filers to the maximum of $600 and their tax
liability, with a maximum of $900. The tax rebate limit for married couples filing jointly is similarly
increased to the maximum of $1,200 and their tax liability, with a maximum of $1,800.
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2 children. Whether this optimal pattern would have been politically feasible or not is

beyond the scope of our paper to evaluate.

In Table 2, we report the Resource Equivalent Variation (REV) corresponding to

different allocation constraints, measured as the percentage by which the government can

reduce total spending on tax rebates and still achieve the same aggregate consumption

stimulus. For the actual 2008 maximum tax rebate limits, the government could have

obtained the same stimulus with a 2.0 percent lower budget if it allocated optimally.

However, significant savings of more than 10.0 percent could have been obtained by

allocating optimally if the tax rebate limits per adult and/or per child were increased.

5 Optimal allocation of stimulus checks: CARES Act

of 2020 and American Rescue Plan Act of 2021

Following the worldwide outbreak of COVID-19 infections, countries around the world

responded by closing down businesses for extended periods of time and pumping out

unprecedented amounts of money to ameliorate the adverse economic effects of the

pandemic. In the U.S., the American Rescue Plan (ARP) Act of March 2021 had a

budget of 1.9 trillion dollars, about $400 billion of which was spent on direct checks to

households as part of its efforts in insuring individuals against the economic fallout.19

The actual allocation was a $1,400 check to non-married individuals with income less than

$75,000 and a $2,800 check to married couples if their joint income was less than $150,000

(gradually phased out at higher income levels), with an additional $1,400 per dependent.

This section applies our algorithm to study the optimal allocation of these checks in a

setting where an inequality-averse planner maximizes the welfare of check recipients.
19Direct checks to households were also included in the CARES Act of March 2020 (maximum of $1,200
per adult) and the Consolidated Appropriations Act of December 2020 (maximum of $600 per adult).
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5.1 Consumer problem during the 2020–2021 pandemic

As for the previous application, we start by describing the problem solved by the consumers

and the planner. We model COVID-19 as a two-period shock. In the first period, agents

are subject to an unexpected unemployment shock. Consistent with actual policies

(CARES Act and Consolidated Appropriations Act), eligible agents receive up to two

rounds of checks and the generosity of unemployment insurance (UI) benefits increases.20

In this section, we focus on the optimal allocation of the third round of checks, which are

allocated during the second crisis-period in the model (the third round of checks refers to

the checks allocated under the ARP Act). Given that the implications of the first crisis-

period are endogenously captured by the agents’ assets at the start of the second period,

we only present the problem solved by the agents during the second period of COVID-19.

Using administrative payroll data, Cajner et al. (2020) document that younger, older,

and low-income workers were more likely to lose their job during the pandemic. Given

this, we model the surge in unemployment as an unexpected unemployment shock and

assume that the probability of unemployment varies with the agent’s age and earnings.

As in Section 4.1, let πU (ω) denote the unemployment probability of an agent of type ω,

let ξ ∈ [0, 1] govern the duration of the unemployment spell, and let b ∈ [0, 1] denote the

UI replacement rate.21

The large reduction in consumption brought about by the pandemic was partially driven

by the fact that individuals reduced their consumption due to lockdown of establishments,

restrictions on travel, and fear of contracting the virus. Carroll et al. (2021) estimate that

10.9 percent of the goods become highly undesirable or unavailable during the pandemic.

We account for this by reducing the households’ marginal utility of consumption during

the pandemic by a scaling factor, κ, calibrated to match the 10.9 percent reduction in
20The increased generosity of UI benefits was designed to replace 100 percent of average U.S. wages.
Ganong, Noel, and Vavra (2021) show that the median replacement rate was 134 percent and about
two-thirds of eligible unemployed workers received benefits exceeding their lost earnings.

21We adjust the 2020 unemployment probabilities to match the April 2020 estimates in Cajner et al.
(2020). We let the corresponding 2021 probabilities be given by their June 2020 estimates, but scaled
down by a common factor to match the aggregate unemployment rate in February 2021. Given the
increased UI replacement rate during the pandemic, we assume that UI replaces 100 percent of lost
earnings, which means that the duration of the unemployment spell, ξ, does not affect income in the
benchmark analysis. Sensitivity analyses reported in Appendix Section A.2 show that our results are
not sensitive to the choice of the UI replacement rate, b.
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aggregate consumption solely due to the lockdown.

Agent’s problem—Let V U (ω;D) denote the value function for an agent that is un-

employed for at least part of the second COVID-19 period, ξ < 1, and that receives an

amount D ≥ 0 in checks, modeled as direct cash transfers to the agents:22

V U (ω;D) = max
c≥0,a′≥0

u (c,m, k;κ) + δψjEη′|ηEν′|νEk′|(j,e,m,k)V (ω′)

s.t. c+ a′ = a+ y − Ty +D

y = ra+ Ij<jRθεj,η,e [ξ + b (1− ξ)] + Ij≥jRSSe + Im=1Bj,e,k,η,ν .

(16)

Consistent with the CARES Act, Consolidated Appropriations Act, and ARP Act, the

checks are exempt from income taxation.23 Analogously, let V W (ω;D) denote the value

function for an agent of type ω that receives an amount D in checks and that is employed

during the second COVID-19 period. These agents solve the same problem as described

in Equation (16), with the exception that ξ = 1.

5.2 Planner problem during the 2020–2021 pandemic

We want to derive the optimal allocation when the planner’s objective is to maximize

a CES index over the welfare of check recipients. The value functions for consumers’

expected discounted lifetime utility are not necessarily positive, which precludes using

value functions directly when λ ∈ (−∞, 1). We therefore translate consumer welfare into

a positive consumption equivalent following an approach similar to Benabou (2002), Bakis,

Kaymak, and Poschke (2015), and Boar and Midrigan (2020). In particular, we first convert

the household’s lifetime utility, V q (ω;D), where q ∈ {U,W}, into more interpretable

units by deriving the positive constant consumption stream, xq (ω;D), that the household
22Because the shock is transitory, the economy will transition back to the pre-COVID equilibrium, where
the value function is as given in Equation (7).

23The implications of the stimulus programs depend on the timing of the financing of these programs.
The benchmark analysis assumes that the government never increases taxes to finance their increased
expenditures on UI benefits and cash checks; stimulus programs are tantamount to “manna-from-
heaven.” The optimal allocation results in Section 5.3 are robust to an alternative environment where
tax rates are adjusted to balance the government budget period-by-period during the crisis.
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would need to receive every period to achieve the same level of lifetime utility:

V q (ω;D) =
J∑

j̃=j(ω)
δj̃−j(ω)Ψj̃

xq (ω;D)1−γ

1− γ , q ∈ {U,W}, (17)

where Ψj̃ is the likelihood of surviving from age j̃ = j(ω) to age J .

As xq (ω;D) is a constant, we can simplify the notation and write xq (ω;D) =[
V q(ω;D)

Λ(ω) (1− γ)
] 1

1−γ for an appropriately defined Λ(ω). But because agents have heteroge-

neous discount factors and different expected lifetimes, xq (ω;D) generally fails to pre-

serve the ordering of V q(ω,D) across types ω.24 To correct for this, we calculate a life-

span-adjusted consumption equivalent (which adjusts for expected lifetime and discount

factors) as follows:

xq(ω;D) = xq(ω;D)Λ(ω)
1

1−γ = [V q(ω;D)(1− γ)]
1

1−γ , q ∈ {U,W}. (18)

The life-span-adjusted consumption equivalent preserves the ordinal rank of V q(ω;D)

across types ω for all γ (see Appendix Section A.4 for the proof).

The amount received under the ARP Act varied with household income and family size

as reported on their most recent tax return. We therefore focus on the optimal allocation

of 2021 checks given 2020 household characteristics. Let x̃ (y, j,m, k;D) denote the ex

ante expected welfare in 2021 of agents with income y, age j, marital status m, and

number of children k in 2020 that receive D, defined analogously to Equation (12) (see

Appendix Section A.3.2 for details). The planner’s optimization problem is then given by

max
D∈CD

∫ βsx̃

s; G∑
g=1

Dg · 1s∈Ωg

λ µ (s) ds


1
λ

, (19)

where the choice set is as given in Equation (14). The planner weights, βs, can be adjusted

for whether the planner focuses on households or per-capita when deciding on allocations,

and in this application, we choose βs equal to the number of household members.
24That is, if V q(ω1;D) > V q(ω2;D), it is not necessarily the case that xq(ω1;D) > xq(ω2;D).
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5.3 Optimal welfare allocation

Figure 3 displays the actual versus optimal checks when the planner cares about the

welfare of check recipients, assuming the government has intermediate aversion to welfare

inequality (λ = −1). While the actual allocations were capped at $1,400 per individual

(including dependents), Figure 3 displays the optimal allocation assuming a cap of $2,000

per individual.

Compared to the consumption stimulus case studied in Section 4.3, the most striking

difference in the 2021 optimal welfare allocation is the tilt towards families (singles or

couples) with several children. In particular, married couples with two children and income

less than $150,000 receive the maximum amount of $8,000. Because we assume the same

budget as the actual allocation, the reallocation towards larger families requires stricter

income limits for families with one child or less; for example, a married family with no

children would receive no check if their household income was above $30,000, and among

singles without children only the very poorest would receive any check.

During recessions, the government may worry about both stimulus and welfare of the

poorest. However, the optimal allocation of direct transfers to households can be quite

different depending on the objective of the government, as can be seen by comparing

Figure 2 and Figure 3. Note, however, that the figures are not directly comparable due to

the particular features of the 2008–2009 and 2020–2021 crises, although a qualitatively

similar difference would show if the optimal stimulus allocations were displayed for 2021.

5.4 Deriving confidence bands

If the outcomes for each group are measured with errors, for instance due to estimation

uncertainty, the allocations will inherit this uncertainty because it affects the underlying

Ag and αg,l used to derive the optimal allocation queue (see Section 2.2). An advantage of

our algorithm is that it can be used to derive confidence bands for the optimal allocations

as long as the degree of uncertainty about the inputs can be quantified and the uncertainty

preserves the property of non-increasing returns to increments, which will typically hold if

the uncertainty is a result of minor modeling choices or due to parameter estimation. This
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follows because the computational burden required to solve for the optimal allocation queue

increases only linearly with the number of recipients, thereby making it computationally

feasible to solve the allocation problem for a large number of permutations of the inputs.

We illustrate this by considering the case where each household group’s welfare equals

the calculated value from the benchmark analysis plus a mean-zero normally distributed

error (independent across groups) with standard deviation equal to 10 percent of the

base level. We draw a vector of errors (one error for each group) and derive the optimal

allocation. We repeat this 500 times and record the allocations to each group.

In Figure 4, we re-display the optimal allocations from Figure 3 together with a 95

percent confidence band across the 500 different sets of optimal allocations. The overall

pattern of allocating more to poorer households remains, as does the pattern of allocating

more to families with several children. However, there is substantial uncertainty in the

particular income-limit whereby the checks start to phase out.

While the uncertainty underlying this particular example is not rigorously derived

from estimation, it illustrates how our algorithm easily can be used to derive confidence

bands for the optimal allocations if the uncertainty in the underlying inputs from the first

step of our approach can be quantified.

6 Conclusion

This paper considers optimal allocation of discrete resources to heterogenous groups,

g ∈ {1, . . . , N}, assuming the planner has a fixed budget and CES preferences over

the resulting outcomes, Hg(Dg). A closed-form solution/algorithm, characterized by

an optimal allocation queue, is provided under the assumption that increments in the

Hg functions are non-increasing. The algorithm is applied to allocations of “support

checks” from the U.S. government to households during the Great Recession and during

the COVID-19 pandemic. To obtain the inputs for the analysis, we develop a life-cycle

consumption-savings model with heterogeneous households, which predicts household-

type-specific consumption and welfare responses to tax rebates and cash transfers. The
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algorithm can be used to examine the sensitivity of the allocations to different planner

objectives and to different degrees of planner inequality-aversion, and we show how the

algorithm can be used to derive confidence bands for the optimal allocations when there

is uncertainty about the underlying inputs due to for example parameter uncertainty.

The computational demands required to solve for the optimal allocation queue grow

linearly with the number of groups, despite the number of possible allocations growing

combinatorially, and one can apply our algorithm in cases where, for example, Lagrangian

methods become infeasible. We do not focus on inference, but the analytical expression for

the optimal allocation queue allows researchers to efficiently compare optimal allocations

under different planner preferences, making it feasible to also estimate planner preference

parameters that can rationalize observed allocations.

Appendix

Proof of Theorem 1

The following proof shows that under Atkinson-CES preference aggregation and non-

increasing marginal benefits of incremental allocations, a sequentially local solution is

both globally optimal and invariant to aggregate resources. For notational simplicity, we

ignore the possibility of ties between candidate recipients. However, Theorem 1 allows for

ties, and the proof presented below generalizes to those cases.

Proof 1 The proof of Theorem 1 is iterative. Suppose the first W̃ increments have

been allocated. Let DW̃ denote the corresponding allocations, with DW̃
i units allocated to

individual i. Consider the problem of maximizing the planner’s objective function on the

following constraint set

C(DW̃ ) ≡
{

(D1, . . . , DN) : Di ∈ {0, 1}, Di +DW̃
i ≤ Di,

N∑
i=1

Di ≤ 1)
}
, (20)

where the planner allocates one unit of resource given existing allocations DW̃ . To maximize

the planner’s objective, the planner allocates the next increment to agent i (which increases
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the total allocation to W̃ + 1) iff, for all j where DW̃
j < Dj, the following holds:

βi
Ai +

DW̃i +1∑
l=0

αi,l


λ

+
N∑
k=1

βk

Ak +
DW̃k∑
l=0

αk,l


λ

− βi

Ai +
DW̃i∑
l=0

αi,l


λ

1
λ

≥ (21)

βj
Aj +

DW̃j +1∑
l=0

αj,l


λ

+
N∑
k=1

βk

Ak +
DW̃k∑
l=0

αk,l


λ

− βj

Aj +
DW̃j∑
l=0

αj,l


λ

1
λ

.

Given λ ∈ (−∞, 1], Equation (21) can be rewritten as

βi

(
Ai +∑DW̃i +1

l=0 αi,l

)λ
− βi

(
Ai +∑DW̃i

l=0 αi,l

)λ
≥ βj

(
Aj +∑DW̃j +1

l=0 αj,l

)λ
− βj

(
Aj +∑DW̃j

l=0 αj,l

)λ
if 0 < λ ≤ 1

(22)

βi

(
Ai +∑DW̃i +1

l=0 αi,l

)λ
− βi

(
Ai +∑DW̃i

l=0 αi,l

)λ
≤ βj

(
Aj +∑DW̃j +1

l=0 αj,l

)λ
− βj

(
Aj +∑DW̃j

l=0 αj,l

)λ
if λ ≤ 0.

Under Assumption 1, Ai + αi,l > αi,l > 0. Equation (22) can therefore be rewritten as

D∗i

(
DW̃

)
= 1 iff βi

βj


(
Ai +∑DW̃i +1

l=0 αi,l

)λ
−
(
Ai +∑DW̃i

l=0 αi,l

)λ
(
Aj +∑DW̃j +1

l=0 αj,l

)λ
−
(
Aj +∑DW̃j

l=0 αj,l

)λ
 ≥ 1. (23)

Note that the optimality of the first W̃ allocation increments is unaffected by allocation

increment number W̃ + 1 due to non-increasing marginal benefits, αi,l ≤ αi,l−1. The

planner’s problem therefore simplifies to a local comparison of each individual’s marginal

benefit of receiving allocation increment number W̃ + 1 conditional on the increments that

have already been allocated, DW̃ . Given this, Equation (23) can be rewritten as:

D∗i

(
DW̃

)
= 1 iff

N∑
j=1

Dj∑
k=0

1


βj
βi


(
Aj +∑k

l=0 αj,l
)λ
−
(
Aj +∑k−1

l=0 αj,l
)λ

(
Ai +∑DW̃i +1

l=0 αi,l

)λ
−
(
Ai +∑DW̃i

l=0 αi,l

)λ
 ≥ 1


= W̃+1.

(24)
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Each increment of the optimal allocation queue is then given by:

Qi,l = min
{
W̃ : W̃ ∈

{
1, . . . ,

N∑
i=1

Di

}
and DW̃

i = l

}
, (25)

which is equal to the W̃ units of resources required for individual i to optimally receive his or

her l’th allocation increment. Equation (25) is equivalent to the summation in Equation (5).

The iterative optimal solution Qi,l is only optimal if the resource expansion path does

not bend backward. This means that if it is optimal to allocate consecutively to i, it is

also optimal to allocate to i over C(DW̃ ) iteratively. Without loss of generality, suppose

W̃ = 0, the requirement is then, ∀j,

if
(

(Ai + αi,1 + αi,2)λ − (Ai + αi,1)λ

(Aj + αj,1)λ − (Aj)λ

)
≥ βj
βi
, then

(
(Ai + αi,1)λ − (Ai)λ

(Aj + αj,1)λ − (Aj)λ

)
≥ βj
βi
. (26)

Assumption αi,l−1 ≥ αi,l satisfies Equation (26). For the inequalities in Equation (26),

comparisons are based on differences in the numerators. Let g(A;α) = (A+ α)λ − (A)λ.

Given αi,1 ≥ αi,2, if 0 < λ < 1, then 0 < g(Ai + αi,1;αi,2) ≤ g(Ai + αi,1;αi,1) < g(Ai;αi,1).

This satisfies the condition in Equation (26). If λ < 0, both the numerator and the

denominator are negative. We have, given αi,1 ≥ αi,2, 0 > g(Ai + αi,1;αi,2) ≥ g(Ai +

αi,1;αi,1) > g(Ai;αi,1). This also satisfies the condition in Equation (26).
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Table 1: Dollar Increase in Consumption Following the Receipt of an Additional
$100 Given Initial 2008 Tax Rebate (MPC) and Share of Rebate Consumed Given
Transfer Amount (APC)

MPC given initial transfer amount

Initial cons. $0 $500 $1,000 $2,000 $3,000

Single with 0 children
Income: 0–20,000 13,200 60.2 59.7 53.7 48.3 48.1
Income: 20,000–40,000 24,500 52.8 51.0 51.0 46.9 46.5
Income: 40,000–60,000 37,300 43.3 42.8 42.6 42.1 41.5

Single with 2 children
Income: 0–20,000 4,500 75.9 57.0 57.0 57.0 57.0
Income: 20,000–40,000 8,500 64.6 64.6 55.7 55.5 55.5
Income: 40,000–60,000 13,400 57.2 55.8 55.8 52.4 52.2

Married with 0 children
Income: 0–20,000 14,500 53.3 48.8 48.7 48.7 48.7
Income: 20,000–40,000 20,400 49.7 48.9 48.7 45.9 45.0
Income: 40,000–60,000 27,000 42.7 42.6 42.4 40.9 39.9

Married with 2 children
Income: 0–20,000 6,600 55.9 55.9 55.9 51.0 50.8
Income: 20,000–40,000 9,700 53.4 53.4 53.4 50.4 50.1
Income: 40,000–60,000 13,400 49.1 49.1 48.9 48.6 47.7

APC given transfer amount

$100 $600 $1,100 $2,100 $3,100

Single with 0 children
Income: 0–20,000 60.2 59.8 58.1 55.4 53.1
Income: 20,000–40,000 52.8 51.7 51.4 50.5 49.3
Income: 40,000–60,000 43.3 43.0 42.8 42.7 42.4

Single with 2 children
Income: 0–20,000 75.9 64.1 60.9 59.0 58.4
Income: 20,000–40,000 64.6 64.6 62.2 59.0 57.9
Income: 40,000–60,000 57.2 56.3 56.0 55.6 54.5

Married with 0 children
Income: 0–20,000 53.3 50.4 49.7 49.2 49.1
Income: 20,000–40,000 49.7 49.2 49.0 48.4 47.5
Income: 40,000–60,000 42.7 42.7 42.6 42.3 41.8

Married with 2 children
Income: 0–20,000 55.9 55.9 55.9 55.3 53.9
Income: 20,000–40,000 53.4 53.4 53.4 52.9 52.1
Income: 40,000–60,000 49.1 49.1 49.0 48.9 48.7

Notes: The first part of the table reports the marginal propensity to consume (MPC) out of an additional
$100 in the size of a potential tax rebate given initial transfer amounts for different household types
(single or married, 0 or 2 children, and different household incomes). That is, it reports the value of
MPC$100(g;TR) = ∆c(g)

(TR+$100)−TR , where ∆c(g) is the change in consumption of a household of type g
whose transfer increases from TR ≥ 0 to TR+ $100. The column titled “Initial cons.” shows average
consumption per household member given household type if the household does not receive tax rebates.
The second part of the table reports the average propensity to consume (APC) given transfer amount
for the same household types. That is, it reports the value of APC(g;TR) = ∆c(g)

TR
, where ∆c(g) is the

change in consumption of a household of type g who receives a transfer of TR > 0.



Table 2: Resource Equivalent Variation (REV): Budget Savings Relative to the Actual
Policy Given Allocation Constraint

Allocation Constraints REV

Vary income-eligibility criteria
(1) Adjust income-specific eligibility criteria 2.0

Vary income-eligibility criteria and max. check amount
(2) Maximum limit per adult: $900 8.8
(3) Maximum limit per adult: $1,200 11.4
(4) Maximum limit per child: $600 12.0
(5) Maximum limit per child: $900 15.5
(6) Maximum limit: $900 per adult and $600 per child 13.9
(7) Maximum limit: $1,200 per adult and $900 per child 16.9

Notes: The resource equivalent variation (REV) numbers specify the percentage
by which the government can reduce total spending on tax rebates and still achieve
the same stimulus as the actual policy. Rows correspond to different allocation
constraints. A REV value of 0 percent means the government cannot reduce
spending at all if it wants to maintain the same increase in aggregate consumption
as under the actual policy, whereas a value of 99 percent means the government can
reduce total spending by 99 percent and still achieve the same increase in aggregate
consumption as under the actual policy. The actual 2008 policy was income-tested
and had a maximum tax rebate amount of $600 per adult and $300 per child.
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Figure 1: Relationship Between Average Consumption Per Household Member Before
Receiving Tax Rebates and MPC out of First $100 in Tax Rebates (2008 Calibration)

Notes: The figure shows the relationship between average consumption per household member before
receiving tax rebates and the marginal propensity to consume out of the first $100 in tax rebates for
different household types (married vs. single, 0–4 children).
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Figure 2: Actual vs. Optimal Consumption Stimulus Allocation by Income and Family
Status. Maximum Tax Rebate $900 per adult and $600 per child

Notes: The figure shows the allocation of tax rebates by household income and family status (marital
status and number of children) for the 2008 policy and for the optimal consumption stimulus allocation
(λ = 1) of the same amount of money calculated under the assumption that the maximum tax rebate is
$900 per adult and $600 per child.
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Figure 3: Actual vs. Optimal Welfare Allocation by Income and Family Status for Planner
with Intermediate Inequality Aversion. Maximum Check Size $2,000 per adult and $2,000
per child

Notes: The figure shows the allocation of checks by household income and family status (marital status
and number of children) for the 2021 checks and for the optimal welfare allocation of a planner with
intermediate inequality aversion (λ = −1) of the same amount of money calculated under the assumption
that the maximum check amount is $2, 000 per adult and $2, 000 per child.
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Figure 4: Uncertainty of Optimal Allocations when 2021 Welfare is Measured with Error

Notes: The solid lines show the optimal welfare allocations (by income and family status for the case
with intermediate planner inequality version (λ = −1) and a maximum check limit of $2, 000 per adult
and child) under the benchmark parameterization. The dotted lines show the 95 percent “confidence
band” when welfare for each household type is subject to mean-zero normally distributed errors with a
standard deviation equal to 10 percent of group-specific welfare pre-checks.
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Online Appendix

A.1 Calibration

This section provides additional details about the calibration of the model. A summary

of the parameters that are determined outside the equilibrium is reported in Table A.1.

Table A.2 provides a corresponding summary of the parameters that are determined

jointly in equilibrium.

Life-cycle parameters—We use life-tables for the U.S. Social Security Area (SSA)

for the year 2020 to derive age-specific survival probabilities, ψj. Life-tables reported

by the SSA are gender-specific. We obtain non-gender-specific survival probabilities by

combining the age- and gender-specific survival probabilities from the SSA with data on

the distribution of gender by age reported by the Census. We normalize the mass of 18-

year-olds in the model to 1 and let the size of new cohorts increase at 1.1 percent per year

to match data from the Census.

We use data from the Panel Study of Income Dynamics (PSID) for the period 1997–

2017 to obtain the probability of being college educated, the probability of being married,

and the initial distribution of children. We assume that 30.3 percent of agents are college-

educated, which corresponds to the share of 18+ year-old household heads in the PSID with

at least a bachelor’s degree or a minimum of 4 years of college education. We assume that

43.7 percent of non-college-educated agents and 56.4 percent of college-educated agents are

married, which corresponds to the share of 18+ year-old household heads in the PSID that

are married by college attainment. Finally, we let the initial distribution of children be equal

to the distribution of children under the age of 18 for 18–25 year-old household heads in the

PSID, with the number of children top-coded at 4. We condition the initial distribution of

children on the household head’s college attainment and marital status. Doing so allows us

to account for the observation that young college-educated individuals are less likely to have

children than young non-college-educated individuals and that young married individuals

are more likely to have children than young non-married individuals. Table A.3 summarizes

the initial conditions for college attainment, marital status, and number of children.
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Transition probabilities for number of children—The PSID has been administered on a

bi-annual basis since 1997. Because a period in the model is one year, we use data from

the PSID for the period 1993–1997 to derive transition probabilities for the number of

children under the age of 18. We do this by estimating an ordered logistic regression of

the number of children under the age of 18 at time t + 1 conditional on the household

head’s age, age squared, marital status, college attainment, and number of children under

the age of 18 at time t. The regression results are reported in Table A.4. The transition

probabilities for the number of children under the age of 18 are then given by the standard

ordered logistic formula:

P (k′ = i|x) = 1
1 + exp(−κi + xβ) −

1
1 + exp(−κi−1 + xβ) , (27)

where x = (k, j, j2,m, e) is a vector with the number of children under the age of 18 at

time t, the age and age-squared of the agent, the marital status of the agent, and the

educational attainment of the agent. Similarly, β is a vector of parameters and the κ′s are

constants of increasing size which can be interpreted as hurdles for the ordered outcomes.

Spousal income—We use data for married individuals in the PSID for the period 1997–

2017 to estimate spousal income. To do this, we first estimate the following OLS regression:

ln(ySt ) =

 β0 + β1 ln(yHt ) +∑4
p=2 βpj

p−1
t + β51et=1 +∑4

q=1 γq1kt=q j < jR

β0 + β1 ln(yHt ) +∑4
p=2 βpj

p−1
t + β51et=1 +∑4

q=1 γq1kt=q + β7kt + β8 j ≥ jR,

(28)

where ln(ySt ) and ln(yHt ) denote the logarithm of the spouse’s and reference person’s

income, respectively, with income defined as the sum of labor earnings, Social Security

benefits, Supplemental Security Income, UI benefits, and other transfers. Next, 1et=1 is an

indicator function that is equal to one if the reference person is college-educated and 1kt=q

is an indicator function that is equal to one if the reference person has q ∈ {1, 2, 3, 4}

children under the age of 18 at time t. Lastly, β7 enables us to capture that the “child

penalty” (i.e., the reduction in average spousal income due to children) is different for

young and old individuals, and β8 allows for differences in the intercept term for young
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and old individuals.25 The regression also includes year fixed-effects. The regression

results are reported in Table A.5. We use this regression to predict average spousal income

conditional on the idiosyncratic state of the household head and use the variance of the

residual from this regression to obtain an estimate of the variance of spousal income.

Finally, we discretize both the household head’s and the spouse’s income process by

means of the Tauchen method. Households draw their initial productivity shocks from

the stationary distribution of the household head’s and the spouse’s income process.

The benchmark analysis studied in the main text assumes that spousal income shocks

are i.i.d.26 This leads to a correlation between the logarithm of the spouse’s and reference

person’s income of 0.22, compared to a corresponding correlation of 0.26 in the PSID. The

optimal allocation results are robust to allowing for persistent spousal productivity shocks.

A.2 Additional results

Illustration of the optimal allocation queue–Figure A.1 illustrates the optimal consumption

stimulus allocation queue for the case with a maximum tax rebate of $900 per adult

and $600 per child. The left-hand panel plots the queue positions for single households

with different income levels and 0–4 children, and the right-hand panel plots the queue

positions for corresponding married households. The Y-axis marks out the Qg,l queue

positions defined in Equation (5), where lower numbered (higher-ranked) queue positions

receive allocations first as aggregate resources increase. The multiple markers for the

same household type follow from the assumption that the planner allocates tax rebates in

$100 increments and that the same household can receive multiple rebates. While the

queue is invariant to the total budget available for tax rebates, the budget still governs

what allocations are feasible (equivalently, how many positions there are in the queue). In

Figure A.1, dots below the budget line indicate increments that are below the cut-off to
25We do not use any information about the spouse, such as the spouse’s age or educational attainment,
in our regressions because we do not keep track of the spouse’s idiosyncratic state in the model.

26The only exception is during times of unemployment. In particular, for computational simplicity we
assume that the unemployment shock for the head and the spouse (both during the 2008–2009 and
2020–2021 crises) are perfectly correlated. In the event of unemployment, spousal income is given by
Bj,e,k,η,ν,ξ,b = Bj,e,k,η,ν [ξ + b(1− ξ)], where Bj,e,k,η,ν is as defined in Equation (A.1).
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be funded. In our figure, we illustrate what policies are chosen with a $100, $125, and

$150 billion budget.

Optimal allocation for planners with different consumption inequality aversion—In

Section 4.3, we compared the actual tax rebates in 2008 with the optimal policy assuming

the government’s objective was to maximize the stimulus effect on consumption in that

year. Figure A.2 studies the sensitivity of the optimal policy to different degrees of

planner 2008 consumption inequality aversion.27 In particular, we plot the allocation of

tax rebates by household income and family status (marital status and number of children)

for the 2008 policy and for the optimal allocation of a planner with very high (Rawlsian,

λ = −99), intermediate (λ = −1), and no aversion to consumption inequality (λ = 1) of

the same amount of money calculated under the assumption that the maximum tax rebate

is $900 per adult and $600 per child. The optimal stimulus planner studied in Section 4.3

corresponds to the planner with λ = 1. We find that the optimal policy is largely robust

to different degrees of planner consumption inequality aversion. This follows because

low-consumption households have higher MPCs in the model due to concave utility, as

illustrated in Figure 1. Both limit-planners thus optimally prioritize low-consumption

households when deciding how to allocate the tax rebates.

Sensitivity analysis—Figure A.3 explores if the optimal welfare allocations in 2021 for

the intermediate planner (λ = −1), facing the same individual check limits and overall

budget as described in Section 5.3, are robust to various modeling choices. To keep the

number of graphs manageable, we only show the results for singles and married with either

0 or 2 children. First, there is large variation in MPC estimates in the literature. Given

that the MPC estimates are sensitive to the choice of discount factor heterogeneity in the

model and that this might have implications for the optimal allocation of checks, we start

by studying the sensitivity of the optimal allocations to increasing and reducing the mass

of impatient (i.e., δ = δ) households by 50 percent. As shown in panel (a) of Figure A.3,

the optimal allocations are robust to varying the mass of impatient households.

Second, motivated by the increased UI replacement rate during the pandemic, the
27The planner’s optimization problem when the government exhibits aversion to 2008 consumption
inequality is defined analogously to Equation (19).
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benchmark analysis for the 2020–2021 crisis assumes that UI replaces 100 percent of lost

earnings. The increased generosity of UI benefits may affect labor-supply, which is an issue

that we do not address in this paper. Instead, we ask the question if the optimal allocation

of checks depends on the level of UI benefits. Panel (b) shows that the allocations are

highly robust to two extreme choices for UI benefits when we assume (for consistency with

the actual policy) that the planner allocates the checks conditional on the households’

last year’s income: no UI benefits (b = 0) and complete UI benefits (b = 1).28

Third, the interest rate in the benchmark model is set to 4 percent as in McGrattan

and Prescott (2003). The interest rate affects the propensity to save out of the checks. We

test the sensitivity of our optimal allocations by reducing the interest rate to 2 percent.

As shown in panel (c), the allocations are robust to alternative values for the interest rate.

A.3 Additional equations for the consumer and plan-

ner problems

A.3.1 Great Recession

Let V U (ω) denote the value function for an agent of type ω that is unemployed for at

least part of the second crisis-period, ξ < 1. Because the shock is transitory, the economy

will transition back to the pre-crisis equilibrium, where the value function is as given in

Equation (7). We get the following expression for V U (ω):29

V U (ω) = max
c≥0,a′≥0

u (c,m, k) + δψjEη′|ηEν′|νEk′|(j,e,m,k)V (ω′)

s.t. c+ a′ = a+ y − Ty

y = ra+ 1j<jRθεj,η,e [ξ + b (1− ξ)] + 1j≥jRSSe + 1m=1Bj,e,k,η,ν,ξ,b.

(29)

28The finding that the optimal allocations are not sensitive to the choice of UI benefits is robust to
alternative durations of the unemployment spell.

29See Appendix Section A.1 for details on how spousal income is affected by unemployment.
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A.3.2 COVID-19

Let x̃ (y, j,m, k;D) denote the ex ante expected welfare in 2021 of agents with income y,

age j, marital status m, and number of children k in 2020 that receive D:

x̃ (y, j,m, k;D) = ψjEη′|ηEν′|νEk′|(j,e,m,k)Eδ|eE(a,e,ν)|(y,j,m,k)[
πU (j + 1, η′, e)xU (j + 1, a′ (ω) , η′, e,m, k′, δ, ν ′;D)

+
(
1− πU (j + 1, η′, e)

)
xW (j + 1, a′ (ω) , η′, e,m, k′, δ, ν ′;D)

]
,

(30)

where a′ (ω), Eδ|e, and E(a,η,e,ν)|(y,j,m,k) are as defined in Section 4.2 and xq (·;D) (q ∈

{U,W}) is as defined in Equation (17).

A.4 Technical details

Proof that the welfare measure preserves the order of the value functions—As discussed in

Section 5.2, we apply the following conversion when calculating welfare:

xq(ω;D) = xq(ω;D)Λ(ω)
1

1−γ = [V q(ω;D)(1− γ)]
1

1−γ , q ∈ {U,W}. (31)

where xq(ω;D) is as given in Equation (17). This section verifies that our conversion

preserves the ordinal rank of V q(ω;D) across types ω for all γ.

Proof 2 Consider two agents with idiosyncratic type ω1 and ω2. Suppose V q(ω1;D) >

V q(ω2;D). Applying our conversion:

xq(ω1;D) = xq(ω1;D)Λ(ω1)
1

1−γ = [V q(ω1;D)(1− γ)]
1

1−γ

xq(ω2;D) = xq(ω2;D)Λ(ω1)
1

1−γ = [V q(ω2;D)(1− γ)]
1

1−γ

(32)

We want to show that V q(ω1;D) > V q(ω2;D) implies that xq(ω1;D) > xq(ω2;D). This

simplifies to showing that [V q(ω1;D)(1− γ)]
1

1−γ > [V q(ω2;D)(1− γ)]
1

1−γ for all γ. If

γ ∈ [0, 1), the inequality can be rewritten as V q(ω1;D)(1− γ) > V q(ω2;D)(1− γ), which

holds by assumption (the case where γ = 1 follows trivially). If γ > 1, the inequality can
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be rewritten as V q(ω1;D)(1− γ) < V q(ω2;D)(1− γ), which can further be rewritten as

V q(ω1;D) > V q(ω2;D).

Computational details—For each household demographic type (marital status, number

of children, and age of household head), the allocation problems require us to compute

the value of receiving a particular tax rebate or check amount at very small household

income intervals because the amounts under the actual policies varied with $5 increments

in household income. This requires a dense state space. We have 83 age groups, 5 child

states, 2 marital states, 2 educational states, 2 discount factor states, 65 asset states, and

1,330 labor productivity states, resulting in an idiosyncratic state space of 287,014,000

elements. The model is solved with a continuous choice for saving through backwards

induction by means of the vectorized bisection algorithm described in Wang (2021).30

To derive the optimal allocations, we need to compute each household’s value of

receiving a particular tax rebate or check amount. Because a large share of the households

will be unemployed during the crisis periods, we need to compute these values conditional

on employment status (employed or unemployed). For the 2020–2021 crisis, we first

discretize the check from $0–$16,800 in $100 dollar increments. For each of the 287,014,000

idiosyncratic types, we then compute the value of receiving a particular amount D ∈

{0, 100, . . . , 16800} conditional on employment status. Because households have the option

of saving all or part of their checks, this requires us to solve for 287, 014, 000× 169× 2 =

97, 010, 732, 000 different household-check values. We follow an analogous approach for

the 2008–2009 crisis.

Consistent with the actual policies, eligibility for the tax rebates and checks in the

model is tied to each household’s income and family size (and hence tax-liability) in the

previous period. For the 2020–2021 crisis, we split households into 399,230 groups, where

groups are defined by marital status, number of children, age of household head, and

household income. We have 450 household income groups in $500 increments from $0–

$225,000, and 31 income groups in $5,000 increments from $225,000–$383,000. Given

our discretization of the check amount, this leads to 399, 230× (169− 1) = 67, 070, 640
30See Wang, Fan. 2021. “An empirical equilibrium model of formal and informal credit markets in
developing countries.” Forthcoming in Review of Economic Dynamics.
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different marginal values of checks. Our approach for the 2008–2009 crisis is analogous.

Definition of equilibrium—Given a fiscal policy {SSe, Ty, G} and a real interest

rate r, the pre-crisis steady-state competitive equilibrium consists of household policies

{c(ω), a′(ω)} and an associated value function {V (ω)} such that:

1. Given prices and fiscal policy, consumers maximize utility subject to their constraints.

2. Government policies balance the government budget constraint:
∫
Ty(ω)µ(dω) =

G+
∫
SSeµ(dω), where y = ra+1j<jRθεj,η,e +1j≥jRSSe +1m=1Bj,e,k,η,ν is household

income.31

3. The measure of agents of type ω = (j, a, η, e,m, k, δ, ν), µ(ω), is induced by the

exogenous initial distribution, the policy functions, the age-specific mortality risk,

and the exogenous stochastic processes for idiosyncratic shocks.

A.5 Outcome measures as functions of the optimal

allocation queue

Let W represent any level of resources (for example the actual level of resources allocated

under some policy, where W = ∑N
g=1D

o
g, and where Do

g is an initial allocation to group g),

let ∆W be some increment in total resources available, and let Qg,l denote the position of

the l’th increment to group g in the optimal allocation queue as defined in Equation (5).

A.5.1 Comparing optimal to alternative policy for given budget
N∑
g=1

 D̄g∑
l=1

(αg,l · 1 {Qg,l ≤ W})−
Dog∑
l=1

αg,l

 . (33)

31See the companion website for the model whereby, in the event of death, the consumer’s accidental
bequests are transferred to the government.
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A.5.2 Impact of resources on the level of aggregate outcomes

The increase in optimal aggregate outcomes for given increase in resources is given by:

N∑
g=1

D̄g∑
l=1

(
αg,l · 1

{
W ≤ Qg,l ≤

(
W + ∆W

)})
. (34)

A.5.3 Elasticity of planner outcome with respect to resources

The elasticity of the aggregate mean outcome with respect to the resource increment, ∆W ,

under the optimal allocation is given by:

ε∆
W
(
W,∆W

)
=
∑N
g=1

∑D̄g
l=1

(
αg,l · 1

{
W ≤ Qg,l ≤

(
W + ∆W

)})
∑N
g=1

(
Ag +∑D̄g

l=1 (αg,l · 1 {Qg,l ≤ W})
) · W∆W

. (35)

When the outcome is consumption, this is the elasticity of consumption with respect to

the total stimulus budget at resource level W given additional increment ∆W .

A.5.4 Gini-index as a function of the optimal allocation queue

An individual outcome given aggregate resources and the optimal allocation queue can be

expressed as:

Hg (W,Qg) = Ag +
D̄g∑
l=1

(αg,l · 1 {Qg,l ≤ W}) , (36)

where Qg is the vector of queue positions relevant for group g. The Gini coefficient is a

function of overall resources W and the full queue Q for all allocation positions:

GINI (W,Q) = 1−
(

2
N+1

)
·
(∑N

j=1

∑N

g=1(Hg(W,Qg)·1(Hg(W,Qg)≤Hj(W,Qj)))∑N

g=1Hg(W,Qg)

)
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Table A.1: Parameters Determined Outside the Model

Parameter Description Source Value

Life-cycle parameters
J Maximum lifespan = 100 83
jR Retirement age = 65 48
γ Risk aversion IES = 0.5 2.000
ψj Age-specific survival probabilities SSA life-tables

Growth rate of 18-year-olds Census 0.011
Pk′|(j,e,m,k) Transition probabilities for number of children PSID
δ Discount factor, δ ∈ {δ, δ} {0.600,0.950}
Pδ=δ|e=0 Share of non-college-educated with δ = δ Jappelli and Pistaferri (2010) 0.400
Pδ=δ|e=1 Share of college-educated with δ = δ Jappelli and Pistaferri (2010) 0.100

Technology and income parameters
r Real interest rate McGrattan and Prescott (2003) 0.040
fj,e Age- and educ.-specific deterministic labor prod. Conesa et al. (2020)
ρ Persistence of ref. person’s AR(1) shocks Pashchenko and Porapakkarm (2013) 0.980
σ2
µ Variance of ref. person’s AR(1) shocks Pashchenko and Porapakkarm (2013) 0.018
Bj,e,k,η,ν Spousal income if married PSID

Taxation
a0 Tax parameter Gouveia and Strauss (1994) 0.258
a1 Tax parameter Gouveia and Strauss (1994) 0.768

2008–2009 crisis (Great Recession)
1− ξ Unemployment duration (percent of year) BLS 0.468
πU (j, e) Age- and education-specific unemp. prob. BLS

2020–2021 crisis (COVID-19 pandemic)
1− ξ Unemployment duration (percent of year) BLS 0.349
πU (j, e, η) Age- and earnings-specific unemp. prob. Cajner et al. (2020)

Notes: The table lists the parameters that are determined outside the model. See the text for details.
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Table A.2: Parameters Determined Jointly in Equilibrium

Parameter Description Value Target Model

Non-crisis-specific parameters
θ Normalization of model units 0.565 Median household income = 1.000 1.000
SSe=0 Social Security non-college-educated 0.220 Avg. SS non-college/median HH inc. = 0.220 0.220
SSe=1 Social Security college-educated 0.266 Avg. SS college/avg. SS non-college = 1.209 1.209
γ Government consumption/GDP 0.176 Government cons./GDP = 0.176 0.176

2008–2009 crisis (Great Recession)
b UI replacement rate 0.375 Total UI benefits/total wages = 0.021 0.021

2020–2021 crisis (COVID-19 pandemic)
κ Drop in marginal utility of cons. 0.669 Percent drop in agg. cons. due to lockdown = 0.109 0.109

Notes: The table lists the parameters that are determined jointly in equilibrium. Numbers in the model are normalized such that
a value of 1.0 in the steady state prior to the 2008–2009 crisis corresponds to $54,831, whereas a value of 1.0 in the steady state
prior to the 2020–2021 crisis corresponds to $62,502 (in 2012 USD). Social Security benefits are calibrated to match data on
Social Security benefits for 65+ year-olds with positive Social Security benefits in the CPS. The level of government consumption
is equal to G = γY , where Y is GDP.
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Table A.3: Initial Conditions for College Attainment, Marital Status, and Number of
Children

Description Source Value

College attainment and marital status
Probability of being college-educated PSID 0.303
Probability of being single and non-college-educated PSID 0.564
Probability of being married and non-college-educated PSID 0.437

Number of children, non-college-educated and single
0 children PSID 0.733
1 child PSID 0.151
2 children PSID 0.083
3 children PSID 0.024
4 children PSID 0.009

Number of children, college-educated and single
0 children PSID 0.975
1 child PSID 0.024
2 children PSID 1E-04
3 children PSID 0.001
4 children PSID 0.000

Number of children, non-college-educated and married
0 children PSID 0.414
1 child PSID 0.296
2 children PSID 0.213
3 children PSID 0.057
4 children PSID 0.020

Number of children, college-educated and married
0 children PSID 0.753
1 child PSID 0.215
2 children PSID 0.022
3 children PSID 0.009
4 children PSID 0.000

Notes: College attainment and marital status are given by the share of 18+ year-old
household heads in the PSID that are married and college-educated, where a college-
degree is defined as having at least a bachelor’s degree or a minimum of 4 years of
college. The initial distribution of children is given by the distribution of children
under the age of 18 for 18–25 year-old household heads by marital status and college
attainment in the PSID.
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Table A.4: Transition Probabilities for Number of Children: Ordered Logistic Regression
Results

Dependent variable: Number of children at t+ 1: kt+1 ∈ {0, . . . , 4}

Reference person has 1 child at t: I(kt = 1) 4.970
(0.093)

Reference person has 2 children at t: I(kt = 2) 8.720
(0.147)

Reference person has 3 children at t: I(kt = 3) 12.969
(0.215)

Reference person has 4 children at t: I(kt = 4) 17.569
(0.338)

Age of reference person -0.082
(0.011)

Age squared of reference person 3E-04
(1E-04)

Marital status of reference person: I(mt = 1) 0.387
(0.052)

College attainment of reference person: I(et = 1) 0.134
(0.047)

Cut 1 0.659
(0.215)

Cut 2 4.479
(0.210)

Cut 3 9.005
(0.228)

Cut 4 13.359
(0.286)

Pseudo R2 0.6912
Number of observations 27,660

Notes: The table reports results from an ordered logistic regression of the household head’s
number of children under the age of 18 at time t+ 1 on the household head’s number of children
under the age of 18 at time t, a quadratic in the household head’s age at time t, the marital
status of the household head at time t, and the college attainment of the household head at time
t. Number of children has been top-coded at 4. Standard errors are reported in parentheses.
Data source: PSID.
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Table A.5: Spousal Income: Ordinary Least Squares Regression Results

Dependent variable: Logarithm of spousal income

Logarithm of reference person’s income 0.134
(0.012)

Age of reference person 0.164
(0.014)

Age squared of reference person -0.003
(3E-04)

Age cubed of reference person 1E-05
(2E-06)

College attainment of reference person: I(e = 1) 0.206
(0.016)

Reference person has 1 child: I(k = 1) -0.168
(0.020)

Reference person has 2 children: I(k = 2) -0.302
(0.021)

Reference person has 3 children: I(k = 3) -0.462
(0.033)

Reference person has 4 children: I(k = 4) -0.786
(0.058)

Reference person is 65+: I(j ≥ jR) -0.223
(0.039)

Interaction between 65+ dummy and number of children: I(j ≥ jR)k 0.173
(0.059)

Constant term -3.407
(0.217)

R2 0.1405
Number of observations 30,410

Notes: The table reports results from an ordinary least squares regression of the logarithm
of spousal income on the logarithm of the household head’s income, a cubic in the age of the
household head, the educational attainment of the household head, the household head’s number
of children under the age of 18, a dummy variable for whether or not the household head is at
least 65 years old, and an interaction term between the 65+ dummy variable and the number of
children of the household head. The regression also includes year fixed-effects. Income is given by
the sum of labor earnings, Social Security benefits, Supplemental Security Income, UI benefits,
and other transfers. Number of children has been top-coded at 4. The sample is restricted to
married household heads. Standard errors are reported in parentheses. Data source: PSID.
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Figure A.1: Optimal Allocation Queue

Notes: The graph plots the optimal consumption stimulus allocation queue for the case with a maximum
tax rebate of $900 per adult and $600 per child. The left panel plots the queue position for single
households with 0–4 children and different income bins, and the right panel plots the queue position for
corresponding married households. While the total number of queue positions (Y-axis) is governed by the
overall budget, the ranking of allocation increments is invariant to aggregate resources.
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Figure A.2: Actual vs. Optimal Allocation by Income, Family Status, and Planner
Consumption Inequality Aversion. Maximum Tax Rebate $900 per adult and $600 per child

Notes: The figure shows the allocation of tax rebates by household income and family status (marital
status and number of children) for the 2008 policy and for the optimal allocation of a planner with very
high (Rawlsian, λ = −99), intermediate (λ = −1), and no aversion to consumption inequality (λ = 1) of
the same amount of money calculated under the assumption that the maximum tax rebate is $900 per
adult and $600 per child.
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Figure A.3: Sensitivity Analysis: Optimal Welfare Allocation by Income and Family
Status for Planner with Intermediate Inequality Aversion. Maximum Check Size
$2,000 per adult and $2,000 per child

(a) Vary the share of impatient households

(b) With and without unemployment insurance (UI) benefits

(c) Vary the real interest rate

Notes: The graphs show the sensitivity of the optimal welfare allocation results for the 2021 policy—
by income and family status for the case with intermediate planner inequality version (λ = −1)
and a maximum check limit of $2,000 per adult and child—to alternative model parameterizations.
The top panel shows the results when we vary the share of impatient households (for whom the
the discount factor δ equals the lower value δ). Fewer (more) impatient households refer to the
model where we reduce (increase) the mass of impatient households by 50 percent. The middle
panel compares the results from the benchmark model with UI benefits and the model without UI
benefits. The bottom panel compares the results when the real interest rate is 2 percent rather
than 4 percent as in the benchmark model.


