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Moment Generation Function (MFG) for the Normal distribution

The MGF is defined as E etX which for the Normal N(µ, σ) becomes
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Now, recall that we don’t know how to integrate difficult functions like this so we need

to use a trick, namely to try and see if can rewrite the argument of the exponential

function as “−(x − stuff)2/(more stuff)” which has the same form as the argument of

the normal distribution which we know what integrates to. (Note that for the purpose

of integrating it is only the x-variable that “matters.”) This is known as “completing

the square.”
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So, finally, we get
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which, since the last term is a normal density, gives
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MGF for Poisson
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MGF for Binomial
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MGF for Exponential
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