Final Exam, December 6th, 2006-6 questions (100 points).

1. (15%) Let a continuous random variable X have density $f(x)$. Let $h(x)$ be a monotone strictly increasing function.
a) What is the density for $Y=h(X)$?
b) Derive the formula you stated in part a).
2. (20%) Assume that X_{n} is exponentially distributed with density $n e^{-n x}$.
a) Show that X_{n} converges in probability to 0 .
b) What is the limiting distribution of $\sqrt{n} X_{n}$? (I.e., to what distribution does X_{n} converge in distribution?)
3. (15%) Assume that X is log-normally distributed and that $\log (X)$ has mean μ and variance σ^{2}.
a) What is the mean of X.
b) Let $W=X^{2}$. Find the distribution of W.
4. (24%) Assume that $Z=\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right)^{\prime}$ is a vector normally distributed random variable with mean μ and variance-covariance matrix Σ, where

$$
\Sigma=\left(\begin{array}{llll}
4 & 1 & 1 & 0 \\
1 & 2 & 1 & 1 \\
1 & 1 & 4 & 2 \\
0 & 1 & 2 & 6
\end{array}\right) \quad \text { and } \quad \mu=\left(\begin{array}{l}
0 \\
1 \\
2 \\
6
\end{array}\right)
$$

a) What is the conditional mean of Z_{1} given Z_{2} ?
b) What is the conditional mean of Z_{1} given $\left(Z_{2}, Z_{4}\right)$?
c) What is the conditional variance of $\left(Z_{1}, Z_{2}\right)$ given Z_{3} ?
d) What is the distribution of $Y=2 Z_{1}-2 Z_{2}+Z_{3}-Z_{4}$?
5. (16%) Assume that we have 4 random variables, X_{1}, X_{2}, X_{3} and X_{4} which are independent standard normally distributed variables (with mean 0 and variance 1).
a) What is the probability that exactly 2 of the 4 random variables are positive?
b) What is the probability that $X_{1}>X_{2}$? (Of course, you also need to explain how you get your answer.)
6. (10%) Demonstrate that $P(A \bigcup B \bigcup C)=P(A)+P(B)+P(C)-P(A \bigcap B)-P(A \bigcap C)-$ $P(B \cap C)+P(A \bigcap B \cap C)$. You may want to use a Venn diagram.

