Final Exam, December 2nd, 2005-6 questions (100 points). Sub-questions carry equal weight

1. (30%) Let the random variable X follow a uniform distribution on the interval from 4 to 9 .
a) What is the Cumulative Density Function (CDF)?
b) What is the density function (PDF)?
c) Find the CDF for $Y=2+3 X$.
d) Find the variance of X and the variance of Y.
e) Let $W=X^{2}$. Find the CDF for W.
f) Find the PDF for W.
2. (12%) Let X be Binomially distributed with parameters n and p. Find the moment generating function for X.
3. (24\%) Assume that Z is a normally distributed random variable with variance 9 and mean 2 , and that Z is independent of (X, Y) where (X, Y) is a bivariate normally distributed random variable with mean $\mu^{\prime}=(0,0)$ and variance-covariance matrix

$$
\Sigma=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

a) What is the conditional mean of $Y \mid X$?
b) What is the conditional variance of (X, Z) given Y ?
c) What is the conditional mean of X given (Y, Z) ?
d) What is the distribution of $2 X^{2}-2 X Y+Y^{2}$?
4. (12%) Assume you roll two "dice" one blue and one red. To obtain less clutter assume that each "die" can have $1,2,3$, or 4 eyes, each outcome occurring with probability 0.25 . Let X be the number of eyes on the blue die and Y the number of eyes on the red die.
a) Find the distribution of $Z=X+Y$.
b) Find the joint distribution of Z and X.
5. (10%) Assume that X conditional on a random variable Y is normally distributed with mean $2+3 Y$ and variance 3. Assume that Y is a stochastic variable who density is $\frac{1}{3} \exp -\frac{y}{3}$ for $y>0$. What is $E(X)$ and what is $\operatorname{var}(X)$?

PLEASE TURN OVER

6. (12%) Imagine that we select persons associated with either UH or A\&M, and imagine that each person can be classified as either liberal or conservative. Use the following (made up) probabilities: The probability that a person selected from UH is a liberal is 80%, and the probability that a person selected from A\&M is liberal is 30%.
Now assume you examine 5 people from UH and 4 people from A\&M. The attitudes of different persons are independent of each other. Let X be the overall number of liberals.
1) What is the expected number of liberals, $E(X)$?
2) What is the variance, $\operatorname{var}(X)$?
