## Final Exam, December 1st, 2004-7 questions (101 points). Sub-questions carry equal weight unless otherwise stated.

1. $(20 \%)$ Consider an exponential distribution with mean $\theta$.
a) What is the Cumulative Density Function (CDF)?
b) What is the density function (PDF)?
c) Find the Moment Generating Function.
d) Find the variance of $X$. (You need to find it, just stating the variance is not a valid answer).
2. ( $14 \%$ ) If $X$ is uniformly distributed on the interval from -10 to 2 , and Y is uniformly distributed on the interval from -1 to 1 , and $X$ and $Y$ are independent.
a) What is the probability that $\max (X, Y)$ (largest value of $X$ and $Y$ ) is larger than 0 ?
b) Write down the joint CDF for $X, Y$.
3. $(12 \%)$ Assume $X \sim \chi^{2}(9)$.
a) What is $E(X)$ ?
b) Derive the formula for the variance of a $\chi^{2}(k)$ (chi-square with $k$ degrees of freedom) random variable.
4. $(10 \%)$ a) State the formula for $P(A \bigcup B)$ in terms of $P(A), P(B), P(A \cap B)$.
b) Prove the formula that you just stated.
5. ( $15 \%$ ) Assume that $X_{1}, X_{2}, \ldots$ are independent, identically distributed random variables with mean $\mu$ and finite variance $\sigma^{2}$. Let $\bar{X}_{n}=\frac{1}{N} \Sigma_{i=1}^{N} X_{i}$.
Prove that $\bar{X}_{n}$ converges to $\mu$ in probability.
6. $(15 \%)$ Assume $X_{1}, X_{2}, \ldots, X_{n}$ are independently normally distributed with the mean of $X_{i}=\mu_{i}$ and the variance of $X_{i}=\sigma^{2}$ for all i.
a) $(5 \%)$ Write down the formula for the unbiased estimator $s^{2}$ of the variance $\sigma^{2}$.
b) $(10 \%)$ Show that $s^{2}$ is a consistent estimator for $\sigma^{2}$.
7. $(15 \%)$ Let $X$ denote the number of tornadoes observed in Texas during a 12 hour period. Assume that weather conditions are unchanged during that period and that the probability of observing a tornado is constant and independent of how many (if any) were observed previously. If the probability of observing zero tornadoes is $p$, what is the probability of observing 3 tornadoes?
