Final Exam, December 3rd, 2003—7 questions. All sub-questions carry equal weight.)

1. (18%) Consider two random variables X and Y. Assume they both are discrete and that both X and Y can take the values 1,2, and 3. The probabilities for (X,Y) are shown in the following table:

i) Find the marginal probabilities of X.

ii) Find the mean and the variance of X.

iii) Are the events X = 1 and Y = 1 independent events?

iv) Are the random variables X and Y independent?

v) Find the probability $P(\{X > 1\} \cap \{Y \le 2\})$

vi) Find the conditional distribution of X given Y = 2.

2. (12%) Assume X_1, X_2 , and X_3 are identically and independently exponentially distributed with mean 1. Let Y be the largest of these 3 random variables $(Y = max\{X_1, X_2, X_3\})$. Derive the density (PDF) for Y.

3. (12%) Assume $X \sim N(0,9)$, $Y \sim N(2,9)$, and $Z \sim N(2,9)$. Further assume that the covariance between X and Y is 2, while both X and Y are independent of Z.

i) What is E(X|Y=2, Z=3)? (State the formula you use and then the number.)

ii) What is the conditional variance Var(X|Z=3)?

4. (20%) Assume $X_1, X_2, ..., X_n$ are all iid normally distributed with mean 0 and variance σ^2 .

i) State and derive the distribution of the average \overline{X} ?

ii) State and derive the distribution of s^2 .

iii) Normalize \overline{X} with something [you need to state what, I will call it W for now].

such that you get a t-distribution. What are the degrees of freedom?

iv) Demonstrate that \overline{X}/W [where you explained in part iii) what W is] is t-distributed.

5. (12%) Prove the law of iterated expectations (you can do the discrete or the continuous case).

CONTINUED ON REVERSE

6. (16%) In some random experiment, $\hat{\theta}_n$ is a consistent estimator of θ . i) Is $\log \hat{\theta}_n$ a consistent estimator of $\log \theta$?

Assume X_n is a sequence of random variables which converges in distribution to X. ii) Is $\theta_n X_n$ a consistent estimator of θX (why or why not)?

7. (10%) Formulate and derive Bayes' Law.