ECONOMICS 6331, Fall 2003

 Bent E. SørensenFinal Exam, December 3rd, 2003-7 questions. All sub-questions carry equal weight.)

1. (18\%) Consider two random variables X and Y . Assume they both are discrete and that both X and Y can take the values 1,2 , and 3 . The probabilities for (X, Y) are shown in the following table:

$$
\begin{array}{lll}
& \mathrm{X}=1 & \mathrm{X}=2 \\
\mathrm{Y}=1 & 1 / 12 & 2 / 12 \\
\mathrm{Y}=2 & 1 / 12 & 2 / 12 \\
\mathrm{Y}=3 & 2 / 12 & 4 / 12
\end{array}
$$

i) Find the marginal probabilities of X.
ii) Find the mean and the variance of X.
iii) Are the events $\mathrm{X}=1$ and $\mathrm{Y}=1$ independent events?
iv) Are the random variables X and Y independent?
v) Find the probability $P(\{X>1\} \cap\{Y \leq 2\})$
vi) Find the conditional distribution of X given $Y=2$.
2. (12\%) Assume X_{1}, X_{2}, and X_{3} are identically and independently exponentially distributed with mean 1. Let Y be the largest of these 3 random variables $\left(Y=\max \left\{X_{1}, X_{2}, X_{3}\right\}\right)$. Derive the density (PDF) for Y.
3. (12\%) Assume $X \sim N(0,9), Y \sim N(2,9)$, and $Z \sim N(2,9)$. Further assume that the covariance between X and Y is 2 , while both X and Y are independent of Z.
i) What is $E(X \mid Y=2, Z=3)$? (State the formula you use and then the number.)
ii) What is the conditional variance $\operatorname{Var}(X \mid Z=3)$?
4. (20%) Assume $X_{1}, X_{2}, \ldots, X_{n}$ are all iid normally distributed with mean 0 and variance σ^{2}.
i) State and derive the distribution of the average \bar{X} ?
ii) State and derive the distribution of s^{2}.
iii) Normalize \bar{X} with something [you need to state what, I will call it W for now].
such that you get a t-distribution. What are the degrees of freedom?
iv) Demonstrate that \bar{X} / W [where you explained in part iii) what W is] is t-distributed.
5. (12%) Prove the law of iterated expectations (you can do the discrete or the continuous case).
6. (16%) In some random experiment, $\hat{\theta}_{n}$ is a consistent estimator of θ.
i) Is $\log \hat{\theta}_{n}$ a consistent estimator of $\log \theta$?

Assume X_{n} is a sequence of random variables which converges in distribution to X.
ii) Is $\theta_{n} X_{n}$ a consistent estimator of θX (why or why not)?
7. (10\%) Formulate and derive Bayes' Law.

