ECONOMICS 6331, Fall 2006

1. (12% of Final 2003) Assume X_1, X_2 , and X_3 are identically and independently exponentially distributed with mean 1. Let Y be the largest of these 3 random variables ($Y = max\{X_1, X_2, X_3\}$). Derive the density (PDF) for Y.

2. (12% of Final 2003) Assume $X \sim N(0,9)$, $Y \sim N(2,9)$, and $Z \sim N(2,9)$. Further assume that the covariance between X and Y is 2, while both X and Y are independent of Z. i) What is E(X|Y=2, Z=3)? (State the formula you use and then the number.) ii) What is the conditional variance Var(X|Z=3)?

3. (20% of Final 2003) Assume $X_1, X_2, ..., X_n$ are all iid normally distributed with mean 0 and variance σ^2 .

i) State and derive the distribution of the average \overline{X} ?

ii) State and derive the distribution of s^2 (It is a full answer if you state the distribution of some constant times s^2 [of course, you need to specify what the constant is].)

iii) Normalize \overline{X} with something [you need to state what, I will call it W for now].

such that you get a t-distribution. (What I mean is simply that you write down the expression for the t-statistic—an expression which contains \overline{X} .) What are the degrees of freedom?

iv) Demonstrate that \overline{X}/W [where you explained in part iii) what W is] is t-distributed.

4. (16% of Final 2003) In some random experiment, θ̂_n is a consistent estimator of θ.
i) Is log θ̂_n a consistent estimator of log θ?

Assume X_n is a sequence of random variables which converges in distribution to X. ii) Is $\theta_n X_n$ a consistent estimator of θX (why or why not)?

5. (15%) Assume $X_1, X_2, ..., X_n$ are independently normally distributed with the mean of $X_i = i$ [e.g., the mean of X_2 is 2] and the variance of $X_i = \sigma^2$ for all i. Demonstrate that the estimate s^2 of the variance is a consistent estimator for σ^2 .

- 6. Ramanathan Exercise 6.2, page 139.
- 7. Ramanathan Exercise 7.5, page 160.
- 8. Ramanathan Exercise 7.12, page 161.