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Abstract

We perform an extensive Monte Carlo study of efficient method of moments (EMM)
estimation of a stochastic volatility model. EMM uses the expectation under the struc-
tural model of the score from an auxiliary model as moment conditions. We examine the
sensitivity to the choice of auxiliary model using ARCH, GARCH, and EGARCH
models for the score as well as nonparametric extensions. EMM efficiency approaches
that of maximum likelihood for larger sample sizes. Inference is sensitive to the choice of
auxiliary model in small samples, but robust in larger samples. Specification tests and
‘t-tests’ show little size distortion. ( 1999 Elsevier Science S.A. All rights reserved.

JEL classification: C15; C22

Keywords: Stochastic volatility; GMM; EMM; Monte Carlo

1. Introduction

The modeling of return volatility continues to inspire and challenge financial
econometricians. The work is spurred on by the overwhelming empirical evid-
ence of strong conditional heteroskedasticity in almost all high-frequency finan-
cial return series. Time-varying and highly persistent volatility complicates asset
pricing since it implies time-varying risk premiums. Moreover, correct modeling
of volatility is essential for valuation of derivative assets like options and
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warrants. In spite of the voluminous literature, a great deal of controversy still
surrounds the selection of an appropriate model for volatility and the associated
choice of estimation strategy. This stems in large part from the continued failure
to rationalize, from economic theory, the existence of such strong and systematic
variation in price variability without resorting to a corresponding time variation
in underlying (unobserved) economic fundamentals. The lack of theoretical
guidance has left the field open to genuine competition among various statistical
approaches, each trying to fit and forecast volatility better than the other. The
fact that a number of key issues remain hotly debated is testimony to the
complexity of the endeavor, which involves fitting highly nonlinear models to
the conditional second return moments. This feature sets the field apart from
traditional time-series analysis, and has fueled a tremendous amount of new
research into alternative tools for inference in nonlinear models.

In light of the above observations, it is desirable to pursue an estimation
strategy that accommodates a large class of alternative models, readily affords
further generalizations, allows for simple and useful model diagnostics sugges-
tive of the dimensions along which the model may falter, provides a simple
overall model specification test, accommodates both continuous- and discrete-
time specifications with relative ease, and provides efficient inference. We shall
argue that the efficient method of moments (EMM) approach, introduced by
Bansal et al. (1993), Bansal et al. (1995) and Gallant and Tauchen (1996), may
possess desirable properties across this diverse set of objectives. Unfortunately,
the finite sample properties of EMM are largely unknown.

The purpose of this article is to undertake an extensive investigation of the
EMM procedure through Monte Carlo techniques. Because one main objective
is to gauge the performance of the procedure, not only in an absolute sense, but
also relative to alternative approaches, we focus on a setting that affords direct
comparison to prior contributions. Specifically, we consider a simple version of
the so-called lognormal stochastic volatility model which has served as an
unofficial testing ground for such analyses. In fact, the model is so commonly
invoked that it is frequently referred to as the stochastic volatility model,
although it is a special case, both in terms of the functional form and the
assumed distributional properties. The model is nonetheless attractive because
of its parsimony, and because it provides a reasonable first approximation to the
properties of most financial return series. Moreover, it retains the fundamental
inference problem associated with the presence of an unobserved latent volatil-
ity factor, which is absent in ARCH models.

The lognormal stochastic volatility (SV) model has been estimated by a var-
iety of means, including simple moment matching (MM) (Taylor, 1986), general-
ized method of moments (GMM) (Melino and Turnbull, 1990), simulated
method of moments (SMM) (Duffie and Singleton, 1989), quasi-maximum
likelihood (QML) (Harvey et al., 1994), Bayesian Markov-Chain Monte Carlo
analysis (MCMC) (Jacquier et al., 1994; henceforth JPR), indirect inference
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principles (Gouriéroux et al., 1993), efficient method of moments (Gallant et al.,
1997), Bayesian importance-sampling Monte Carlo (Geweke, 1994), a unified
Markov-Chain Monte-Carlo sampling-based framework for Bayesian and max-
imum likelihood inference (Kim et al., 1998), simulation-based maximum likeli-
hood (SML) (Danielsson, 1994; Danielsson and Richard, 1993), maximum
likelihood Monte Carlo (MCL) (Sandmann and Koopman, 1996), and direct
maximum likelihood through recursive numerical integration (ML) (Fridman
and Harris, 1998). Although MM, GMM, and QML are simple to implement,
the more elaborate and computationally intensive procedures may well be
justified, as the associated efficiency gains have been shown to be substantial in
many cases.

A number of Monte Carlo studies have explored the small sample properties
of these estimators. Andersen and S+rensen (1996), henceforth AS, perform an
extensive study of GMM,1 while Harvey et al. (1994) examine the QML
estimator. These simple procedures are about equally efficient, with the relative
performance being dependent on the specific parameter values, see also Ander-
sen and S+rensen (1997). More limited Monte Carlo studies have been under-
taken for the more computationally intensive techniques such as MCMC, ML,
MCL, and SML. The original study is JPR, who show that the MCMC
estimator strongly dominates GMM and QML for estimating the stochastic
volatility model. Subsequently, several alternative techniques have been found
to match the benchmark efficiency established by JPR, see, e.g., Fridman and
Harris (1998) and Sandmann and Koopman (1996). Moreover, it is now appar-
ent that these methods effectively provide a likelihood-based inference. Conse-
quently, while the procedures differ in terms of ease and speed of
implementation, the issue of efficient inference is resolved for this particular
model. Hence, attention should probably turn towards the issues raised earlier,
such as whether the alternative estimation techniques readily accommodate
relevant extensions to the functional form and distributional assumptions,
whether they provide useful model diagnostics, and whether they are flexible
enough to allow inference in both continuous-time and discrete-time settings.
This is important because, although the ‘plain-vanilla’ stochastic volatility
model may provide a good first approximation to the returns process, it is
typically far from perfect. The EMM approach has already proven effective
along a number of dimensions. Thus, our interest in EMM is not driven strictly
by estimation performance, but also by the wide applicability. Nonetheless,
reliable inference in the stochastic volatility environment provides an important
litmus test for the approach.

GMM is relatively inefficient due to the largely arbitrary choice of uncondi-
tional moments that can be computed in closed form, while likelihood-based

1For the remainder of this paper, we will use the term GMM to refer to the GMM implementa-
tion of Melino and Turnbull (1990), that was studied by JPR and AS.
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procedures achieve the Cramer—Rao efficiency bound by relying on the optimal
moments (scores) within a restricted parametric setting. EMM seeks efficiency
improvements, while maintaining the general flexibility of GMM, by letting the
data guide the choice of an auxiliary quasi-likelihood which serves to generate
an efficient set of moments. By construction, the efficiency of EMM is thus likely
to fall somewhere between GMM and the (often infeasible) likelihood-based
procedures.2 Our study investigates the relative efficiency of EMM, as well as its
sensitivity to the specific features of the implementation in the finite-sample
context.

The paper is organized as follows. Section 2 introduces the lognormal
stochastic volatility model which generates the simulated data. Section 3 de-
scribes the EMM procedure, while Section 4 specifies the Monte Carlo simula-
tion design. Section 5 presents the results, and Section 6 concludes.

2. The stochastic volatility model

The univariate lognormal stochastic autoregressive volatility model for the
return series y

t
is3
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the parameters are uniquely identified. The latent volatility process p2
t

follows
an AR(1) in logarithms and induces higher-order moment dependence in y

t
. The

parameter b measures the volatility persistence and is typically estimated to be
less than, but relatively close to, unity in empirical studies. Finally, the model
generates a leptokurtic unconditional distribution that is consistent with the
prevalence of outliers in financial data.

The system defined by Eqs. (1) and (2) and the (true) parameter vector, o
0
,

determines the probabilistic structure of the observed data, y
t
. We refer to this

2 It is worth noting that the set of models, for which direct likelihood-based inference is feasible, is
expanding rapidly due to the computational revolution documented in the current statistics
literature, see, e.g., Kim et al. (1998) for illustration and discussion.

3Besides lognormal stochastic autoregressive volatility (SARV) (Andersen, 1994), the model is
also labeled autoregressive random variance (Taylor, 1994) and stochastic variance (Harvey et al.,
1994).
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data generating process as the structural model. Our parameterization of the
structural model ignores the possibility of a non-zero, and potentially time-
varying, mean as in Engle et al. (1987). Further, the independence of z

t
and

u
t
precludes the asymmetric ‘leverage effect’ of Black (1976), who argues that

future volatility may be negatively correlated with returns. Such features are
readily handled by EMM, but for ease of comparison with earlier studies, we
focus on the simpler version of the model.

3. EMM estimation

EMM is a method of moment procedure that often provides a viable
approach to estimation when maximum likelihood is computationally inten-
sive or infeasible. EMM is particularly appealing in the context of dynamic
latent variable models, where evaluation of the likelihood involves integration
over the (partially) unobserved realization of the state vector. For example,
the log-likelihood for the stochastic volatility model is readily expressed
conditional on the realization of the volatility process, p2

t
, but since the

volatility is not observed, this serially correlated latent factor must be integ-
rated out of the likelihood. The dimension of the associated integral is
equivalent to sample size, so direct evaluation of the likelihood is extremely
cumbersome, if not infeasible. This explains why several authors resort to
simulation-based approximations to the likelihood or avoid direct dependence
on the likelihood altogether. EMM opts for the second solution, but still
seeks to mimic the efficiency of likelihood-based inference. The key insight
is that a careful selection of moment conditions, guided by the characteristics
of the observed data, will allow for efficient estimation via a standard GMM
procedure.

3.1. The EMM estimation procedure

Maximum likelihood may itself be interpreted as a method of moment
procedure with the derivative of the log-likelihood function, the score vector,
providing the (exactly identifying) moment conditions. Since an analytical
expression for the likelihood is not available for the stochastic volatility model,
EMM employs an auxiliary model, or score generator, that allows for a closed-
form expression for the associated (quasi-) score vector. The auxiliary model is
given by a conditional density parameterized by the auxiliary parameter vector
g. In this context the conditional density may be expressed as f (y

t
D½

t~1
, g),

where ½
t
"My

t
,2, y

1
N denotes the complete return history and thus constitutes

the relevant information set for the model.
The initial EMM step is to estimate g by quasi-maximum likelihood, which

ensures that the quasi-maximum likelihood (QML) estimator, gL
T

satisfies the
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associated first-order conditions,
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if the auxiliary model is misspecified, standard QML theory, cf. White (1994),
implies that, under suitable regularity, gL

T
Pg

0
, where the limiting value, g

0
, is

denoted the quasi-true value of g.
Next, EMM inverts the auxiliary parameter estimate, or rather the associated

score function in Eq. (3), to obtain a consistent estimate of the structural
parameter, o, in a second GMM-based step. The left-hand side of Eq. (3) is
simply the sample average of the quasi-score function evaluated at gL

T
and thus

provides an estimate of the expected value of the auxiliary score. EMM uses the
corresponding (population) expectation under the structural model of the score
from the auxiliary model as moment conditions. Since the expected quasi-score
is defined under the probability measure induced by the structural model,
P(½

t
D o), the moments depend directly on the structural parameters. Identifica-

tion requires that the dimension of the quasi-score, i.e., the number of para-
meters in g, ng, exceeds that of the structural parameter vector, no, but otherwise
the auxiliary model need not have anything to do with the structural model.
However, as with any GMM-based procedure, the choice of moments is critical
for efficiency. We discuss the efficiency issue further in Section 3.2.

The population moments that identify the structural parameters are
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The presence of a latent variable renders an analytical expression for this
moment condition infeasible. Consequently, the sample moments are computed
by Monte Carlo integration. Hence, the second EMM step is effectively an
application of the Simulated Method of Moments of Duffie and Singleton
(1993). A simulated series yL

n
(o), n"1,2,N, is generated from the structural

model for a given o and used in evaluating the sample moments at the fixed
QML estimate, gL

T
:
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As NPR, m
N
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)Pm(o, gL

T
) almost surely. Thus, for a large enough

simulated sample, the Monte Carlo error becomes negligible, and we ignore this
error in the following derivation. Since gL

T
is available from the QML step and
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the quasi-score is given in analytic form, the evaluation of Eq. (5) is straightfor-
ward. The dimension of the score vector typically exceeds that of the structural
parameter vector, so that the score vector cannot be forced to zero. Instead,
the GMM criterion in the moment vector is minimized to obtain the EMM
estimator of o:

oL
T
"argmin

o
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)@IK ~1

T
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N
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T
)], (6)

where IK
T

denotes a consistent estimator of the asymptotic covariance matrix, I,
of the sample quasi-score vector, i.e., the quasi-information matrix. If the
auxiliary model is expanded to the point where it accommodates all main
systematic features of the data, likelihood theory implies that the quasi-scores
constitute a (near) martingale difference sequence, and a convenient estimator of
the quasi-information matrix is obtained from the outer product of the scores:
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Notice that IK
T

may be obtained directly from the first QML step, avoiding the
need for computation of the weighting matrix during the second GMM-based
estimation step.

Gallant and Tauchen (1996) show that, under suitable regularity, the EMM
estimator is consistent and asymptotically normal. Specifically,
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The only new quantity to estimate after the second estimation step is the
derivative of the quasi-score with respect to the structural parameter, which is
readily done by numerical means. This formula now provides the basis for
inference regarding the structural parameter.

As usual in GMM, a test of the over-identifying restrictions may be obtained
directly from the criterion function. Under the null hypothesis of correct model
specification, ¹ times the minimized value of the EMM objective function is
distributed s2 with ng!no degrees of freedom. If the test rejects, the individual
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elements of the score vector may provide useful information regarding the
dimensions in which the structural model fails to accommodate the data.
These model diagnostics are based on the standard t-statistics of the indi-
vidual elements of the score vector, m

N
(oL

T
, gL

T
), see, e.g., Tauchen (1996) for

details.

3.2. Choice of auxiliary model

As noted above, EMM delivers consistent estimates of the structural para-
meter vector under weak conditions on the choice of the auxiliary model.
However, extrapolating from the GMM evidence, one may suspect that the
choice of moments (auxiliary model) is critical for estimation efficiency. For
example, it is natural to conjecture that the quality of inference may hinge on
how well the auxiliary model approximates the salient features of the observed
data. This intuition can be formalized. Gallant and Long (1997) show that
a judicious selection of the auxiliary model, ensuring that the quasi-scores
asymptotically span the true score vector, will result in full asymptotic efficiency.
Effectively, as the score generator approaches the true conditional density, the
estimated covariance matrix for the structural parameter approaches that of
maximum likelihood. This result embodies one of the main advantages of
EMM. It prescribes a systematic approach to the derivation of efficient moment
conditions for estimation in a general parametric setting.

Although the selection of the auxiliary model in principle is important for
estimation performance, the literature has not explored the relevance of this
issue in a systematical manner. We consequently parameterize the auxiliary
model in several ways, including both fully parametric and some seminon-
parametric specifications, and investigate the resulting finite-sample efficiency.
Our fully parametric score generators are all conditionally Gaussian. Allowing
for a non-zero mean, k, and defining z

t
"(y

t
!k)/p
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t
/p

t
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general form
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The distinguishing feature of the stochastic volatility model is, of course, the
conditional heteroskedasticity. We allow for time-dependence in the auxiliary
model by letting p2

t
follow several popular ARCH-type specifications from the

extant literature. Specifically, we investigate the parameterizations: ARCH(q)
(Engle, 1982), GARCH(1,1) (Bollerslev, 1986), and EGARCH(1,1) (Nelson,
1991), as well as restricted versions of these models. The ARCH(q) has been used
extensively in the EMM literature, but the use of the non-Markovian GARCH
and EGARCH specifications has only recently been justified by Gallant and
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Long (1997), and successfully employed in Andersen and Lund (1997a,b). The
functional forms are

ARCH(q): p2
t
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+
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Gallant and Tauchen (1996) suggest incorporating the semi-nonparametric
(SNP) density of Gallant and Nychka (1987) within the auxiliary model, and we
perform a number of experiments exploring the use of such SNP representa-
tions. An effective approach is to include a leading parametric term to account
for the bulk of the dependency in the conditional mean and variance, and then
allow a squared Hermite polynomial (SNP-) expansion to accommodate any
remaining non-Gaussianity and time series structure in the innovation process.
Care must be taken, however, to avoid overparameterization of the auxiliary
model, as convergence problems may arise if the quasi-score is extended to the
point where it begins to fit the purely idiosyncratic noise in the data.

The SNP model is given by the following parameterization:

f
K
(y

t
D X

t~1
, g)"

1

p
t

[P
K
(z

t
)]2/(z

t
)

:=
~=

[P
K

(u)]2/(u) du
, (14)

where z
t
"e

t
/p

t
, /( ) ) denotes the standard normal density, and the normaliz-

ation factor :=
~=

[P
K
(u)]2/(u) du ensures that the SNP density integrates to

unity. We explore cases where p
t
follows one of the ARCH models described

above, and also the case where p
t
is constant and all heteroskedasticity thus is

modeled nonparametrically. The Hermite polynomial is given by
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0
"1 for identification purposes. K

z
denotes the order of the polynomial

expansion that controls the extent to which the tails deviate from normality. If
K

z
"0, the SNP reduces to the normal density. Meanwhile, the conditional

mean and variance is governed by the underlying parameterization of e
t
and p

t
.

Additional dynamic features may be accommodated by letting the a
i
-coefficients
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be polynomials in the variables of the information set, as explained in Gallant
and Tauchen (1996). For example, we may allow the immediately preceding
return to impact the conditional distribution via

a
i
(y

t~1
)"

Kx

+
j/0

a
ij
y j
t~1

. (16)

When K
x
"0, the innovations Mz

t
N are homogeneous, as the conditional density

is independent of ½
t~1

. For K
x
'0, we effectively multiply the innovations by

functions of past observations.

4. Monte Carlo setup

The simulations are performed using the Gauss and C## computer
languages on RISC 6000 workstations and Pentium PCs. For the first step, the
quasi-likelihood is maximized using the BHHH and Newton algorithm, em-
ploying several different starting values to avoid local optima. The latter
constitute a serious concern in higher-order SNP models, so a judicious choice
of initial conditions is critical to conserve on computing time in the simulation
setting. In the second EMM estimation step, a long simulated series, ½K

N
is

generated from the structural lognormal stochastic autoregressive volatility
model, and then used to evaluate the quasi-score vector at the fixed QML
estimate, gL

T
. The parameter vector is given by o"(a, b,p

u
) and one efficient

starting value is simply the true value of o, denoted o
0
.4 We use the BFGS

algorithm to minimize the EMM criterion function.
The (simulated) data were generated using the parameter values from JPR

and AS, in order to compare our results to each of these studies. A majority of
the simulations is based on b"0.90, but we also include several designs with
b"0.98. The parameter vectors are (a,b,p

u
)"(!0.736, 0.90, 0.363) and

(a,b,p
u
)"(!0.147, 0.98, 0.166).

The first parameter constellation is calibrated to typical results for weekly
return series, while the second is more reflective of findings at the daily fre-
quency. Given these values, we generate samples of length ¹"500, ¹"1000,
¹"2000, and ¹"4000, with the initial value of the volatility process for
each sample being drawn from the stationary distribution of p2

t
. We per-

form 500 Monte Carlo simulations for each combination of score generator
and ¹.

4For low-dimensional SNP models, starting values affect mainly the convergence time, but for
higher-dimensional SNP score generators, poorly chosen starting values often imply that the
algorithm fails to converge.
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The Monte Carlo integration required in equation (6) was generally per-
formed using the average sample score vectors obtained from two simulated
series of the structural model, each of length N"20,000. The two series are
identical, except that the first calculates ½K

N
using the innovation sequence

Mz
n
, u

n
N, while the second relies on M!z

n
,!u

n
N. This antithetic variates tech-

nique induces negative correlation in the two estimates of the integral and, as
noted in Andersen and Lund (1997a), is highly efficient in reducing the asso-
ciated Monte Carlo error.

5. Results

To compare our findings to prior research, we focus on the design with the
lower degree of volatility persistence, b"0.90. Tables 1—3 display the mean
EMM-parameter estimates and associated root mean squared errors (RMSEs)
for sample sizes between 500 and 4000 and alternative auxiliary models. For
convenience, corresponding results from the most successful GMM estimation

Table 1
¹"500, Simulated mean and root mean square error

Score generator a b p
u

(1) EGARCH(1,0) (no const.) !0.96 (0.70) 0.87 (0.09) 0.40 (0.21)
(3 moments)

(2) GARCH(1,1) !0.91 (0.60) 0.88 (0.08) 0.38 (0.20)
(4 moments)

(3) GARCH(1,1) (diagonal weight) !0.79 (0.69) 0.89 (0.10) 0.37 (0.36)
(4 moments)

(4) EGARCH(1,0) !0.95 (0.63) 0.87 (0.08) 0.39 (0.20)
(4 moments)

(5) EGARCH(1,1) !1.31 (4.42) 0.85 (0.15) 0.39 (0.28)
(6 moments)

(6) GMM (crashes ignored) !0.62 (0.59)* 0.92 (0.08)* 0.24 (0.17)*
(14 moments)

(7) Infeasible GMM (true weight) !1.13 (1.15) 0.85 (0.14) 0.39 (0.13)
(24 moments)

True parameters (a, b, p
u
)"(!0.736, 0.90, 0.363), 500 Monte Carlo iterations.

For each score generator, we report the mean and the root mean square error in parentheses.
The GMM results are from Andersen and S+rensen (1996), Tables 5 and 3, resp.
*The bias and RMSE in line (6) are calculated for 1000 converged simulations, with 342 crashes
ignored. Hence, these RMSEs are not comparable to the other rows.
‘Diagonal weight’ refers to simulations where the off-diagonal terms in the weighting matrix are
set to 0.
‘True weight’ refers to simulations where the true long run weighting matrix has been used.
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Table 2
¹"1000, Simulated mean and root mean square error

Score generator a b p
u

(1) ARCH(1) !1.33 (2.17) 0.84 (0.20) 0.48 (0.59)
(3 moments)

(2) GARCH(1,1) !0.81 (0.35) 0.89 (0.05) 0.37 (0.12)
(4 moments)

(3) EGARCH(1,0) !0.83 (0.38) 0.89 (0.05) 0.38 (0.13)
(4 moments)

(4) ARCH(2) !1.07 (1.18) 0.86 (0.15) 0.40 (0.32)
(4 moments)

(5) EGARCH(1,1) !0.83 (0.44) 0.89 (0.06) 0.34 (0.16)
(6 moments)

(6) GARCH(1,1)!Kz(2) !0.80 (0.33) 0.89 (0.04) 0.33 (0.12)
(6 moments)

(7) ARCH(5) !1.05 (0.96) 0.86 (0.10) 0.39 (0.27)
(7 moments)

(8) GARCH(1,1)!Kz(4) !0.84 (0.36) 0.89 (0.05) 0.35 (0.10)
(8 moments)

(9) GMM (crashes ignored) !0.57 (0.41)* 0.92 (0.06)* 0.25 (0.15)*
(14 moments)

(10) Infeasible GMM (true weight) !0.93 (0.66) 0.87 (0.08) 0.38 (0.09)
(24 moments)

True parameters (a, b, p
u
)"(!0.736, 0.90, 0.363), 500 Monte Carlo iterations.

For each score generator, we report the mean and the root mean square error in parentheses.
The GMM results are from Andersen and S+rensen (1996), Tables 5 and 3, resp.
*The bias and RMSE in line (9) are calculated for 1000 converged simulations, with 77 crashes
ignored. These RMSEs are not comparable to the other rows.

procedures in AS are also included at the bottom of the tables. AS find that
GMM frequently fails to converge for low sample sizes, and that these conver-
gence problems are caused by imprecise estimates of the long-run covariance
matrix (and therefore of the estimated GMM-weighting matrix). These prob-
lems disappear if an (in practice infeasible) accurate approximation to the
true weighting matrix is utilized. In order to highlight the extent to which
the difference between GMM and EMM results is due to an imprecise GMM
weighting matrix we further include results for the infeasible GMM estimator.
Figs. 1—3 provide complementary evidence on the distribution of EMM-b
parameter estimates for different auxiliary models and sample sizes. Table 4
reports on the case of higher volatility persistence, b"0.98, while Table 5 com-
pares results across a wider range of estimation procedures, including some
recently developed techniques that provide (near) likelihood-based inference.
Finally, Figs. 4 and 5 characterize the quality of the EMM-specification test for
goodness-of-fit and EMM-based inference regarding the volatility persistence
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Table 3
¹"4000, simulated mean and root mean square error

Score generator a b p
u

(1) EGARCH(1,0) !0.764 (0.158) 0.896 (0.021) 0.368 (0.049)
(4 moments)

(2) GARCH(1,1) !0.764 (0.153) 0.896 (0.020) 0.371 (0.050)
(4 moments)

(3) EGARCH(1,1) !0.754 (0.158) 0.898 (0.021) 0.362 (0.047)
(6 moments)

(4) GARCH(1,1)!Kz(2) !0.739 (0.153) 0.899 (0.020) 0.352 (0.051)
(6 moments)

(5) GARCH(1,1)!Kz(4) !0.769 (0.135) 0.896 (0.018) 0.363 (0.033)
(8 moments)

(6) EGARCH(1,0)!Kz(2)!Kx(1) !0.814 (0.684) 0.890 (0.092) 0.340 (0.117)
(9 moments)

(7) GMM (crash free) !0.835 (0.219) 0.887 (0.029) 0.342 (0.051)
(14 moments)

(8) Infeasible GMM (true weight) !0.786 (0.175) 0.893 (0.024) 0.373 (0.050)
(14 moments)

True parameters (a, b, p
u
)"(!0.736, 0.90, 0.363), 500 Monte Carlo iterations.

For each score generator, we report the mean and the root mean square error in parentheses.
The GMM results are from Andersen and S+rensen (1996), Tables 7 and 3, resp.

parameter, b. The following subsections provide a brief summary and discussion
of our findings along the various dimensions.

5.1. Comparison to GMM

We initially compare our small-sample EMM results to those for GMM
reported by AS. In Table 1, for ¹"500, EMM clearly dominates the GMM
implementation of AS which, even in the best of cases, fails to converge in about
30% of the simulations. AS document that these failures invariably are asso-
ciated with samples where no optimum for the criterion function exists within
the (open) parameter space. In contrast, we do not encounter any convergence
problems for the EMM-procedure, when using relatively parsimonious score
generators. Even the GMM results (for ¹"500) using the ‘true’ weighting
matrix yield RMSEs that are dominated by the present EMM results: although
the EMM-RMSE’s for p

u
are somewhat larger than for the infeasible GMM

procedure, the preferred EMM procedures lower the RMSE for a and b by
about one-half. The sample size ¹"1000 produces qualitatively similar find-
ings. The corresponding distributions of the estimates for the important volatil-
ity persistence parameter, b, are also displayed in Fig. 1. Again, it must be kept
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Fig. 1. Distribution of beta for GMM and EMM with GARCH and EGARCH score generators
(¹"1000).

in mind that over 13% of the GMM estimates are omitted, as they were
converging towards the infeasible upper bound on b of unity, and then ‘crashed’.
These results support the notion that EMM improves efficiency via the superior
selection of moment conditions, and not simply because of problems associated
with the GMM weighting matrix.

For ¹"4000, AS show that GMM becomes operational, i.e., the estimation
procedure converges for all simulated series. From Table 3, it is evident that all
method of moments procedures provide nearly unbiased estimates for b in this
setting. However, while the EMM estimates of the mean volatility parameter, a,
are slightly downward biased, EMM displays little bias for p

u
. Both parameters

are significantly downward biased under GMM. Furthermore, the more satis-
factory EMM-implementations typically display a reduction of about 30% in
the RMSE relative to GMM.

The evidence is unambiguous. The EMM selection of moment condi-
tions generates a very substantial improvement in estimation efficiency
relative to the use of simple unconditional return moments, as implemented
in AS.
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Fig. 2. Distribution of beta for different score generators (¹"1000).

5.2. Choice of score generator

The efficiency of EMM should approach that of maximum likelihood if the
score generator provides a close approximation to the true conditional density,
and thus effectively nests the structural model. This suggests that the choice of
auxiliary model is an important practical concern. In prior applied work,
a number of approaches have been used. At the extreme ends of the spectrum,
Gallant et al. (1997) employ the purely non-parametric SNP generator to
estimate a long series of 16,127 daily stock returns, while Andersen and Lund
(1997a) rely on an elaborate EGARCH specification as the leading term in the
SNP expansion. Substantial efficiency gains may be feasible in small samples
using such a parametric leading term, relative to a (usually higher-dimensional)
‘pure’ SNP generator, as also argued in, e.g., Tauchen (1996).

¹"500. For ¹"500, this intuition is strongly supported by our results. In
fact, for this limited sample size, we are typically unable to achieve convergence
for any model containing non-parametric SNP terms (i.e. K

z
'0). We stress

that, by ‘no convergence’, we do not refer to the AS problem in the GMM
context, where an optimum does not exist within the parameter space. Instead,
we refer to a scenario where QML estimation of the score generator model is
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Fig. 3. Distribution of beta for GARCH(1,1) score generator.

numerically unstable, resulting in singularity crashes and/or prohibitively long
convergence times.5 For brevity, we refer to models that are numerically unsta-
ble in this sense as ‘non-convergent’ or ‘numerically unstable’ in the sequel.

We have experimented with a variety of parametric score generators for
¹"500, and generally find high-dimensional ARCH models to be numerically
unstable. More tightly parameterized score generators are typically better be-
haved. Table 1 displays results for five alternative score generators of the
GARCH and EGARCH variety. Since the EGARCH models and the lognormal
stochastic volatility model share the identical continuous-record diffusion limit
(see Nelson, 1990), one may a priori expect EGARCH score generators to be
preferable. Specifically, we explore the parsimonious EGARCH(1,0) model
with the asymmetry parameter, /, set to zero, as well as a less restrictive

5We do not rule out that a study employing more sophisticated optimization algorithms or
modifications of the SNP model will be able to obtain convergence. Our goal is to identify EMM
implementations that are well behaved using standard Newton-type optimization methods. Further-
more, our subsequent results strongly suggest that extensions relying on highly parameterized
models in small samples are unlikely to provide improved inference, and we consequently termin-
ated our experimentation along such lines.
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Table 4
Simulated mean and root mean square error for b"0.98

Score generator a b p
u

(1) GARCH(1,1) (¹"500) !0.282 (0.329) 0.944 (0.162) 0.132 (0.164)
(4 moments)

(2) GARCH(1,1) (¹"1000) !0.207 (0.132) 0.972 (0.018) 0.149 (0.108)
(4 moments)

(3) GARCH(1,1)* (¹"4000) !0.161 (0.046) 0.978 (0.0062) 0.169 (0.020)
(4 moments)

(4) GARCH(1,1)!Kz(2)**
(¹"4000) !0.163 (0.048) 0.978 (0.0064) 0.163 (0.028)

(4 moments)
(5) GARCH(1,1)!Kz(4)** (¹"4000) !0.162 (0.045) 0.978 (0.0060) 0.165 (0.016)

(6 moments)
(6) GMM (¹"2000) !0.140 (0.112)* 0.981 (0.015)* 0.125 (0.068)*

(14 moments) (810 crashes ignored)
(7) GMM (¹"4000) !0.121 (0.089)* 0.984 (0.012)* 0.126 (0.063)*

(14 moments) (399 crashes ignored)

True parameters (a, b, p
u
)"(!0.147, 0.98, 0.166), 500 Monte Carlo iterations.

For each score generator, we report the mean and the root mean square error in parentheses.
*The GMM results are from Andersen and S+rensen (1996), Table 9. Due to ignored crashes, these
RMSEs are not comparable to other rows.
The score-generators marked with ** are simulated using 100,000 antithetic draws in the Monte
Carlo integration.

EGARCH(1,1) model. Many ARCH models, however, provide consistent vola-
tility filters for the Nelson diffusion, suggesting that the choice of auxiliary
model may not be clear cut, and thus motivating our exploration of alternative
specifications.

It is evident from Table 1 that a tightly parameterized score generator is
needed. The lowest RMSEs are obtained for the GARCH(1,1) model.
EGARCH(1,0) performs somewhat worse due to a few extreme parameter
estimates. A natural conjecture is that these outliers are caused by poor esti-
mates of the quasi-information (weighting) matrix. We thus performed a set of
simulations using the inverse of the diagonal of the information matrix as the
weighting matrix (AS found that such a short-cut worked well), but the results
deteriorated, and we did not experiment any further with diagonal weighting. In
general, it is clear that, for this small sample size, including a large number of
parameters in the score generator leads to a deterioration of the results. In
particular, the asymmetric EGARCH generator with six parameters is much
inferior to the four-parameter symmetric EGARCH generator (a"0 and /"0).

The general tradeoff, discussed in AS, between the amount of information
included in estimation via incorporation of additional moments and the asso-
ciated deterioration of the precision of the GMM objective function is also
relevant here. For ¹"500, the more parsimonious representations are strongly
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Table 5
Comparison of QML, GMM, EMM, JPR, ML, and MCL

¹"500 ¹"2000

a b p
u

a b p
u

!0.736 0.90 0.363 !0.736 0.90 0.363

QML! !1.4 0.81 0.45 !0.853 0.88 0.383
(1.60) (0.22) (0.27) (0.46) (0.06) (0.11)

GMM" !0.62 0.92 0.24 !0.59 0.92 0.28
(0.59)* (0.08)* (0.17)* (0.31) (0.04) (0.12)

EMM# !0.91 0.88 0.38 !0.793 0.893 0.359
(0.60) (0.08) (0.20) (0.224) (0.030) (0.049)

JPR$ !0.87 0.88 0.35 !0.762 0.896 0.359
(0.34) (0.05) (0.07) (0.15) (0.02) (0.034)

ML% !0.87 0.88 0.37 NA
(0.43) (0.05) (0.08) NA

MCL& !0.60 0.90 0.37 NA
(0.27) (0.04) (0.08) NA

RMSE in parentheses.
!Jacquier et al. (1994).
"Andersen and S+rensen (1996).
*For ¹"500GMM crashed 342 times in 1342 iterations. Mean and RMSE for converged values
only. These RMSEs are not comparable to other rows.
#GARCH(1,1) for ¹"500. GARCH(1,1)-Kz(4) for ¹"2000.
$Jacquier et al. (1994).
%Fridman and Harris (1996).
&Sandmann and Koopman (1996).

favored. This does not imply that a minimal number of moments is preferable:
indeed, the (exactly identified) model reported in the first row of Table 1 is
inferior to the corresponding model allowing for a mean parameter. This
is perhaps mildly surprising since the structural model has mean zero, but
it is simply a reflection of the fact that the auxiliary model does not nest the true
model, so that allowing for an extra degree of freedom in the score generator
may be beneficial.

¹"1000. For a sample size of ¹"1000, the class of auxiliary models that are
estimable without convergence problems expands. The more parsimonious
models, GARCH(1,1) and EGARCH(1,0), still perform well, but including a few
tail parameters in an SNP expansion (K

z
'0) is now not only feasible, but

actually beneficial: the GARCH(1,1)-K
z
(2) provides the uniformly lowest

RMSEs. However, any further expansion in the SNP terms leads to a deteriora-
tion in estimation performance. We did not obtain convergence when including
seminonparametric heteroskedasticity terms (K

x
'0). The ARCH(5) score

perform poorly, as indicated by the high RMSEs, which reflect pronounced
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Fig. 4. P-value discrepancy plot for the chi-square specification test, GARCH(1,1).

left-skewness and kurtosis. This again illustrates the tradeoff between over-
parameterization and finite-sample efficiency.6 Of course, parsimony is only
a virtue if the score generator picks up the main features of the data. This is
clearly illustrated by the ARCH(1) and ARCH(2) models: they are parsimonious,
but provide inferior approximations to the structural model, resulting in noisy
inference as indicated by the RMSEs. The latter are truly poor for the ARCH(1),
and still roughly triple those of the preferred models for ARCH(2). In addition,
both are inferior to the ARCH(5) score. Fig. 2 graphically documents the
disastrous performance of the ARCH-scores relative to the pure GARCH(1,1).

¹"2000. For the sake of brevity, our results for ¹"2000 are not tabulated.
We briefly summarize the findings. The parsimonious EGARCH and GARCH
models continue to perform well, but the preferred model is GARCH(1,1)-K

z
(4).

Including additional parameters in the EGARCH model induces a small de-
terioration in the RMSE, but the impact is minor. We did not obtain conver-
gence with a pure SNP-generator, but we obtain parameter estimates for 100

6An experiment with an ARCH(10) model was aborted after 100 iterations. The tentative results
were inferior to the ARCH(5) and convergence was slow.
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Fig. 5. P-value discrepancy plot for t-statistics, GARCH(1,1).

simulated series using an EGARCH(1,0)-K
z
(2)-K

x
(1) score generator.7 However,

convergence is typically slow and the results are marred by some extreme
outliers, so it is clearly no serious contender. The findings confirm that poor
convergence properties of the auxiliary model are indicative of poor inference in
the overall EMM-procedure as well.

¹"4000. The largest sample size we explore is ¹"4000. The results are
provided in Table 3. The EMM estimator performs extremely well for this
relatively large sample. Moreover, the results appear, to a first approximation,
independent of the leading term in the score generator. Most of the candidate
auxiliary models perform roughly the same, implying that EMM is quite robust.
Although this finding may be anticipated given the theoretical results of Fenton
and Gallant (1996), the fact that the dimension of the auxiliary model may be
increased quite rapidly for realistic sample sizes, at least for the ‘plain-vanilla’
stochastic volatility model, is encouraging. For ¹"4000, the results — in particu-
lar for the volatility-of-volatility parameter p

u
— are clearly improved with

7This design makes use of the logistic transformation of the lagged returns, suggested in Gallant
and Tauchen (1995), as we encounter severe problems without this transformation.
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the inclusion of non-parametric ‘tail terms’ (K
z
'0). For example, the

GARCH(1,1)-K
z
(4) score includes eight moments and has the lowest RMSE for

all structural parameters. Of course, it is still possible to overparameterize the
auxiliary model: we tried to estimate the GARCH(1,1)-K

z
(8) score, but it was

hard to obtain convergence. Moreover, it is now feasible to estimate a model
containing nonparametric heteroskedasticity terms (K

x
'0), and results for the

EGARCH(1,0)-K
z
(2)-K

x
(1) score are included in Table 3. The RMSEs for this

model are, however, very large, reflecting the presence of large outliers, so the
inclusion of nonparametric heteroskedasticity terms is still not beneficial.

In summary, we infer that a non-parsimonious parameterization of the
auxiliary model induces large efficiency costs for smaller samples, while parsi-
mony is less critical for larger (but still realistic) sample sizes. Moreover, it is
critical to include a suitable parametric leading term in the auxiliary model for
all sample sizes considered. Finally, inference improves rapidly as sample size
grows. This is vividly illustrated in Fig. 3, which displays the distribution of the
EMM-b parameter estimates for various sample sizes obtained with the simple
GARCH(1,1) score generator.

5.3. Higher volatility persistence

Many studies of stochastic autoregressive volatility models obtain estimates
of b close to unity for daily data. We therefore study the case b"0.98, which is
summarized in Table 4. AS find that 10,000 observations typically are required
to avoid convergence problems for GMM for this parameter-constellation. In
contrast, with a parsimonious parameterization of the auxiliary model, EMM
does not display any convergence problems, even for small samples. There is
a relative high incidence of outliers for ¹"500, but the results are otherwise
entirely unproblematic. The parameters are estimated very precisely for the
larger samples, in particular ¹"4000. The drop in RMSE, relative to the
b"0.90 case (for ¹ larger than 500), is consistent with AS, JPR, and Harvey and
Shephard (1996) who also find that the improved signal-to-noise ratio of the
volatility process implies a lower RMSE for larger samples. As before, we find
that the inclusion of non-parametric tail parameters improves the precision over
the purely parametric score generator for ¹"4000. Specifically, the results for
the GARCH(1,1)-K

z
(4) model reported in row (5) dominate those of the corre-

sponding GARCH(1,1) in row (3).8

8We have explored a number of additional designs in an earlier draft of this paper. Specifically, we
have results for b"0.95, for ARMA models for the conditional mean, and for endogenous selection
of the score generator model based on alternative information criteria. Furthermore, skewness and
kurtosis measures for all parameter estimates are available. These results may be obtained from the
authors upon request.
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5.4. Monte Carlo integration of the moment conditions

The evaluation of the score moment conditions is performed by Monte Carlo
integration of the expected value of the score vector under the true model. As we
require thousands of Monte Carlo samples to be drawn from the structural
model, we have constrained ourselves to two antithetic series of length 20,000
when evaluating these integrals throughout our simulation study. In an empiri-
cal investigation one may prefer a higher number of draws in order to render the
simulation error (near) negligible. We consequently conduct a small experiment
keeping the original, simulated sample — and thus the estimated score generator
model, GARCH(1,1) — fixed while repeating the second EMM-estimation step.
All remaining uncertainty is then due to the numerical procedure applied to
evaluate the integrals. For a typical estimate of the auxiliary model in the lower
persistence case (b"0.90), the associated standard error for the (a, b, p

u
) para-

meter vector is of the order (0.070, 0.009, 0.022).9 This standard error is small
relative to the overall Monte Carlo variation for the smaller samples, but not
negligible relative to the reported RMSE for ¹"4000.10 For sample sizes of
¹"2000 and smaller, the variation induced by the Monte Carlo integration is
not important: re-estimating the GARCH(1,1) model for ¹"2000 using two
antithetic series of length 100,000 does not appear to improve on the reported
RMSEs. For the high persistence case (b"0.98) the standard error from Monte
Carlo integration (using two times 20,000 draws) is about (0.033, 0.005, 0.017).
For this high persistence and ¹"4000, the parameters are, however, estimated
very precisely and the Monte Carlo integration error may therefore add notice-
ably to the Monte Carlo variation in the estimates. The results for this design are
therefore calculated using two antithetic series of length 100,000.

5.5. Comparison to maximum likelihood

Table 5 compares RMSEs of our preferred EMM results to GMM, QML,
JPR, ML, and MCL for ¹"500 and ¹"2000. For ¹"500, EMM is clearly

9Doubling the number of draws to 40,000, the standard errors induced by the numerical
integration improve by a factor of J2. This suggests that the rate of convergence implied by the
standard central limit theorem is relevant for these sample sizes.

10To assess the magnitude of the variation induced by the Monte Carlo integration error, assume
that the standard error from the Monte Carlo integration is X while the standard error arising from
other sources is ½ and that the distributions of these two error components are independent (which
is likely to be a reasonable approximation). The overall standard error is then JX2#½2. If we
ignore the slight bias in the parameter estimates, the reported RMSEs equal JX2#½2, while an
approximate RMSE in the absence of Monte Carlo integration error would be given by the
square-root of [(reported RMSE)2 ! Monte Carlo integration variance]. The minimum RMSE for
b in Table 4 is 0.018. An estimate of the RMSE that will prevail with zero Monte Carlo integration

error is thus J0.0182!0.0092"0.016.
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not as efficient as the likelihood-based methods, but EMM improves substan-
tially on GMM which, for this sample size, is simply not a viable alternative,
since the about a quarter of all attempts to estimate the model results in
non-convergence. For ¹"2000, the efficiency of EMM falls between GMM and
JPR, but it is closer to the JPR estimator. Furthermore, the impressive improve-
ments associated with the longer, but still empirically relevant, sample of
¹"4000 (Table 3) verifies that EMM is a very reliable tool for inference in this
setting, and suggests that the efficiency of EMM approaches that of the genuine
likelihood-based procedures.11

5.6. Specification testing

Under correct specification, ¹ times the optimized GMM criterion is distrib-
uted s2(ng!no). This statistic therefore provides a test for the goodness-of-fit of
the structural model (known as the test of the overidentifying restrictions), see
Hansen (1982). The P-values are asymptotically uniform over the fractiles of the
s2 distribution. We illustrate how well the finite-sample distribution of the test
statistic conforms to the asymptotic distribution by plotting the difference
between the empirical distribution for the P-values of the finite-sample test
statistic and the corresponding asymptotic P-values over the entire unit interval
in Fig. 4. This is the so-called P-value discrepancy plot for the goodness-of-fit
test statistic, see Davidson and MacKinnon (1998). If the discrepancies are close
to zero, the finite-sample distribution of the test statistic mirrors that of the
asymptotic distribution. A simple calculation reveals that the point estimates for
¹"1000 and ¹"4000 indicated in Fig. 4 generally are well within a 95%
confidence band around zero. Thus, there is no indication of bias in the
specification test as long as the samples are of moderate size and a reasonable
score generator has been used.

These results contrasts sharply to the GMM-evidence reported by AS. For
GMM an excessive number of moments tends to imply underrejection (inflated
P-values), whereas too few moments lead to overrejection. In addition, as
¹ increases, a systematic leftward shift takes place in the P-value distribution for
typical sample sizes. In fact, more than a million observations are needed for the
distribution of the specification test statistics to approximate the s2 in the GMM
setting.

The conclusion is that EMM-inference based on the test for over-identifying
restrictions is reliable. This is likely a testament to the improved estimates of the
weighting matrix that are obtained from the quasi-score moment vector under

11There is no evidence in the literature on the behavior of the likelihood-based procedures for
samples of this magnitude.
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EMM relative to the highly serially correlated (unconditional) moments used in
GMM.

5.7. Hypothesis tests

To examine inference based on the individual parameter estimates, we explore
the studentized distribution of the structural volatility persistence parameter, b.
The studentized parameter is defined as the difference between the true and
estimated parameter normalized by the (EMM-) estimate of the standard error.
Asymptotically, the studentized parameters are distributed as standard normals,
so the mass located in the tail fractiles approximates the size of one-sided tests
for equality of the estimated parameters and their true value.

Fig. 5 provides the P-value discrepancy plots12 for the relevant t-statistics for
inference on b across different sample sizes, when estimation is based on the
GARCH(1,1) auxiliary model. For the smallest sample, ¹"500, there is a signif-
icant positive deviation for the lower fractiles. This reflects a downward bias in
the t-statistic for b. The tendency for b to be biased downward was, of course,
already documented in Fig. 3. Interestingly, the relatively large left tail of the
corresponding distribution in Fig. 3 for ¹"1000 does not translate into a sim-
ilar significant deviation for the t-statistic at the lower fractiles. This implies that
the bias has been accommodated by sufficiently large estimates for the asso-
ciated standard errors. If anything, the t-statistic for ¹"1000 deviates slightly
from normality at the higher fractiles, indicating an upward bias in the EMM
estimates of b, that is not reflected in the EMM standard errors. For ¹"4000,
there is only a mild indication of size-distortions among the fractiles in the midst
of the unit interval, which are less critical for inference.

In summary, standard hypothesis testing based on individual parameter
estimates is much more reliable for all sample sizes than might be expected from
the dispersion of the point estimates in Fig. 3. Again, the results are vastly
superior to the corresponding GMM results reported by AS.

6. Conclusion

A number of broad conclusions emerge from our study. Perhaps most
significantly, the EMM procedure performs quite well in comparison with
earlier estimation procedures. It provides a very substantial improvement in
efficiency relative to simple GMM, as the RMSEs are reduced uniformly across
the simulation designs. Further, contrary to GMM, the procedure does not

12Fig. 5 shows the difference between the empirical distribution function and the Gaussian
distribution function evaluated at the fractiles for the Gaussian distribution function.
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encounter any convergence problems for smaller samples when parsimonious
score generators are used. Although EMM is generally not quite as efficient as
JPR’s MCMC, the flexibility of method of moments estimators offers an advant-
age over direct likelihood-based inference procedures that often are constructed
specifically for inference in the stochastic volatility model. Moreover, it is
evident that the efficiency of EMM approaches that of the Bayesian likelihood
estimator for large, yet empirically relevant, sample sizes.

Several observations regarding the implementation of EMM are worth re-
iterating. First, it is advisable to include a suitable leading parametric term in the
score generator, such that the bulk of the conditional heteroskedasticity in the
data series is captured in a parsimonious fashion. Second, although theoretical
considerations may suggest that an EGARCH model is particularly well suited
as a leading term under the current data generation scheme a GARCH leading
term generally performs equally well. Third, it is important to conserve on the
number of moment conditions in small samples of 1000 observations or less. In
particular, including non-parametric terms in the form of an SNP-expansion is
likely to generate numerical instability in smaller samples. However, the inclu-
sion of Hermite polynomial terms improves efficiency considerably in the larger
samples. Fourth, in larger samples the efficiency of the procedure is quite robust
to the choice of score-generator. Fifth, the test for over-identifying restrictions,
which often performs poorly in the standard GMM context, is remarkably
reliable for inference in the EMM setting. Finally, inference regarding the para-
meter values based on standard t-statistics is also quite well-behaved under EMM.

While our findings, of course, only apply in a strict sense to the estimation
designs investigated, we expect the qualitative conclusions to carry over to
a wide range of economic models with serially correlated latent factors. As such,
the encouraging EMM results provide a strong incentive to implement the
procedure for a variety of dynamic latent models beyond the stochastic volatility
setting. The true benefit of EMM is, of course, realized in settings where, unlike
the case of the ‘plain-vanilla’ stochastic volatility model, the procedure is
applicable, while the more direct likelihood-based approaches are infeasible.
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