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Material that should be known for the final

1. Theoretical derivation of the regression coefficient (vector) and its variance.

2. Working with numerical examples—the linear model with 2 regressors will often be

used in midterm/exam questions, I may give you some numbers and you should be

able to find, say the coefficient and the standard errors.

3. The Frisch-Waugh theorem and applications. I may ask you to prove the FW the-

orem, so make sure you are comfortable working with the projection matrix PX =

X (X ′X)−1X ′ and the residual maker MX = I − PX = I −X (X ′X)−1X ′

4. R2, adjusted R2, and partial R2

5. the t- and F-test and the Chow-test (and similar simple applications of the F-test

that I may think of). Confidence intervals.

6. Functional Form (as I covered it in class: dummy variables, interactions, elasticities,

semi-log, etc.)

7. Data Problems (as I covered it in class: omitted variable bias, classical measurement

error, multi-collinearity, Winsorizing, truncating (also called trimming) data)

8. Asymptotics. You will need to use the Law of Large Numbers (LLN) and the Central

Limit Theorem (CLT), but I did not mention the explicit version of the LLN or the

CLT, so you can talk about “the” LLN, and “the” CLT.

9. Consistency of OLS (assumptions needed on X ′X and explaining that X ′ε is a sum

of independent variables so that a LNN holds).

10. Convergence of the t-test to a standard normal. Convergence of the F-test to Chi-

square test for N →∞.

11. GLS. Understand that if Ω is the variance matrix, one can choose a Cholesky factor-

ization so that Ω−1/2 is lower triangular and multiplying the n′th row with the true

error vector corresponds to calculating xn − E(xn|xn−1, ...x1) (and scaling with the

standard error). Therefore the elements of Ω−1/2e are i.i.d., which is equivalent to

var(Ω−1/2 e) = Ω−1/2 var(e) Ω−1/2
′

= Ω−1/2 Ω Ω−1/2
′

= I. This got a little detailed,

but you can take that as a reminder that formulas for the variance of matrix times a

stochastic vector are essential for OLS/GLS theory.
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12. Feasible GLS. Main examples: 1) autocorrelation in residuals 2) heteroskedasticity

13. White robust variance estimator. Explain why it works (under suitable assumptions).

14. Maximum Likelihood. Be able to show that β̂OLS = β̂ML under the standard assump-

tions plus normality and explain the relation between are standard OLS estimate of

the error variance and the ML estimate of the error variance. Also, be able to de-

rive the ML estimator in the case of heteroskedasticity. (I won’t ask for the case of

autocorrelated residuals.)

15. The IV estimator when there are more instruments than regressors and the special

case when the number of instruments is equal to the number of regressors.

16. Explain why the IV-estimator is consistent (and list the assumptions) but not unbi-

ased. (Note: there isn’t so much to remember about the assumptions, we basically

assume “what we need” in order to get consistency.)
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