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1 The Linear IV Case.

Generalized Method of Moment (GMM) estimation is one of two developments in economet-

rics in the 80ies that revolutionized empirical work in macroeconomics. (The other being

the understanding of unit roots and cointegration.)

The path breaking articles on GMM were those of Hansen (1982) and Hansen and

Singleton (1982). For introductions to GMM, Davidson and MacKinnon (1993) have com-

prehensive chapter on GMM and I recommend that you read the chapter on GMM in the

Hamilton (1994) textbook. This is a good supplement to the teaching notes. For more

comprehensive coverage see the recent textbook by Alastair Hall (Oxford University Press

2005).

I think that one can claim that there wasn’t that much material in Hansen (1982) that

was not already known to specialists, although the article definitely was not redundant, as

it unified a large literature (almost every estimator you know can be shown to be a special

case of GMM). The demonstration in Hansen and Singleton (1982), that the GMM method

allowed for the estimation of non-linear rational expectations models, that could not be

estimated by other methods, really catapulted Hansen and Singleton to major fame. We

will start by reviewing linear instrumental variables estimation, since that will contain most

of the ideas and intuition for the general GMM estimation.

1.1 Linear IV estimation

Consider the following simple model

(1) yt = xtθ + et , t = 1, ..., T

where yt and et scalar, xt is 1×K and θ is a K × 1 vector of parameters. NOTE from the

beginning that even though I use the index “t” — indicating time, that GMM methods are

applicable, and indeed much used, in cross sectional studies.

In vector form the equation (1) can be written

(2) Y = Xθ + E ,

in the usual fashion. If xt and et may be correlated, one will obtain a consistent estimator

by using instrumental variables (IV) estimation. The idea is to find a 1× L vector zt that
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is as highly correlated with xt as possible and at the same time is independent of et —

so if xt is actually uncorrelated with et you will use xt itself as instruments - in this way

all the simple estimators that you know, like OLS, are special cases of IV- (and GMM-)

estimation. If Z denotes the T × L (K ≥ L) vector of the z-observations then we get by

pre-multiplying (2) by Z that

(3) Z ′Y = Z ′Xθ + Z ′E .

If we now denote Z ′Y by Ỹ , Z ′X by X̃, and Z ′E by U then the system has the form

Ỹ = X̃θ + U ,

which corresponds to a standard OLS formulation with L observations. Here the variance

Ω of U is

Ω = var(U) = Z ′var(E)Z .

Now the standard OLS estimator of θ is

θ̂ = (X̃ ′X̃)−1X̃ ′Ỹ ,

which is consistent and unbiased with variance

V ar(θ̂) = (X̃ ′X̃)−1X̃ ′ΩX̃(X̃ ′X̃)−1 .

For simplicity let us now consider drop the tilde’s, and just remember that the system (of

the form (2)) often will have been obtained via the use of instrumental variables. (Most of

the GMM-literature uses very sparse notation, which is nice when you are familiar with it,

but makes it hard to get started on).

If U does not have a variance matrix that is proportional to the identity matrix the OLS

estimator is not efficient. Remember that the OLS estimator is chosen to minimize the

criterion function

U ′U = (Y −Xθ)′(Y −Xθ) .

To obtain a more efficient estimator than the OLS estimator we have to give different

weights to the different equations. Assume that we have given a weighting matrix W

(the choice of weighting matrices is an important subject that we will return to) and instead

choose θ̂ to minimize

U ′WU = (Y −Xθ)′W (Y −Xθ) ,

or (in the typical compact notation)

θ̂ = argminθU
′WU .

In this linear case one can then easily show that θ̂ is the GLS-estimator

θ̂ = (X ′WX)−1X ′WY .
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Let the variance of U be denoted Ω and we find that θ̂ have variance

var((X ′WX)−1X ′WU = (X ′WX)−1X ′WΩWX(X ′WX)−1 .

We want to choose the weighting matrix optimally, so as to achieve the lowest variance of

the estimator. It is fairly obvious that one will get the most efficient estimator by weighing

each equation by the inverse of its standard deviation which suggests choosing the weighting

matrix Ω−1. In this case we find by substituting Ω−1 for W in the previous equation that

var((X ′Ω−1X)−1X ′Ω−1U = (X ′Ω−1X)−1X ′Ω−1ΩΩ−1X(X ′Ω−1X)−1 = (X ′Ω−1X)−1 .

We recognize this as the variance of the GLS estimator. Since we know that the GLS esti-

mator is the most efficient estimator it must be the case that Ω−1 is the optimal weighting

matrix.

For practical purposes one would usually have to do a 2-step estimation. First perform a

preliminary estimation by OLS (for example), then estimate Ω (from the residuals), and

perform a second step using this estimate of Ω to perform “feasible GLS”. This is asymp-

totically fully efficient. It sometimes can improve finite sample performance to iterate one

step more in order to get a better estimate of the weighting matrix (one may also iterate to

joint convergence over Ω and θ — there is some Monte Carlo evidence that this is optimal

in small samples).

A special case is the IV estimator (see eq. (3)). If var(E) = I, then the variance of

Z ′E is Z ′Z. The optimal GMM-estimator is then

θ̂ = (X̃ ′(Z ′Z)−1X̃)−1X̃ ′(Z ′Z)−1Ỹ ,

or

θ̂ = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′Y .

It is now easy to check that this is the OLS-estimator, when you regress Z(Z ′Z)−1Z ′Y on

Z(Z ′Z)−1Z ′X. This is the classical IV-estimator, which is referred to as the Two-Stage

Least Squares in the context of simultaneous equation estimation. The “first stage” is an

OLS-regression on the instrument and the “second stage” is the OLS-regression of the fitted

values from the first stage regression.

The derivations above illustrate many of the concepts of GMM. Personally I always guide

my intuition by the GLS model. For the general GMM estimators the formulas look just the

same (in particular the formulas for the variance) except that if we consider the nonlinear

estimation

(4) Y = h(X, θ) + U , ,
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then “X” in the GLS-formulas should be changed to ∂h
∂θ . E.g. using the optimal weighting

matrix (much more about that later), you find the asymptotic variance of the estimated

parameter to be

var(θ̂) = (
∂h′

∂θ
Ω−1

∂h

∂θ
)−1

In GMM jargon the model would usually be formulated as

U = Y − h(X, θ) ,

or more often as

(∗∗) U = f(X̃, θ) ,

(where X̃ = Y,X and f(X̃, θ) = Y − Xθ. The later—very compact—notation is the one

that is commonly used in the GMM literature and we will follow it here. We again drop

the tilde and denote all the variables by X. It is typical for the newer methods (typically

inspired from statistics) that the variables are treated symmetrically.

In the language of GMM the whole model is summarized by L orthogonality conditions:

EU = 0 ,

or (when you want to be really explicit!):

EU(X, θ) = 0 .

Here you should think of U as being a theoretical model. It is not quite explicit here

whether we think of U as equations that have been pre-multiplied by instrument vectors or

not. But in the usual formulation of GMM the dimension L of U is fixed, so e.g. in the

OLS model where the dimension of E = {e1, ..., eT }′ depends on T , you would think of the

orthogonality conditions as being U = X ′Y −X ′Xθ. In rational expectations models, the

theory often implies which variables will be valid instruments; but this is not always so.

For the statistical development the terse notation is good; but in applications you will of

course have to be more explicit.

2 GMM and Method of Moments

If we have L orthogonality conditions summarized in a vector function f(X, θ) that satisfies

Ef(X, θ) = 0, the GMM estimator attempts to minimize a quadratic form in f , namely

f ′Wf . Notice that there are L orthogonality conditions (rather than T ) – this means that

you should think about Z ′(Y − Xθ) in the IV setting [rather than (Y − Xθ)]. Assume

that Z is just columns of ones. Then a relation like f(X, θ) = Z ′g(X, θ) is just gT (X, θ) =
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1
T ΣT

t=1gt(X, θ). In other words the orthogonality condition is the first empirical moment of

the gt vector. In the case of instruments zt the orthogonality condition is really gT (X, θ) =
1
T Σztgt(X, θ). If the number of orthogonality conditions is the same as the number of

parameters you can solve for the θ vector which makes gT = 0 – in this case the weighting

matrix does not matter. This does not mean that the method is only applicable for first

moments, for example you could have

ut =

(
xt − µ

x2t − σ2 − µ2

)
,

which, for a vector of constants as the instruments, corresponds to simple method of mo-

ments. More generally, a model often implies that the moments is some non-linear functions

of the parameters, and those can then be found by matching the empirical moments with

the models implied by the model. (The moments used for the GMM-estimator in Melino-

Turnbull (1990) and Ho, Perraudin, and Sørensen (1996) are simply matching of moments).

The “Generalized” in GMM comes from the fact that we allow more moments than pa-

rameters and that we allow for instruments. Sometimes GMM theory will be discussed as

GIVE (Generalized Instrumental Variables Estimation), although this is usually in the case

of linear models.

3 Hansen and Singleton’s 1982 model

This is by now the canonical example that “everybody” knows and which popularized the

approach.

The model in Hansen and Singleton (1982) is a simple non-linear rational expectations rep-

resentative agent model for the demand for financial assets. The model is a simple version of

the model of Lucas (1978), and here the model is simplified even more in order to highlight

the structure. Note that the considerations below are very typical for implementations of

non linear rational expectations models.

We consider an agent that maximize a time-separable von Neumann-Morgenstern utility

function over an infinite time horizon. In each period the consumer has to choose between

consuming or investing. It is assumed that the consumers utility index is of the constant

relative risk aversion (CRRA) type. There is only one consumption good (as in Hansen and

Singleton) and one asset (a simplification here).

The consumers problem is

Max Et [
∞∑
j=0

βj
1

γ
Cγt+j ]

s.t. Ct+j + It+j ≤ rt+jIt+j−1 + Wt+j ; j = 0, 1, ..,∞
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where Et is the consumer’s expectations at time t and

Ct : Consumption

It : Investment in (one-period) asset

Wt : Other Income

rt : Rate of Return

β : Discount Factor

γ : Parameter of Utility Function

If you knew how Ct and It was determined this model could be used to find rt (which is why

it called an asset pricing model), but here we will consider this optimization problem as if

it was part of a larger unknown system. Hansen and Singleton’s purpose was to estimate

the unknown parameters (β and γ), and to test the model.

The first order conditions (called the “Euler equation”) for maximum in the model is that

Cγ−1t = βEt[C
γ−1
t+1 rt+1] .

The model can not be solved for the optimal consumption path and the major insight of

Hansen and Singleton (1982) was that knowledge of the Euler equations are sufficient for

estimating the model.

The assumption of rational expectations is critical here - if we assume that the agents

expectations at time t (as expressed through Et corresponds to the true expectations as

derived from the probability measure that describes that actual evolution of the variables

then the Euler equation can be used to form the “orthogonality condition”

U(Ct, θ) = βCγ−1t+1 rt+1 − Cγ−1t ,

where EtU = 0 (why?), where we now interpret Et as the “objective” or “true” conditional

expectation. Note that EtU = 0 implies that EU = 0 by the “law of iterated expectations”,

which is all that is needed in order to estimate the parameters by GMM. The fact that

the conditional expectation of U is equal to zero can be quite useful for the purpose of

selecting instruments. In the Hansen-Singleton model we have one orthogonality condition

and that is not enough in order to estimate two parameters (more about that shortly), but

if we can find two or more independent instrumental variables to use as instruments then

we effectively have more than 2 orthogonality conditions.

We denote the agents information set at time t by Ωt. Ωt will typically be a set of previous

observations of economic variables {z1t, z1t−1, ...; z2t, z2t−1, ...; zKt, zKt−1, ...}. (Including Ct,

and It among the z’s. Then any variable in Ωt will be a valid instrument in the sense that

E[ztU(Ct, θ)] = 0
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for any zt in Ωt. Notice that zt here denotes any valid instrument at time t, for example zt
could be z1t−3 - this convention indexing the instruments will prove quite convenient. The

E[., .] operation can be considered an inner product, so this equation is really the origin

of the term orthogonality conditions. For those of you who want to see how this can be

developed rigorously, see the book by Hansen and Sargent (1991).

Take a few seconds to appreciate how elegant it all fits together. Economic theory gives you

the first order condition directly, then you need instruments, but again they are delivered

by the model. For empirical economists who want to derive estimation equations from

economic principles, it does not get any better that this.

Oh, well maybe there is a trade-off. The reason being that instrumental variables estimators

not are very efficient if no good instruments are available (there is active research in this area

at the present, see paper with the words “weak instruments”); but for now you may want

to compare the Hansen-Singleton (1982) approach to the article “Stochastic Consumption,

Risk Aversion, and the Temporal Behavior of Asset Returns”, JPE, 93, p 249-265. This

is really the same model, but with enough assumptions imposed that the model can be

estimated by Maximum Likelihood.

4 Non-Linear GMM.

Assume that economic theory gives us the moment conditions

Eft(θ) = 0 ,

where ft(θ) = f(xt, θ) is an r dimensional vector of moment conditions and θ is a q dimen-

sional vector of parameters. The identification condition is that Eft = 0 for θ = θ0 and

otherwise not. (Further you need to assume a compact parameter space or some equivalent

assumption as outlined in class.)

Define

gT =
1

T

T∑
t=1

ft .

We will use the notation gT or gT (θ), but from now on the dependence of gT on the

underlying series, xt, will be implicit. The GMM estimator will be the estimator that makes

gT (θ) as close to zero as possible. Notice that gT is the empirical first moment of the series ft
which is why the estimator is called a moment estimator. Also note that the standard idea

of moment estimation, which consists of equating as well as possible a series of moments.

This would be achieved by choosing g′T = [xT − Ext, x2T − E{x2t }, ..., xKT − E{xKt }].
We now define the GMM-estimator as

θ̂ = argminθ g
′
TWT gT ,
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where WT is a weighting matrix that (typically) depends on T such that there exist a

positive definite matrix W0, such that WT → W0 (a.s.). The latter condition allows us

to let the weighting matrix be dependent on an initial consistent estimator, which is very

important since the optimal GMM estimator will be a two step estimator, just as in the

GLS-case above.

Let DgT (θ) be the r × q dimensional matrix of derivatives with typical element DgT ij =
∂gTi
∂θj

. We will assume DgT has full rank. When the underlying data follows continuous

distributions this will usually follow with probability 1 from the identification condition.

(Below I will often just write Dg in order to simplify notation but, of course, all functions

will be evaluated using the T available observations.)

Then the first order condition of the optimization becomes

DgT (θ̂)′WT gT (θ̂) = 0 .

Solving non-linear optimization by the Newton algorithms

GAUSS and other programs use a Newton type algorithm to solve non-linear optimization

problems. There are many variations of this but most variations involve approximations to

how one finds derivatives and things like that. The computer will find the derivative of the

criterion function numerically but you will have the option to let a subroutine calculate it if

you have an analytical expression, this will often increase computational speeds significantly

if the number of parameters is high.

Newton type algorithms work by starting from an initial value θ0 and for a given value

θN−1 finding θN which minimize the linearized criterion function:

[gT (θN−1) +Dg(θN − θN−1)]′WT [gT (θN−1) +Dg(θN − θN−1)]

The solution is (check this!)

θN − θN−1 = −(Dg′WTDg)−1Dg′WT gT (θN−1) ,

which is the NEWTON upgrade.

4.1 Asymptotic theory

We will assume that the series (x′t, z
′
t)
′ is ergodic. A series xt is ergodic if

1

T

T∑
t=1

h(xt) → Eh(xt)

for all functions h(.) (for which the mean is well defined). Notice that the right hand side of

the above equation is assumed to not be a function of t. It is, more or less, impossible to test
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if a series is ergodic. However, it is well known that an integrated time-series (e.g., a random

walk) is not ergodic. Most macroeconomic series are integrated, or nearly integrated, time

series, but most often the model can be rewritten in terms of stationary variables (typically

growth rates).

For proof of consistency, see for example, Hansen (1982). The idea is simple enough. When

T is large the function gT (θ) is close to Eft(θ) and the minimum of gT will therefore be

close to the minimum of Eft, i.e., close to θ0. In order to make these statements precise we

need to be specific about what we mean by convergence of functions but I will leave this

for more specialized econometrics courses.

We will also assume that the series ft(θ) satisfies a central limit theorem, i.e. that

1√
T

T∑
t=1

ft(θ) ⇒ N(0,Ω) ,

where Ω = E[ftf
′
t ] if ft is not autocorrelated, but in general

Ω = lim
J→∞

J∑
j=−J

E[ftf
′
t−j ] .

So intuitively, where we in the GLS model had T (or L in the IV case) normally distributed

error terms, we here have K asymptotically normally distributed moment (or orthogonality)

conditions.

Let Df = E ∂ft
∂θ (θ0). One can then show that for any convergent sequence of weighting

matrices the GMM-estimator is consistent and asymptotically normal with

√
T (θ̂ − θ )⇒ N(0,Σ) ,

where

Σ = (Df ′W0Df)−1Df ′W0ΩW0Df(Df ′W0Df)−1 .

Notice that this formula corresponds exactly to the one obtained in the linear case if you

substitute X for Df .

We can sketch the proof (see Hall’s book for more detail): By the mean value theorem

we can write

gT (θ̂) = gT (θ0) +DgT (θ)(θ̂ − θ0)

Now, pre-multiply this equation by DgT (θ̂)′WT and, by the first-order condition above,

the left-hand side is 0 and we get

0 = DgT (θ̂)′WT gT (θ0) +DgT (θ̂)′WTDgT (θ) (θ̂ − θ0) ,
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where |θ − θ0| < |θ̂ − θ0| (which implies that when θ̂ is consistent and converges to θ0, so

will θ). We get

θ̂ − θ0 = −[DgT (θ̂)′WTDgT (θ)]−1DgT (θ̂)′WT gT (θ0) .

This implies

√
T (θ̂ − θ0) = −[DgT (θ̂)′WTDgT (θ)]−1DgT (θ̂)′WT

√
TgT (θ0)

This has the form

AT
√
TgT (θ0) ,

where
√
TgT (θ0) converges in distribution to N(0,Ω) and AT converges in probability to

(Df ′W0Df)−1Df ′W0 which gives us the formula above. (Dg converges to Df by ergod-

icity.) Again, you need to look at more specialized articles to make sure this is all kosher

but, in general, the assumption that econometric theorists impose to prove the theorems

are rarely of such a form that practitioners can verify them.

The reasoning behind the GLS estimator also carries over and the optimal GMM-estimator

is the one where WT → Ω−1 in which case the asymptotic covariance of the GMM-estimator

is

Σ0 = (Df ′Ω−1Df)−1 .

In order to obtain an estimate Σ̂0 you need an estimate Ω̂ and then you use

Σ̂0 = (Dg′Ω̂−1Dg)−1 ,

where Dg, of course, is evaluated at θ̂.

Notice that this is the optimal estimator for a given set of instruments. The problem

of finding the best instruments is much harder and no satisfactory solution exists to that

problem in general (although often for special cases, like the OLS model). I will comment

on this (very important) issue below.

Also notice, that consistency is found without making assumption on the error terms

and without specifying the model such that the error terms are independent. Sometimes

authors will claim that this is a big strength of GMM, but if you error are not approximately

normal you will often have problems and, in particular, if you have a lot of autocorrelation

in your residuals you will not get very precise estimates. (The profession seems to go in

circles as to whether it is consider a strength to not have to make distributional assumptions

[“OLS is the Best Linear Unbiased estimator” or the opposite “OLS is the ML estimator”].

Some people can get “religious” about this issue, but my more pragmatic attitude is that

the important thing is to get error terms that are approximately uncorrelated.)
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4.2 Hypothesis Testing in a GMM-framework

There exists equivalents of the standard Wald-, LM-, and ML-test in the case of GMM

estimation. Note: This is only true in the case where the optimal weighting matrix has

been applied. In a case where you apply a non-optimal weighting matrix then there is no

equivalent of the ML-test available. (Ho, Perraudin, and Sørensen (1996) is an example of

a paper that applies a non-optimal weighting matrix).

Consider a test for s nonlinear restrictions

R(θ) = 0 ,

where R is an s× 1 vector of functions.

Let DR be dR
dθ (and we assume that DR is evaluated at the optimal GMM-estimator in the

unrestricted model), then the Wald test is

TR(θ)′[DRΣ̂DR′]−1R(θ) ,

or

TR′[DR(Dg′WTDg)−1Dg′WT Ω̂−1T WTDg(Dg′WTDg)−1DR′]−1R ,

where WT is the weighting matrix and Dg is the derivative of gT with respect to the

parameters. Here Dg (and DR if this is dependent on the parameters) are evaluated at the

unrestricted estimator of θ. Let us define

Σ̂ = (Dg′WTDg)−1Dg′WT Ω̂−1T WTDg (Dg′WTDg)−1 ,

In the formula for the Wald-test Σ̂ is our estimator of the variance of θ̂ and when we pre-

and post-multiply this by DR we get an estimate of the asymptotic variance of R(θ̂).

The LM-test can be implemented in different ways. I strongly recommend you check

with a trusted source (like the article in the handbook (Newey and McFadden: Large

Sample Estimation and Hypothesis Testing. In Handbook of Econometrics IV, eds. Engle

and McFadden, North-Holland, (1994) or Gallant (1987)). For example, there is a formula

in Ogaki (1992,) that I cannot quite get to agree with Gallant’s formula and a much simpler

looking formula in Davidson and MacKinnon (1993 [their older most advanced book]), that

I cannot see how they get. They may be OK, but I recommend you be careful. The formula

given here should agree with Gallant (1987). This version has the form

LM = Tg′TWTDg(Dg′WTDg)−1DR′(DRΣ̂DR′)−1DR(Dg′WTDg)−1Dg′WT gT

where Dg and GT are evaluated at θ̂.
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One way to motivate this version of the LM test is notice that if the restriction R(θ)

is true the DR(θ̂)dθ (evaluated at the restricted estimator) should be approximately zero

where θ̂ is evaluated at the constrained minimum. The idea (of this version of the LM-test)

is that you choose dθ as the update in a NEWTON algorithm, i.e.,

θN − θ̂ = (Dg′WTDg)−1Dg′WT gT (θ̂) ,

The idea of the LM test is that if the model fits well, the NEWTON step away from the

restricted parameter value will be small or, at least, orthogonal to DR. Now you find the

LM test-statistic by evaluating

[DR(θN − θ̂)]′V −1DR(θN − θ̂) ,

where V = DRΣ̂DR′ is the variance of DR(θ − θ̂) (ignoring the small sample variance in

DR), and

DR(θN − θ̂) = DR(Dg′WTDg)−1Dg′WT gT (θN−1) ,

using the expression for the Newton-step found above.

Finally the LR-test (of course it should strictly speaking be “LR-type test” for Likelihood-

Ratio type) is

LR = 2 ∗ T [JT (θr2)− JT (θu2 )] ,

where JT is the objective function (NB) evaluated at the optimal weighting matrix and

where the superscripts u and r of course indicates that the estimators were found in the

unrestricted and the restricted models respectively.

The Wald-, LM-, and LR-test can all be shown to converge in distribution to a χ2-

distribution with s (number of restrictions) degrees of freedom in the case where the re-

strictions are true.

Hansen (1982) suggested the following test for mis-specification: Consider

JT = TgT (θ̂2)
′Ω̂−1T gT (θ̂2) .

If the model is correctly specified this statistic is asymptotically χ2 distributed with degrees

of freedom equal to r − q, where q is the number of parameters estimated. So a value

that is far out in the tail indicates that the whole model is mis-specified. By the whole

model I do not mean that all parts of the model are mis-specified; but rather that some

part of the model is mis-specified - it could be that it was just the instruments that were

not pre-determined. This test is known as the test for overidentifying restrictions or

sometimes as the “Hansen J-test”.

Note that you cannot test unless you have more moment conditions than parameters (an

12



“overidentified model”), in the case the model is exactly identified the JT will be identically

0.

In Hansen and Singleton (1982) the model was rejected by the J-test, and my subjective

impression is that from then on it became acceptable for a while to present an econometric

estimation that rejected the model, as one that accepted the model. (This is the “scientific

method” that Summers reject for macroeconomics. It seems that Summers won in that

dimension, because at present it is basically impossible to publish an article that rejects the

model.)

I often find the J-test useless. Models are never exactly true so the result of the J-test

will usually be that it accepts the model (due to lack of power) if the number of observa-

tions is low, and rejects the model if the number of observations is high.

Simulated GMM

You may sometimes be in the situation where you cannot find an analytic expression for

ft. However, you might be able to simulate ft. It is most easily explained by an example.

Consider, for example, an MA(2) process

yt = ut + b1 ut−1 + b2ut−2 , (∗)

where the error terms areN(0, σ2) distributed. The parameter vector here is θ′ = {b1, b2, σ2}.
For this model, I would actually use the Kalman-filter to evaluate the likelihood function for

this particular model, but this is just an example, so imagine I couldn’t find the likelihood

function or the conditional likelihood function. Then I might simulate some moments for

the yt process. For example, I might use a random number generator to draw N = 100, 000

observations u1, ..., uN and calculate y3, ..., yN using equation (*). I would set this up as a

subroutine named, e.g., SIM(θ) in GAUSS [meaning that you call the subroutine SIM as

a function of a given set of parameters]. Then, in the same subroutine I could calculate,

say, m1(θ) = ΣN
i=3yi, m2 = ΣN

i=3y
2
i m3 = Σt

i=3y
4
i . Note that we would have to call the

routine for a given parameter vector θ = {b1, b2, σ2}. Assume now that xt, t = 1, ..., T is

your actual data. Now you would define g′T = {m1 − ΣT
t=1xt,m2 − ΣT

t=1x
2
t ,m4 − ΣT

t=1x
4
t }.

and you would minimize

θ̂ = argminθ g
′
TWT gT .

This would give you a consistent estimate of θ. Note that this might be slow because for

each step θN in the Newton algorithm, you need to call SIM(θN ) in order to calculate the

moments. As a matter of fact, for this model this would not be a problem since a modern

computer can do this very quickly. In principle, any model that can be simulated (which

more or less is the universe of models can be put into the SIM routine and some moments

returned). In practice, you would have trouble with a large General Equilibrium (GE)

model— GE models typically would need to be simulated which means that you would add
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a layer of non-linear simulations for each θN ...but as computers get faster you might be able

to do it for a small GE model if you program cleverly. (Since there would be billions of

calculations they better be streamlined.)

You need to choose N much larger than T—otherwise you need to take the extra vari-

ance that comes from simulating the moments into account when calculating std. errors.

Choice of moments. What matter much more for efficiency than the choice of weighting

matrix is the choice of moments. In the case, as in the Hansen-Singleton model, where

“choice of moments” means “choice of instruments” theory give little guidance. You can

show that as T gets larger you should use more instruments, but in practice you have one

T and you have to use common sense (use instruments that are not to correlated, don’t

use too many, ...). In the case, such as the MA(2) example, where you actually choose

moments, you can more or less guess which moments will be good. For example, the ones

I chose above, were pretty bad. An MA(2) model is characterized by non-zero first and

second autocorrelations and higher order correlations being zero. So good moments would

be the empirical variance, first, second, third, and maybe fourth order autocorrelations,

rather than the higher moments I chose above.

It is possible to be quite systematic about this. Gallant and Tauchen suggested a method

called Efficient Method of Moments (EMM) that can be used if you have a model

with a likelihood function that you cannot write down such as a stochastic volatility model

but you have a model that captures similar features of the data such as a GARCH model,

you can actually estimate the GARCH model even if it is misspecified and then use the

first derivatives of the likelihood function as the moment conditions. More precisely, if

s(θ, x) is the score function (the derivative of the likelihood function) as a function of the

data, you use simulated method of moments to match this to the model, but drawing a

long series of observations yi and calculate s(θ, y) and then your moment conditions are

gT = s(θ, x)− s(θ, y). For the particular models that I mentioned this turns out to actually

work very well—see the very comprehensive Monte Carlo papers by Andersen and Sorensen

(1996) and Andersen, Chung, and Sorensen (1999). I also have some hand-written notes on

EMM that you can have if you are interested.

5 Variance estimation.

Most of the underlying math in this note builds on Anderson (1971), chapters 8 and 9.

[This book is now available in the Wiley Classics series].

Note that this material in principle is independent of GMM estimation. For example,
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Phillips and Perron has a, quite well known, unit root test that uses the material below.

Because Hansen and Singleton in the famous paper used this type of variance estimation it

is sometimes (as in the Davidson-MacKinnon textbook) treated as part of GMM estimation

from the beginning, but in my view that is making a confusing soup out of two different

issues. First recall that

Ω = lim
J→∞

J∑
j=−J

E[ftf
′
t−j ] .

Notice, that for any L dimensional vector a we have

a′Ωa =
J∑

j=−J
a′ft(a

′ft−j)
′ ,

so, since the quadratic form Ω is characterized by the bilinear mapping a → a′Ωa (and

similar for estimates Ω̂, you see that the behavior of the estimators are characterized by the

actions of the estimator on the univariate processes a′ft. In the following I will therefore

look at the theory for spectral estimation for univariate processes, and in this section we

will ignore that ft is a function of an estimated parameter. Under the regularity conditions

that is normally used, this is of no consequence asymptotically.

Defining the j’th autocorrelation γ(k) = Eftft−j , our goal is to estimate
∑∞
j=−∞ γ(j) .

Define the estimate (based on T observations) of the j’th autocorrelation by

c(j) =

∑T
t=j [ftf

′
t−j ]

T
; j = 0, 1, 2, ... .

Notice that we do not use the unbiased covariance estimate of the autocovariances (this is

obtained by dividing by T − j rather than T ).

We will use estimators of the form

Ω̂ =
J∑

j=−J
wjc(j) ,

where the wj are a set of weights. (The reason for these and how to choose them is the

subject of most of the following). The dependence of ft on the estimated parameter will be

suppressed in the following, but it is always evaluated at our estimate.

The spectral density is

f(λ) =
1

2π

∞∑
k=−∞

γ(k)cos(λk) .
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NOTE: f now denotes the spectral density as is common in the literature, it is NOT the

moment condition!

We only need the spectral density at λ = 0 but the theory makes use of the whole function

and you will hear people talk about “spectral estimator.”

In most cases, the weights take the form

wj = k(
j

KT
) ,

where k() is a continuous function (a “kernel”), k(0) = 1, k(x) = k(−x), normalized such

that the implied w∗ satisfies
∫ π
−π w

∗(λ|ν)dλ = 1 for all ν. We will always assume that KT

tends to infinity with T .

The most commonly used kernel was suggested by Bartlett and popularized in a 1987

Econometrica article by Newey and West. It has the form

wj = 1− abs(j)/KT

for abs(j) < KT , 0 otherwise. It is also sometimes known as a “tent” kernel (try and draw

it).

Andrews (1991) shows the consistency of various kernel smoothed spectral density esti-

mates (at 0 frequency), when the covariances are estimated via estimated orthogonality

conditions (or as you would usually say: when you use the error terms rather than the

unobserved innovations). In this case, some more regularity conditions, securing that the

error term varies smoothly with the estimated parameters, are clearly necessary but since

those are usually satisfied in practise and no-one typically checks them, we will not go into

the details of this.

Andrews shows that the asymptotically optimal kernel is the Quadratic Spectral (QS) kernel

which have the form

kQS(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
.

You may want to try and plot it (using, for example GAUSS). I do not want you to try and

remember the exact formula, but remember the name.

Andrew find the optimal bandwidth to have the form

K∗T = 1.1447[α(1)T ]
1
3
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for the Bartlett kernel, and

K∗T = 1.3221[α(2)T ]
1
5

for the QS kernel. (Notice how slowly they grow with the number of observations T .)

The α parameter depends on the (unknown) spectral density function at frequency 0,

but Andrews suggest that one assume a simple form of the model, e.g. an AR(1) or an

ARMA(1,1), or maybe a VAR(1) in the vector case, and use this to obtain an initial es-

timate of f(0) which one then uses for an estimate of the α parameter. Notice that the

important thing here is to get the order of magnitude right, so it is not necessary that the

approximating AR(1) (say) model is the “correct” model. In case you knew the correct

parametric model for the long run variance you would obtain more efficiency using this

model directly rather than relying on non-parametric density estimators. In any event you

can show for example for an AR(1) model with autoregressive parameter ρ that

α(1) =
4ρ2

(1− ρ)6(1 + ρ)2
/

1

(1− ρ)4
.

You should plot the one given here in order to get a feel for it—for example, if ρ is 0, the

estimated Ω will not use any autocorrelation of order larger than 0. In general, if there is

a lot of autocorrelation, we need to include more lags or we will have a lot of bias while,

if there is little autocorrelation, we are better of not including a lot of lags since the noise

from those will dominate the bias created by leaving them out. (You should know this

pattern and you should know there is a formula, but don’t try to memorize the exact form

of α(1). More formulas are giving in Andrews (1991), you will need for example α(2) to

use the QS kernel. Andrews also gives formulas for both α(1) and α(2), for the case where

the approximating model is chosen to be an ARMA(1,1), an MA of arbitrary order or a

VAR(1) model. Typically the simple AR(1) model is used.

In a typical GMM application you would run an initial estimation, maybe using the identity

weighting matrix, then you would obtain an estimate of the orthogonality conditions (in

other word, you would get some error terms) and on those you would estimate an AR(1)

model, obtaining an estimate ρ̂, and you would then find

α̂(1) =
4ρ̂2

(1− ρ̂)6(1 + ρ̂)2
/

1

(1− ρ̂)4
.

which you would plug into your formula for the optimal bandwidth [this would be for the

Bartlett kernel, for the QS kernel you would obviously have to find α(2)].

Usually you will have multivariate models and you would have to estimate either a multi-

variate model for the noise (e.g. a VAR(1)), although I personally estimate an AR(1) for

each component series and then use the average (i.e. setting the weights wa in Andrews’

article to 1) - this is the way the GMM program that I gave you is set up.
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In my experience, the choice between (standard) k-functions matters little, while the choice

of band-width (KT ) is important. I am not quite sure how much help the Andrews’ formulae

are in practice, but at least they have the big advantage that if you use a formula then the

reader know you didn’t data mine KT .

Pre-whitening

Since the usual weighting scheme gives the autocorrelations less than full weight it is easy

to see, in the situation where they are all positive, that the spectral density estimate is

always biased downwards. Alternatively, remember that the spectral density estimate is a

weighted average of the sample spectral density for neighboring frequencies, so if the sam-

ple spectral density is not “flat”, the smoothed estimate is biased. Therefore Andrews and

Monahan (1992) suggest the used of so-called “pre-whitened” spectral density estimators.

The idea is simple (and not new - see the references in Andrews and Monahan) - if one

can perform an invertible transformation that makes the sample spectrum flatter, then one

should do that, then use the usual spectral density estimator, and finally undo the initial

transformation. This may sound a little abstract but the way it is usually implemented is

quite simple: Assume you have a series of “error” terms ft and you suspect (say) strong

positive autocorrelation. Then you may want to fit an VAR(1) model (the generalization

to higher order VAR models is trivial) to the ft terms and obtain residuals, which we will

denote f∗t , i.e.

ft = Âft−1 + f∗t .

More specifically the process of finding the f∗t s from the ft is denoted pre-whitening. It is

easy to see that in large samples this implies (approximately)

(I − Â)
1

T

T∑
1

ft =
1

T

T∑
1

f∗t ,

so we see that

V ar{ 1

T

T∑
1

ft} = (I − Â)−1V ar{ 1

T

T∑
1

f∗t }(I − Â′)−1 ,

and to find your estimate of V ar{ 1T
∑T

1 ft} you find an estimate of V ar{ 1T
∑T

1 f
∗
t } and use

this equality. This is denoted “re-coloring”. The reason that this may result in less biased

estimates is that f∗t has less autocorrelation and therefore a flatter spectrum around 0. On

the other hand the pre-whitening operation may add more noise and one would usually only

use pre-whitening in the situation where strong positive auto-correlation is expected. Also

be aware that in this situation the VAR estimation is not always well behaved and you may

risk that I − Â will be singular. Therefore Andrews suggests that one use a singular value

decomposition of Â and truncate all eigenvalues larger than .97 to .97 (and less than -.97
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to -.97) - see Andrews and Monahan (1992) for the details.

Andrews and Monahan supply Monte Carlo evidence that shows that for the models they

consider, pre-whitening results in a significant reduction in the bias, at the cost of an in-

crease (sometimes a rather large increase) in the variance. In many applications you may

worry more about bias than variance of your t-statistics, and pre-whitening may be pre-

ferred.

An alternative endogenous lag selection scheme [I won’t ask questions about

this].

In a recent paper Newey and West (1994) suggest another method of choosing the lag length

endogenously. Remember that the optimal lag-length depends on

α(q) = 2

(
f (q)

f(0)

)2

.

Newey and West suggest estimating f (q) by

f̂ (q) =
1

2π

n∑
r=−n

|r|qc(r)

which you get by taking the definition and plugging in the estimated autocorrelations and

truncating at n. Similarly they suggest

f̂(0) =
1

2π

n∑
r=−n

c(r) .

Note that this is actually the truncated estimator (which have all weights equal to unity for

the first autocorrelations and 0 thereafter) of the spectral density that we want to estimate

but they suggest only to use this estimate in order to get

α̂(q) =

(
2f̂ (q)

f̂(0)

)2

,

and then proceed to find the actual spectral density estimator using a kernel which guar-

antees positive semi-definiteness. Newey and West show that one has to choose n of order

less than T 2/9 for the Bartlett kernel and order less than T 2/25 for the QS kernel. Note

that there still is an arbitrary constant (namely n) to be chosen, but one may expect that

the Newey-West lag selection scheme will be superior to the Andrews scheme in very large

samples, (if you let n grow with the sample) since it does not rely on an arbitrary approx-

imating parametric model. In Newey and West (1994) they perform some Monte Carlo

simulations, that show that their own lag selection procedure is superior to Andrews’ but

only marginally so. In the paper Andersen and Sørensen (1996) we do, however, find a
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stronger preference for the Newey-West lag selection scheme in a model with high autocor-

relation and high kurtosis.

6 Theory Sketch

Now it is easy to show that ∫ π

−π
cos(λh)f(λ)dλ =

1

2
γ(h) ,

since
∫ π
−π cos(λh)cos(λj)dλ = πδhj (where δhj is Kronecker’s delta [1 for h = j, 0 other-

wise]). You can easily see that the spectral density is flat (i.e. constant) if there is no

autocorrelation at all, and that f(λ) becomes very steep near 0, if all the autocovariances

are large and positive (the latter is called the ”typical spectral shape” for economic time

series by Granger and Newbold). In any event, since we want to estimate only f(0), this is

the all the intuition you need about this.

The Sample Spectral Density

Define

I(λ) =
1

2π

T∑
k=−T

c(k)cos(λk) .

I(λ) is that sample equivalent of the spectral density and is denoted the sample spectral

density. It is fairly simple to show (you should do this !) that

I(λ) =
1

2πT
|
T∑
t=1

fte
iλt|2 .

The importance of this is that it shows that the sample spectral density is positive. We

do not want spectral estimators that can be negative (or not positively semi-definite in the

multivariate case).

Anderson (1971), p. 454 shows that

EI(0) =

∫ π

−π
kT (ν)f(ν)dν ,

where

kT (ν) =
sin2 1

2νT

2πT sin2 1
2ν

is called Fejer’s kernel. Notice that the expected value is a weighted average of the values of

f(λ) in a neighborhood of 0. If the true spectral density is flat then the sample spectrum is
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unbiased but otherwise not in general. Anderson also shows (page 457) that if the process

is normal then

V ar(I(0)) = 2[E{I(0)}]2

(for non-normal processes there will be a further contribution involving the 4th order cu-

mulants).

If
∑
|γ(k)| <∞ then on can show that

lim
T→∞

EI(λ) = f(λ) ,

and for normal processes on can show that

lim
T→∞

V arI(0) = 2f(0)2 ,

(and again there is a further contribution from 4th order cumulants for non-normal pro-

cesses).

One can also show that (for normal processes)

lim
T→∞

Cov{I(λ)I(ν)} = 0 ,

for λ 6= ν, so that the estimates for even neighboring λs are independent. This independence

together with the asymptotic unbiasedness is the reason that one can obtain consistent

estimates of the spectral density by “smoothing” the sample spectrum.

For a general (and extremely readable) introduction to smoothing and other aspects of

density estimation (these methods are not specific for spectral densities), see B. Silverman:

“Density Estimation for Statistics and Data Analysis”, Chapman and Hall, 1986.
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Consistent estimation of the spectral density

One can obtain consistent estimates of the spectral density function by using weights, i.e.

for a sequence of weights wj

f̂(γ) =
1

π

T−1∑
r=−T+1

cos(γr)wrc(r) .

If you define

w∗(λ|ν) =
1

π

T−1∑
r=−T+1

cos(λr) cos(νr)wr ,

it is easy to see that

f̂(ν) =

∫ π

−π
w∗(λ|ν)I(λ)dλ .

We will only use these formula’s for ν = 0, but the important thing to see is that our

estimate of the spectral density is a smoothed estimate of the sample spectral density. Also

note that the usual way to show that a set of weights result in a positive density estimate

is to check that the implied w∗(.|0) function is positive.

Anderson (page 521) shows that

limEf̂(0) =

∫ π

−π
w∗(λ|0)f(λ)dλ .

This means that the kernel smoothed estimate is not in general consistent for a fixed set

of weights. Of course if the true spectral density is constant the smoothed estimate will be

consistent (since the weights will integrate to 1 in all weighting schemes you would actually

use), but the more “steep” the actual spectral density is, the more bias you would get. We

will show how one can obtain an asymptotically unbiased estimate of the spectral density

by letting the weights be a function of T, but the above kind of bias is still what you would

expect to find in finite samples, which is why it is worth keeping in mind.

For the asymptotic theory the smoothness of the function k near 0 is important, define

kq as

lim
x→0

1− k(x)

|x|q
= kq ,

where q is the largest exponent for which kq is finite. Various ways of choosing the function

k to generate the weights result in different values of q and kq. Under regularity conditions

(most importantly
∑∞
r=−∞ |r|qγ(k) < ∞) you find that for KT → ∞ such that the q-th

power grows slower than T , Kq
T /T → 0, then

limKq
T [Ef̂(ν)− f(ν)] =

−kq
2π

∞∑
r=−∞

|r|q cos(νr)γ(k) .
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Note that this implies that the smoothed estimate is consistent, and the most important is

the rate of convergence, which is faster the larger Kq
T (subject to being less than T).

It is easy to verify that q = 1 for the Bartlett kernel, and q = 2 for most other kernel

schemes used. For the variance one can show that

lim
T→∞

T

KT
var{f̂T (0)} = 2f2(0)

∫ 1

−1
k2(x)dx

(for the estimate at points not equal to zero or π the factor 2 disappears - this is due to

the fact that the spectral density is symmetric around 0, so at 0 a symmetric kernel will in

essence smooth over only half as many observations of the sample spectral density). So we

notice that the variance does not go to zero at the usual parametric rate 1
T , but only at the

slower rate KT /T . So in order to get low variance you would like KT to grow very slowly,

but in order to obtain low bias you would like KT to grow very fast. You can also see that

asymptotically the kernel with higher values of q will totally dominate the ones with lower

values of q since you for the same order of magnitude of the variance get a lower order of

magnitude of the bias. In practice this may no be so relevant, however, since the parameter

q only depends on the kernel near 0, which only really comes into play in extremely large

samples.

The only kernels that allow for a q larger than 2 are kernels that do not necessarily give

positive density estimates, which people tend to avoid (although Lars Hansen have used

the truncated kernel, which belongs to those). Among the kernels that have q = 2 Andrews

show that the optimal kernel is the one which minimizes k2q (
∫ 1
−1 k

2(x)dx)4. (See Andrews

(1991), Theorem 2, p. 829). This turns out to minimized by the Quadratic Spectral (QS)

kernel.

The usual way the bias and the variance is traded off is by minimizing the asymptotic

Mean Square Error. For simplicity define

f (q) =
1

2π

∞∑
r=−∞

|r|qγ(r) .

It is simple to show that the MSE is

KT

T
f2(0)

∫ 1

−1
k2(x)dx +

(
1

Kq
T

)2

k2q [f
(q)]2

Now in order to minimize the MSE, differentiate with respect to KT , set the resulting

expression equal to 0, solve for KT and obtain

KT =

(
2qk2q [f

(q)]2

f(0)2
∫
k2

) 1
2q+1

T
1

2q+1
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For example for the Bartlett kernel you can find k(0) = 1 and
∫
k2 = 2/3. Andrews define

α(q) =
2[f (q)]2

f(0)2

and the optimal bandwidth

K∗T =

(
qk2q∫
k2(x)dx

) 1
2q+1

(α(q)T )
1

2q+1

so you find

K∗T = 1.1447[α(1)T ]
1
3

for the Bartlett kernel, and

K∗T = 1.3221[α(2)T ]
1
5

for the QS kernel.
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