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1 References (with comments)

1.1 Methodology

Blaug, M. (1980): “The Methodology of Economics”, Cambridge, UK: Cambridge University Press.

A readable introduction to methodology as seen from a methodologist, who is not an econometri-

cian. This is quite a large field; but unfortunately (in spite of lengthy discussions of testability)

quite disconnected from econometrics. There is a recent edition.

Caldwell, B. (1982): “Beyond Positivism: Economic Methodology in the 20th Century”, Lon-

don: George Allan and Unwin.

A - maybe slightly more modern - book on general methodology in the same area as Blaug’s.

Granger, C.W.J. (Ed.): “Modeling Economic Series”, Oxford: Oxford University Press, 1990.

A book af readings in methodology from the perspective of econometricians. Some of the articles

are classics that you should know. The focus is too much on the LSE tradition to my taste.

Nickell, S. (1985): “Error Correction, Partial Adjustment and All That: An Expository Note”,Oxford

Bulletin of Economics and Statistics”, 47, no. 2.

Sims,C.A. (1982) : “Policy Analysis with Econometric Models”, Brookings Papers on Economic

Activity, no. 1.

Summers, L.H. (1991) : “The Scientific Illusion in Empirical Macroeconomics”, Scandinavian Jour-

nal of Economics 93, 129-148.

A somewhat provocative article about macroeconometrics. Summers’ basic claim is that only “sim-

ple” econometric studies (or even just tabulations of data) has been useful in econometrics. The

1



articly is quite provocatory and not very precise in it use of terms, but Summers do make a number

of clever observations that are worth considering.

Rational expectations econometrics

Hansen, L.P. and T. Sargent (1991): “Rational Expectations Econometrics”, Boulder: Westview

Press. HB3730.H284.

A collection of older but unpublished notes and articles. Chapter 2 is lecture notes on least squares

prediction theory, and the best place that an econometrician can get a rigourous introduction to

that area.

Lucas,R. and T. Sargent (1981): “Rational Expectations and Econometric Practice”, London:

George Allan and Unwin. HD82.

A collection of mostly published articles. The introduction is interesting reading. I think that the

book has been reprinted by the University of Minnesota Press in 2 volumes.

Sargent, T. (1987): “Dynamic Economic Theory”, Cambridge, Mass.: Harvard University Press.

A graduate textbook. The book uses fairly advanced time series methods, so it will be easier to

read after following this course.

1.2 Basic time series analysis

NOTE: Basic time series is an important part of the course. The books below are listed approxi-

mately in the order that I think that you may find them useful.

Harvey, A.C. (1993): “Time Series Models. 2nd Edition”. Cambridge: MIT Press.

This is an introduction to classical time series analysis written by an econometrician. Very readable

- an excellent place to start.

Lütkepohl, H. (1991): “Introduction to Multiple Time Series Analysis”, Heidelberg: Springer Ver-

lag. QA280.L87.

A quite comprehensive textbook on multiple time series written for economists. It is mostly about

stationary time series; but it has a chapter on co-integrated series. It is solid and well written - a

good place to learn about multiple time series.

Harvey, A.C. (1990): “The Econometric Analysis of Time Series. 2nd Edition,” Cambridge: The

MIT Press.

An econometrics book with a time-series perspective. I find it sloppily written here and there, but

sometimes this is the most easily accessible place to find a result.
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Harvey, A.C. (1989): “Forecasting, Structural Time Series Models and the Kalman Filter”, Cam-

bridge, U.K.: Cambridge University Press.

Treats the Kalman filter in detail. This is a very useful tool for time series analysis, and it has the

advantage that it is of very general applicability - we will use the Kalman filter to estimate vector

ARMA models.

Aoki, M. (1990) : “State Space Modeling of Time Series. 2nd Edition, New York: Springer Verlag.

I haven’t read the whole book, but it seem to be a quite good book, with more of a “systems

engineering” ( a huge field that one may have to look into once in a while) feeling to it.

Fuller, W.: “Introduction to Statistical Time Series”, New York, Wiley 1976. QA280.F84.

This is an introduction to classical time series written by a statistician. It is also quite readable,

and a bit more comprehensive than Harvey (1981). It has a subsection (8.5) on non stationary

time series and testing for a unit roots. That chapter is famous among econometricians and helped

spark the unit root revolution in econometrics.

Granger, C. and Newbold, “Forecasting Economic Time Series”, 2nd Edition, New York, Aca-

demic Press, 1986. HB 3730.G67.

This is quite a popular textbook for graduate time series courses. It covers a lot of topics, and has

quite a bit of words in it - discussing modelling from the perspective of econometricians. In spite

of that it is a quite advanced book. It is a very good book to read; but maybe best after some of

the concepts have been learned.

Mills, T.C. (1990) : “Time Series Techniques for Economists”, Cambridge University Press. HB135.M54

1990.

A recent introduction to time series - maybe you would find it useful as supplementary reading for

the first half of the course. The paperback version is quite inexpensive.

Whittle, P. (1983) : “Prediction and Regulation. By least squares methods”, 2nd revised edi-

tion. Minnesota: University of Minnesota Press.

This book covers the time series methods that Sargent (in particular) makes heavy use of. Contrary

to the other time series books mentioned it does not focus on estimation.

Box, G.E.P. and G.M. Jenkins (1976): “Time Series Analysis. Forecasting and Control”, 2nd

Edition, Oakland: Holden-Day.

This is a classic book that made the so-called ARIMA modeling (also known as Box-Jenkins mod-

eling) enormously popular.

Anderson, T.W.: “The Statistical Analysis of Time Series, New York, Wiley, 1971.

A classic with a wealth of results. Maybe a little outdated by now (but still worth reading).
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Reprinted in the series: Wiley Classics.

Brockwell, P.J. and Davis, R.A.: “Time Series: Theory and Methods”, Springer 1987. QA 280.B76.

I like this book, it is clear exposition of classical theory; but also with some chapters on newer meth-

ods. It uses more advanced math; but explains it along the way. I think there is a later edition.

Priestley,M.B.: “Spectral Analysis and Time Series”, New York: Academic Press, 1981. QA280.

A comprehensive treatment of classical time series methods, with a lot of weight on spectral meth-

ods. (Available in two hardcover volumes; but you may prefer the one volume paperback if you

have to buy it).

Priestley,M.B. “Non-linear and Non-stationary Time Series Analysis”. London: Academic Press,

1988.

This is not the kind of non linearity and non stationarity that we will concentrate on in this course.

But take a look if you want to see what a statistician might mean by those terms (and it is poten-

tially useful in economics).

Strang, G. (1980):“Linear Algebra and Its Applications”, 2nd Edition, New York: Harcourt Brace

Jovanovich.

A very readable math book, that I will use for reference.

A few articles (out of an ocean)

Engle,R.F., D.F. Hendry, and J.-F. Richard (1983): “Exogeneity”, Econometrica, 51, 277-305.

This article defines exogenity in term of a precise probability model. A very useful article (even if

we may not have time to get to it).

Berk,K.N. (1974): “Consistent Autoregressive Spectral Estimates”, Annals of Statistics, 2, 489-

502.

A classical (though a bit hard for economists) article that shows that one can approximate an

infinite AR model by a sequence of AR models of increasing dimension and still obtain consistent

estimates.

1.3 General asymptotic theory

Most of the asymptotic results that we will come across is covered in the specific references. Here

is just a few general references that give a coverage of the background theory.

Dhrymes, P.J. (1989) : “Topics in Advanced Econometrics. Probability foundations”, New York:

Springer Verlag.HB139.D49.

I have only skimmed it. It may be more accessible than the other two books mentioned here.
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Hall, P. and Heyde, C.C. (1980) : “Martingale Limit Theory and its Applications”, New York:

Academic Press. QA 274.5.H34.

This is an advanced book. It is the source of most of the probability results that are used in the

modern theoretical time series papers in econometrics (both GMM and unit-root type results).

White, H (1984) : “Asymptotic Theory for Econometricians”, New York, Academic Press. HB

139.W5.

This book treats only linear models. It has some of the important results from Hall and Heyde

(1980) in a more accessible form.

1.4 Testing

NOTE: The most general results (outside newer research articles) on testing in non-linear models

are in Gallant (1987) that is listed under GMM. We will not have time for talking much about

testing in this course, so you may have to consult the literature on your own at some stage. Here

are a few scattered references to help you get started.

MacKinnon, J.G. (1992) : “Model Specification Tests and Artificial Regressions”, Journal of Eco-

nomic Literature, 30, 102-147.

A recent survey with many references.

Godfrey, L.G. (1988): “Misspecification Tests in Econometrics”, Cambridge, UK: Cambridge Uni-

versity Press. HB139.G63.

Treats LM testing in detail. A good place to read about testing.

Engle, R. (1982): “A General Approach to Lagrange Multiplier Model Diagnostics”, Journal of

Econometrics, 20, 83-104.

Engle, R. (1984): “Wald, Likelihood Ratio and Lagrange Multiplier Tests in Econometrics”, Hand-

book of Econometrics, Vol 2, Ch. 13.

A well written (and much read) survey.

Hausman, J. (1978): “Specification Testing in Econometrics”, Econometrica, 46, 1251-1272.

This introduced the now very famous “Hausman test”. You may want to take a look at this article,

if you do not know what a “Hausman test” is.

Newey, W. (1985): “GMM Specification Testing”, Journal of Econometrics, 29, 229-256.

Newey, W.K. (1985): “Maximum Likelihood Specification Testing and Conditional Moments Test”,

Econometrica, 53, 1047-1071.
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Perron, P. (1991) : “Test Consistency with Varying Sampling Frequency”, Econometric Theory 7,

341-361.

An interesting article. It shows for example that when you test for unit roots in the AR(1) model

without drift, then your test is only consistent if the length of the observation period goes to infinity;

but not if you obtain closer observations with the same span of the data.

Singleton, K.J. (1985): “Testing Specifications of Economic Agents’ Intertemporal Optimum Prob-

lems in the Presence of Alternative Models”, Journal of Econometrics, 30, 391-413.

Tauchen, G. (1985): “Diagnostic Testing and Evaluation of Maximum Likelihood Models”, Journal

of Econometrics, 30, 415-443.

White, H. (1983) (Ed.): Special issue of Journal of Econometrics, 21, no. 1.

This is about non-nested tests, which we will not make much of in the course; but they may come

in handy some day.

1.5 Probability theory of importance for unit root and continuous time econo-

metrics

NOTE: Most of this is advanced material that is hard for an economist. We will not go deep into

any of these books; but the references may be useful later.

Billingsley, P. (1968) : “Convergence of Probability Measures”, New York: John Wiley & Sons.

This book gives the background theory for convergence to Wiener processes, that forms the back-

ground for most of the modern unit root theory. It is very well written; but written for statisticians.

The following 3 books are about stochastic integration and differential equations. One does not

need to master that subject, even to do research in unit root econometrics. The important thing

is to understand what a stochastic integral actually is and to understand how to use Ito’s lemma.

Chung, K.L. and R.J. Williams (1990) : “Introduction to Stochastic Integration”, 2nd Edition,

Boston: Birkhauser.

This is one of the more accessible introductions to stochastic integrations, although it is rigourous

mathematically.

Øksendal, B. (1985) : “Stochastic Differential Equations”, Berlin: Springer-Verlag. QA274.23.047.

There are several later editions.

This is presumably the most accessible introduction to the subject. It is rigourous but without

stressing proofs. There is a later edition.
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Protter, P. (1990) : “Stochastic Integration and Differential Equations. A new approach”, New

York, Springer Verlag.

This is my favorite reference to the modern theory of stochastic integration. It is a very good book;

but it is also hard.

1.6 Unit Roots (and including unit roots-and-cointegration)

You may not believe it, but this is just a small selection of the most important articles.

Surveys

Cambell, J.Y. and P. Perron: “Pittfalls and Opportunities: What Macroeconomists Should Know

About Unit Roots”, NBER Macroeconometrics Annual 1991, 141-218. (With discussion).

The best of the surveys in my opinion.

Bannerjee, A. and D.F. Hendry (1992) : “An overview”, Introduction to special issue on coin-

tegration: Oxford Bulletin of Economics and Statistics 54, no. 3.

It is not the most comprehensive survey (nor was it intended to be), but it may be worth taking a

look at. There is a few things in it that I cannot quite make sense of.

Diebold, F.X. and Nerlove,M. (1990): “Unit Roots in Economic Time Series: A Selective Sur-

vey”, in T.B.Fomby and G.F. Rhodes (eds.): Advances in Econometrics, Vol 8, “Cointegration,

Spurious Regressions, and Unit Roots”. Greenwich: JAI Press.

Dolado, J.J., T. Jenkinson, and S. Sosvilla-Rivero: “Cointegration and Unit Roots”, Journal of

Economic Surveys, 4, 249-275.

Stock, J.H. (1994) : “Unit Roots and Trend Breaks”. Handbook of Econometrics, Vol IV (R.F.

Engle and D.L. McFadden Eds.).

A good place to read about recent developments and get ideas for research.

Stock, J.H. and M.W.Watson (1988) : “Variable Trends in Economic Time Series”, Journal of

Economic Perspectives 2, Summer 1988, 147-174.

A good survey for the applied econometrician.

Theory

Andrews, D.W.K. (1993) : “Exactly Median-Unbiased Estimation of First Order Autoregres-

sive/Unit Root Models”, Econometrica 61, 139-167.

Beverage, S. and C.R. Nelson (1981): “A New Approach to the Decomposition of Economic Time

Series into Permanent and Transitory Components with Particular Attention to the Measurement
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of the ‘Business Cycle”’, Journal of Monetary Economics, 7, 151-174.

A quite simple paper (in the Journal of Monetary Economics!), but the decomposition turns out

to be very useful - in particular as a tool in theoretical work.

Bhargava, A. (1986) : “On the Theory of Testing for Unit Roots in Observed Time Series”, Review

of Economic Studies 53, 369-384.

Chan, N.H. and C.Z. Wei (1988) : “Limiting Distributions of Least Squares Estimates of Un-

stable Autoregressive Processes”, Annals of Statistics 16, 367-402.

A pathbreaking article that solved a lot of hard questions for unstable multivariate processes. Hard

reading for an economist, but if you are doing theory it may be worth it.

Cochrane,J.H. (1988) : “How Big is the Random Walk in GNP?”, Journal of Political Economy

96, 893-920.

Dickey,D.A., W.R. Bell, and R.B.Miller (1986):“Unit Roots in Time Series Models: Tests and

Implications”, The American Statistician, 40, no. 1, 12-26.

Dickey, D.A. and W.A. Fuller (1979) : “Distribution of the Estimators for Autoregressive Time

Series With a Unit Root”, Journal of the American Statistical Association 74, 427-431.

Dickey, D.A. and W.A. Fuller (1981) : “Likelihood Ratio Statistics for Autoregressive Time Series

With a Unit Root”, Econometrica 49, 1057-1072.

Elliott, G., T.J. Rothenberg, and J. Stock (1996) : “Efficient Tests for an Autoregressive Unit

Root”. Econometrica 64, 813-836.

Seems like the best unit test, so you may want to among the first to use it.

Evans, G.B.A. and N.E. Savin (1981) : “Testing for Unit Roots: 1”, Econometrica 49, 753-779.

Evans, G.B.A. and N.E. Savin (1984) : “Testing for Unit Roots: 2”, Econometrica 52, 1241-

1269.

The Evans and Savin papers are classical early papers.

Hall, A. (1992) : “Testing for a Unit Root in Time Series using Instrumental Variable Estima-

tors with Pretest Data Based Model Selection”, Journal of Econometrics 54, 223-251.

Test for unit roots are usually using an ARMA representation. This paper treats the important

problem of how one can choose the order of the ARMA representation from the data, and what

effect this has (asymptotically) on the unit root test.
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Maddala, G.S. (1992): “Introduction to Econometrics, 2nd Ed.”, New York: Macmillan.

Comment: Maddala’s book is an advanced undergraduate textbook. It has a quite readable in-

troduction to unit roots and cointegration that supplements these notes - but I don’t think many

undergraduates will understand a word. (It is not really authoritative though, so you should only

take this as an easy introduction).

Nabeya, S. and K. Tanaka (1990) : “A General Approach to the Limiting Distribution for Estima-

tors in Time Series Regression with Nonstable Autoregressive Errors”, Econometrica 58, 145-163.

A very clever method (going back to T.W. Anderson and maybe earlier) to find the characteristic

function of asymptotic distributions. The paper by Nabeya and Sørensen (listed under “Near Unit

Roots”) shows (among other things) the relation between the expressions for limiting distributions,

in terms of integrals of Brownian motions that dominate the literature, and the Nabeya-Tanaka

approach.

Phillips, P.C.B. (1987a) : “Time Series Regression with a Unit Root”, Econometrica 55, 277-

301.

Schmidt, P. (1990): “Dickey-Fuller Tests with Drift”, in T.B. Fomby and G.F. Rhodes, Jr. (Eds.),

Advances in Econometrics, Vol 8., p. 161-203.

Schmidt, P. and P.C.B. Phillips (1992) : “LM Tests for a Unit Root in the Presence of Deter-

ministic Trends”, Oxford Bulletin of Economics of Statistics 54, 257-289.

Schwert, G.W. (1989) : “Tests for Unit Roots: A Monte Carlo Investigation”, Journal of Business

& Economic Statistics 7, 147-161.

West, K.D. (1988) : “Asymptotic Normality when Regressors Have a Unit Root”, Econometrica

56, 1397-1419.

White, J.S. (1958) : “The Limiting Distribution of the Serial Correlation Coefficient in the Explo-

sive Case”, Annals of Mathematical Statistics 29, 1188-1197.

Phillips, P.C.B. and Perron, P. (1988): “Testing for a Unit Root in Time Series Regression”,

Biometrika, 75, 335-346.

Bayesian approaches to unit root theory

There is a lot of other articles in this area, but we will not have time for Bayesian methods unless

there is particular student interest. Ask me for further references if you are interested. There is a

special issue of Econometric Theory coming out this year (or next).
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Berger, J. O. (1985) : “Statistical Decision Theory and Bayesian Analysis. 2nd Edition.” New

York: Springer-Verlag. QA279.4.B46.

A good statistics book to read if you want to really go into Bayesian methods.

Sims, C.A., and H.Uhlig (1991) : “Understanding Unit Rooters: A Helicopter Tour”, Econometrica

59, 1591-1601.

Phillips, P.C.B. (1991): “To Criticize the Critics: An Objective Bayesian Analysis of Stochas-

tic Trends”, Journal of Applied Econometrics, 6, no 4.

Special issue with extensive (and animated) discussion of unit roots and Bayesian methods. You

can find lots of references here.

Applications

Nelson,C.R. and C.I.Plosser (1982) : “Trends and Random Walks in Macroeconometic Time Se-

ries”, Journal of Monetary Economics 10, 139-162.

A widely read article that sparked a lot of the interest in unit root econometrics.

Campbell,J.Y. and N.G.Mankiw (1987) : “Are Output Fluctuations Transitory?”, Quarterly Jour-

nal of Economics, November, 857-880.

Campbell,J.Y. and N.G.Mankiw (1989) : “Consumption, Income, and Interest Rates: Reinter-

preting the Time Series Evidence” NBER Macroeconomics Annual, 185-216.

Inference for models with near unit roots

(Relative to its importance this subject has “too many” references; I had them on the machine

since I have done work in that area).

Cavanagh, C. (1986) : “Roots Local to Unity”, Harvard Institute of Economic Research, Dis-

cussion Paper No. 1259.

Chan, N.H. (1988) : “The Parameter Inference for Nearly Nonstationary Time Series”, Journal

of the American Statistical Association 83, 857-862.

Chan, N.H. and C.Z. Wei (1987) : “Asymptotic Inference for Nearly Nonstationary AR(1) Pro-

cesses”, Annals of Statistics 15, 1050-1063.

Nabeya, S. and B.E. Sørensen (1994) : “Asymptotic Distributions of the Least Squares Estimators

and Test Statistics in the Near Unit Root Model with Non-Zero Initial Value and Local Drift and

Trend”, Econometric Theory, 10, 937-967.
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Perron, P. (1989) : “The Calculation of the Limiting Distribution of the Least-Squares Estimator

in a Near-Integrated Model”, Econometric Theory 5, 241-256.

Perron, P. (1991) : “A Continuous Time Approximation to the Unstable First-Order Autore-

gressive Process: The Case Without an Intercept”, Econometrica, 59, 211-236 .

Phillips, P.C.B. (1987b) : “Towards a Unified Asymptotic Theory for Autoregression”, Biometrika

74, 535-547.

Phillips, P.C.B. (1988) : “Regression Theory For Near Integrated Time Series”, Econometrica

56, 1021-1045.

Sørensen,B.E. (1992):”Continuous Record Estimations in Systems of Stochastic Differential Equa-

tions”, Econometric Theory, 8, 28-51.

Cochrane,J.H. (1991) : “A Critique of the Application of Unit Root Tests”, Journal of Economic

Dynamics and Control, 15, 275-284.

1.7 Cointegration

Survey:

Watson, M.W. (1994) : “Vector Autoregressions and Cointegration”. Handbook of Econometrics

Vol IV (R.F. Engle and D.L. McFadden, Eds.).

A recent survey by one of the major players in the field.

Books:

Banerjee, A., J. Dolado, J.W. Galbraith, and D.F. Hendry (1993) : “Co-Integration, Error-

Correction, and the Econometric Analysis of Non-Stationary Data.”, Oxford: Oxford University

Press.

The first book on co-integration. I have used it as a text. The authors are all very good applied

people.

Johansen, S. (1995): “Likelihood-Based Inference in Cointegrated Vector Auto-Regressive Models”,

Oxford University Press.

The “Johansen method” is very powerful and Johansen’s coverage is very good and precise. Jo-

hansen is a statistician, and you might want to look elsewhere for applications.

Cointegration: Theory
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Engle,R.F. and C.W.J. Granger (1987): “Cointegration and Error Correction: Representation, Es-

timation, and Testing”, Econometrica, 55, 251-276.

The classic article. If you want to do empirical work you should be aware that the methods here

are already a bit outdated.

Engle,R.F. and S.B. Yoo (1987): “Forecasting and testing in co-integrated systems”, Journal of

Econometrics, 35, 143-159.

Engle,R.F. and S.B. Yoo (1991): “Cointegrated Economic Time Series: An Overview with New

Results”, p. 237-267 in Engle, R.F. and C.W.J. Granges (Eds.): “Long Run Economic Relation-

ships”, Oxford University Press, Oxford.

Granger,C.W.J. (1981) : “Some Properties of Time Series Data and Their Use in Econometric

Model Specification”, Journal of Econometrics, 16, 121-130.

The first appearence of the word cointegration. Granger said: “..a very special case...seems to be

potentially very important..” You bet!

Granger,C.W.J. and T.-H. Lee (1990) : “Multicointegration”, Advances in Econometrics, 8, 71-84.

Granger,C.W.J. and P. Newbold (1974) : “Spurious Regressions in Econometrics”, Journal of

Econometrics, 2, 111-120.

Hansen, B. (1992) : “Efficient Estimation and Testing of Cointegrating Vectors in the Presence

of Deterministic Trends”, Journal of Econometrics, 53, 87-123.

Ho, M.S. and B.E. Sørensen (1996) : “Finding Cointegration Rank in High Dimensional Sys-

tems Using the Johansen Test”, Review of Economics and Statistics 78, 726-732.

Show that you have to be careful if the dimension of your VAR gets too large.

Johansen, S. (1988) : “Statistical Analysis of Cointegration Vectors”, Journal of Economic Dy-

namics and Control, 12, 231-254.

The first derivation of the maximum likelihood estimator for cointegrated models.

Johansen, S. (1991): “Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian

Vector Autoregressive Models”, Econometrica, 59, 1551-1581.

Extends the 1988 paper, in particular to allow for potential drift (an important extension for the

practitioner).
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Johansen, S. (1992a): “Cointegration in Partial Systems and the Efficiency of Single-Equation

Analysis”, Journal of Econometrics, 52, 389-403.

Johansen, S. (1992b) : “Determination of Cointegration Rank in the Presence of a Linear Trend”,

Oxford Bulletin of Economics of Statistics 54, 383-399.

This article is useful in particular because it clearly explains how to perform the likelihood ratio

tests for number of unit roots in connection with testing for a linear trend in the series.

Johansen, S. (1992c) : “A Representation of Vector Autoregressive Processes Integrated of Or-

der 2”, Econometric Theory, 8, 188-203.

Johansen, S. (1992d) : “A Statistical Analysis of Cointegation for I(2) variables”, Econometric

Theory 11, 25-59.

Johansen, S. and K. Juselius (1992): “Testing Structural Hypotheses in a Multivariate Cointe-

gration Analysis of the PPP and UIP for the UK”, Journal of Econometrics, 53, 211-245.

It can be hard to understand some of the Johansen-methods. It may be a good idea to read an

applied paper before the theory in order to pin down the aims of the method. This is not a bad

place to start.

J.J.M. Kremers, N.R. Ericson, and J.J. Dolado (1992) : “The Power of Cointegration Tests”,

Oxford Bulletin of Economics and Statistics 54, 325-349.

MacKinnon, J.G. (1991): “Critical Values for Cointegration Tests”, p. 267-276 in Engle, R.F.

and C.W.J. Granger (Eds.): “Long Run Economic Relationships”, Oxford University Press, Ox-

ford.

Park, J. (1992): “Canonical Cointegrating Regressions”, Econometrica, 60, 119-145.

Phillips, P.C.B. (1986) : “Understanding Spurious Regressions in Econometrics”, Journal of Econo-

metrics 33, 311-340.

Phillips, P.C.B. (1991a) : “Optimal Inference in Cointegrated Systems”, Econometrica 59, 283-

306.

Phillips, P.C.B. (1991b): “Spectral Regression for Cointegrated Time Series”, p. 413-437 in W.A.

Barnett, J. Powell and G. Tauchen (Eds.): “Nonparametric and Semiparametric Methods in Econo-

metrics And Statistics”, Cambridge University Press, Cambridge, UK.

Phillips, P.C.B. and B. Hansen (1990) : “Statistical Inference in Instrumental Variables Regression
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with I(1) Processes”, Review of Economic Studies 57, 99-127.

Phillips, P.C.B. and M. Loretan (1991): “Estimating Long-Run Economic Equilibria”, Review

of Economic Studies, 58, 407-437.

Quah,D. (1990): “Permanent and Transitory Movements in Labor Income: An Explanation for

‘Excess Smoothness’ in Consumption”, Journal of Political Economy, 98, 449-476.

Quah,D. (1992): “The Relative Importance of Permanent and Transitory Components: Identi-

fication and Some Theoretical Bounds”, Econometrica 60, 107-119.

Saikkonen, P. (1991): “Asymptotically Efficient Estimation of Cointegration Regressions”, Econo-

metric Theory, 7, 1-21.

Saikonnen, P. (1992): “Estimation and Testing of Cointegrated Systems by an Autoregressive

Approximation”, Econometric Theory, 8, 1-28.

Sims, C.A., J.H. Stock, and M.W. Watson (1990) : “Inference in Linear Time Series Models

with Some Unit Roots”, Econometrica 58, 113-145.

Stock, J.H. (1987) : “Asymptotic Properties of Least Squares Estimators”, Econometrica 55, 1035-

1056.

A classic article, where Stock showed the super-consistency of cointegration estimators.

Stock, J.H. and M.W. Watson (1988) : “Testing for Common Trends”, Journal of the Ameri-

can Statistical Association, 83, 1097-1107.

Stock, J.H. and M.W. Watson (1993) : “A Simple Estimator of Cointegrating Vectors in Higher

Order Integrated Systems”. Econometrica 61, 783-821.

Applications

Davidson, J.E., D.F. Hendry, F. Srba, and S. Yeo (1978) : “Econometric Modelling of the Aggregate

Time-Series Relationship between Consumers’ Expenditure and Income in the United Kingdom”,

Economic Journal, 88, 661-692.

An important precursor for cointegration models (before that term was coined). Popularized “error-

correction” models in econometrics.

King, R.G., C.I. Plosser, J. Stock, and M. Watson (1991) : “Stochastic Trends and Economic

Fluctuations”, American Economic Review, 81, 819-841.
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1.8 Nonlinear-, Instrumental variable-, and GMM-estimation

Books:

Sargan, D. (1988): “Lectures on Advanced Econometric Theory”, Oxford: Basil Blackwell. HB139.S26.

This book does not cover non-linear estimation; but it has a nice description of Instrumental Vari-

ables estimation that may be a helpful preparation for studying GMM-estimation.

Gallant, R.A.: “Nonlinear Statistical Models”, New York, John Wiley, 1987. QA278.2.G35.

This is a comprehensive textbook/ reference in dynamic non-linear modeling. It covers ML and

GMM methods. Parts of the books is well written with examples; but the more advanced parts are

hard. If you do research involving non linear models, it is a good book to buy.

Theoretical articles

Hall, A. (1992) : “Some Aspects of Generalized Method of Moments Estimation”, Mimeo. Forth-

coming: Handbook of Statistics, Vol. 11: Econometrics, Eds. C.R. Rao and G.S. Maddala.

This is the most accessible introduction to GMM. It overlaps with the econ 266 notes; but is more

extensive.

Ogaki, M. (199x) : “Generalized Method of Moments: Econometric Applications”, Handbook of

Statistics, Vol. 11: Econometrics, Eds. C.R. Rao and G.S. Maddala.

A readable survey. One may want to start with Hall’s article and then read Ogaki’s. Together they

give a very good coverage of GMM for a serious applied econometrician.

Hansen,L. (1982) : “Large Sample Properties of Generalized Method of Moment Estimators”,

Econometrica 50, 1029-1054.

This is a very famous article. The article covers the theory behind GMM. I found it very hard to

read the first 5 times that I tried.

Hansen,L. (1985) : “A Method for Calculating Bounds on the Asymptotic Covariance Matrices of

Generalized Method of Moments Estimators”, Journal of Econometrics 30, 203-239.

Hayashi,F. and C.Sims (1983) : “Nearly Efficient Estimation of Time Series Models with Predeter-

mined, but not Exogenous Instruments”, Econometrica 51, 783-798.

Jorgenson,D.W., J.-J.Laffont (1975) : “Efficient Estimation of Nonlinear Simultaneous Equations

with Additive Disturbances”, Annals of Economic and Social Measurement 3, 615-640.
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Lee, B.-S. and B.F. Ingram (1991) : “Simulation Estimation of Time-Series Models,” Journal of

Econometrics 47, 197-207.

Simulation estimation of GMM. Can be very useful in a situation where the model can not be

explicitly “solved” in such a way that usual GMM can be applied.

Pötcher and Prucha (1991a): “Basic Structure of the Asymptotic Theory in Dynamic Nonlinear

Econometric Models. I. Consistency and Approximation Concepts.” Econometric Reviews 10,

125-217.

Pötcher and Prucha (1991b): “Basic Structure of the Asymptotic Theory in Dynamic Nonlinear

Econometric Models. II. Asymptotic Normality.” Econometric Reviews 10, 253-357. (Followed by

discussion)

NOTE: The Pötcher and Prucha articles are advanced surveys containing new results. They are

aimed at the theorist rather that the applied researcher, although you may have to consult them if

the assumptions that for example Gallant (1987) employs, do not fit your problem.

Singleton,K.J. (1988) : “Econometric Issues in the Analysis of Equilibrium Business Cycle Models”,

Journal of Monetary Economics 21, 361-387.

Tauchen, G. (1986) : “Statistical Properties of GMM estimates of Structural Parameters Using

Financial Markets Data”, Journal of Business and Economic Statistics, 4, 397-416.

White,H. (1982) : “Instrumental Variables Regression with Independent Observations”, Economet-

rica, 50, 483-500.

GMM estimation - selected applications

The applications here are all to macro-economics. There are also lots of applications of GMM in

microeconometrics and finance.

Eichenbaum,M. and L.P.Hansen (1990) : “Estimating Models With Intertemporal Substitution

Using Aggregate Time Series Data”, Journal of Business & Economic Statistics 8, 53-71.

Eichenbaum,M., L.P.Hansen, and K.Singleton (1988) : “A Time Series Analysis of Representa-

tive Agent Models of Consumption and Leisure Choice under Uncertainty”, Quarterly Journal of

Economics 103, 51-79.

Hansen,L. and K.Singleton (1982) : “Generalized Instrumental Variables Estimators of Nonlinear

Rational Expectations Models”, Econometrica 50, 1269-1286.

A very famous article that received the Frish medal for best empirical paper in Econometrica.

Played a big role in making GMM so popular.
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Lucas, R.E. Jr. (1978): “Asset Prices in an Exchange Economy”, Econometrica, 46, 1429-1445.

Note: This reference is not about GMM, but it gives the theory behind the very influential paper

of Hansen and Singleton.

Mankiw,N.G., J.Rotemberg, and L.Summers (1985) : “Intertemporal Substitution in Macroeco-

nomics”, Quarterly Journal of Economics, 10, 225-251.

1.9 Estimation of variance-covariance matrices

Andersen, T.G. and B.E. Sørensen (1996) - “GMM Estimation of Stochastic Volatility Models. A

Monte Carlo Study,” Journal of Business & Economic Statistics 14, 328-352.

This paper shows among other things that the methods of selection lag length when estimating

the weighting matrix (the spectral density at frequency 0) may make a large difference in “tricky”

models.

Andrews,D.W.K. (1991) : “Heteroskedasticity and Autocorrelation Consistent Covariance Matrix

Estimation”, Econometrica 59, 817-859.

Andrews,D.W.K. and J.C.Monahan (1992) : “An Improved Heteroskedasticity and Autocorrelation

Consistent Covariance Matrix Estimator”, Econometrica 60, 953-967.

At the time of this writing the Andrews papers are the state of the art, and this is the estimator

that should be used in applied work.

Newey,W.K. and K.D.West (1987) : “A Simple Positive Semi-definite, Heteroskedasticity and Au-

tocorrelation Consistent Covariance Matrix”, Econometrica 55, 703-708.

1.10 Conditional Heteroskedasticity, ARCH

This is only the most important theoretical articles. There is a huge number of applications. If we

decide to cover ARCH in more detail, I will give you a revised reading list.

The first 2 papers are survey papers, which you can consult for more references:

Bollerslev, T., R.Y. Chou, and K.F.Kroner (1992): “ARCH Modeling in Finance: A Review of the

theory and Empirical Evidence”, Journal of Econometrics, 52, 5-61.

Bollerslev, T., R.F. Engle, and D.B. Nelson (1994): “Arch Models”, Handbook of Econometrics

Vol IV (R.F. Engle and D.L.McFadden).
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Bollerslev, T. (1986): “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of

Econometrics, 31, 307-327.

Engle, R. (1982): “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance

of U.K. Inflation”, Econometrica, 50, 307-327. The “original ARCH-paper”.

Engle,R.F. and T. Bollerslev (1986): “Modeling the Persistence of Conditional Variances,” Econo-

metric Reviews, 5, 1-50.

Engle,R.F., D.M. Lillien, and R.P. Robbins (1987): “Estimating Time Varying Risk Premia in the

Term Structure: the ARCH-M Model,” Econometrica, 55, 391-407.

Ho,M.S., W.R.M. Perraudin, and B.E. Sørensen (1996): “A Continuous Time Arbitrage Pricing

Model with Conditional Stochastic and Jumps”. Journal of Business & Economic Statistics, 14,

31-44.

Here you can see how I think that it should be done. This paper also applies GMM estimation (in

a somewhat different fashion from the papers mentioned above).

Nelson, D.B. (1991): “Conditional Heteroskedasticity in Asset Returns: A New Approach”, Econo-

metrica, 59, 347-371.
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2 Method

It is important before discussing various econometrics approaches to have a bit of historical per-

spective and talk a little about some important philosophies for empirical work.

Books about methodology proper is not of too much help for the applied economist. Two widely

read books on methodology are Blaug (1980) and Caldwell (1982). One thing that strikes an econo-

metrician when reading those books is the fact that a major theme for both authors is whether

testing of economic theories is possible; but they have absolutely no discussion on how this testing

should or might take place. Nevertheless, it is important to read books on methodology, if on has

interest in that area, because methodologists develop a precise language by which one can discuss

methods.

Blaug seems to be quite positive towards the idea that economic models should be testable, al-

though he realizes that it is not as simple as that, whereas Caldwell has a much more sceptical view

towards testability as you might guess from the title (“Beyond Positivism...”). One interesting line

of thought is developed by Lakatos. We won’t go into details of his theories; but just note that he

claims that all theories come with a “protective belt” of supporting hypothesis, so that an empirical

rejection can always be attributed to flaws in the protective belt rather than in the theory.

An example from economics. Say you want to test the hypothesis of Rational Expectations. Then

you will build a model, usually assuming a form of a utility function etc., and estimate it. If you

reject the implications of the model, does that mean that RE is wrong. No! You probably just

chose the wrong utility function. Or if you didn’t do that, there is an infinity of reasons why the

data might not be just right. And so on. You can think of many examples yourself. I find the

protective belt analogy very convincing; but I don’t see it as devastating for testing. If models

generated from a certain theory consistently fail to perform, this theory will sooner of later fall

out of fashion. Isn’t this a reasonable description of what has happened over the years in economics?

The debate on econometrics, among econometricians, intensified around 1970 and after. There

was a widespread dissatisfaction with the general state of empirical work, presumably provoked

by the hard times that the big econometrics models had with predicting the developments in the

economy in the early 70ies.

A caricature of empirical work in the 60ies could be like this. An article would contain a first

half of theory, which could be more or less formal. In the middle of the article the theory would

drop out and the researcher would start estimating linear regressions. Presumably the theory had

motivated which variables should enter the equations. Now the researcher would run 100, say,

regressions and only 5 per cent of those would give significant coefficients. So the other 95 per

cent would be discarded and the 5 per cent “good” results presented in the paper. Variants of

this method will be termed “Data Mining”. If results have been obtained by data mining the test

statistics are totally unreliable. (Also: what is a “good” result. Our profession will hopefully soon

be mature enough that all results will be published if they represent careful research, whether they

19



support a given theory or not).

This line of modeling was attacked by several young econometricians and economists. Leamer

had a famous article called “Let’s Take the Con Out of Econometrics” (see Granger (1990)) and

Hendry suggested an approach based on much more explicit recognition of time series structure

combined with extensive testing. Sims criticized structural equation modeling and suggested the

use of vector time series methods (see Granger (1990) for articles by Hendry and Sims). Hendry

was particularly influential in England whereas Sims had a quite large following in the US. In the

US, the most influential critique of econometric practice was voiced by Lucas, who claimed that

typical econometric equations could not be assumed to be stable to policy interventions and there-

fore useless for what they were primarily intended for (see Lucas and Sargent (1981)).

Consider the model

yt = b′xt ,

where xt is a vector of regressors and b a vector of parameters. The early way to estimate this

model would consist in adding an innovation term and estimate the model by least squares. One

would then look at diagnostics like DW and maybe test for heteroskedasticity and if these diag-

nostics were satisfactory, so were the model. (This is also a bit of caricature, I know that many

econometricians did quite a good job, especially making use of residual plots to check for problems.

The problem of this approach is that it is quite subjective as compared to formal tests).

The Hendry critique was primarily centered on the fact that such an approach did not take the

actual stochastic structure of the model into account. Hendry suggested that one instead assumed

a general statistical model for the data, which he described by an unknown density D(xt, yt ;β),

where β is a vector of parameters. This unknown density is called the Data Generating Process

(DGP) and it is the job of the empirical econometrician to try and uncover this DGP or at least the

part of it that is relevant for modeling yt. In order to do this in practice, one ought to start with

the most general model possible and then test down to the preferred model. Hendry claims that

the three golden rules of econometrics is “test, test and test”. Hendry has developed a software

package PC-GIVE that makes his method easy to implement. The Hendry school, to which we will

return in the Time Series part of the course, is also know as “the LSE tradition” (much of it going

back to Dennis Sargan who was professor at LSE) or “British Econometrics”. Hendry’s method

was a precursor for the modern co-integration methods.

It is of course impossible to evaluate broad methods in general; but it is important to notice

already the statistical approach. Hendry’s method may be superior if you want to obtain the best

possible statistical model for the selected series. Notice that this is totally different from what the

methodologist were considering, namely whether economic theory is testable.

One development that is less susceptible to data mining is the formulation of economic models
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that are non-linear. One of the advances in the 70ies was the widespread use of nonlinear models

that were derived from theory. Still the time series structure was not taken into account to any

major degree. In their article in the Handbook of Econometrics Granger and Watson (1984) claims

that “For many years economists and particularly econometricians behaved as though they did not

realize that much of their data was in the form of time series or they did not view this fact as being

important”. However, the situation has changed a lot since then.

The Rational Expectations (RE) school of econometrics which was pionered by Sargent, evolved as

a reaction to the Lucas critique. Let us look at a simple example, as is typical for the RE school this

assumes an “agent” maximizing “utility”. Here look at a firm maximizing profits over an infinite

time horizon. The criterion function is

MaxN→∞Et

N∑
j=0

βj [(at+j − wt+j)nt+j − (γ/2)n2
t+j − (δ/2)(nt+j − nt+j−1)2 ]

here nt−1 is fixed, where nt+j is input of a production factor to time t+j, wt+j is price of the factor

at t+j, and at+j is a stochastic variation in the production process that the producer observes; but

that is unobserved to the modeler. γ , β, and δ are positive constants. It is assumed that wt and

at follows stochastic processes that are known to the producer.

This is a very typical example of an RE model of early vintage. (The linear quadratic models that

can be solved explicitly is treated in some advanced examples by Hansen and Sargent (in Lucas and

Sargent (1981)). In the present course we will concentrate on the later non-linear models; primarily

because they need more specialized econometric methods (the subject of the course!) but they have

also been more popular in recent years).

Hansen and Sargent (see p. 94 ff. in Lucas and Sargent (1991), and also Sargent (1987) App. A.5

for mathematical details) show that the above model has the solution

nt = ρnt−1 − (ρ/δ)
∞∑
j=0

(βρ)jEt[wt+j − at+j ] ,

where 1/ρ is the smallest root of the equation 1 + γ/δ+1+β
β z + 1

β z
2 = 0. Now assume for simplicity

that Etat+j = 0; j > 0 and that wt+j = αjwt + ut+j for all j > 0 where EtUt+j = 0 and positive

parameter α < 1. Then the solution is

nt = ρnt−1 − bwt + at .

for

b =
ρ

δ(1− βρα)
.

This model demonstrates all the outstanding features of the RE school.

I. Heavy reliance on economic theory (but often with a representative agent),

II. All the stochastics is part of the model.
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III. Cross-equation restrictions: To estimate the model you would use the equations

nt = ρ(γ, δ, β)nt−1 −
ρ(γ, δ, β)

δ[1− βρ(γ, δ, β)α]
wt + at .

and

wt = αwt−1 + ut .

This is a simple example of cross-equations restriction, where α occurs in both equations. A note on

identification. In non-linear equation systems there are no simple conditions for identification, so

one has to examine on an ad hoc basis whether there is a unique solution in terms of the structural

parameters. Here, the second equation identifies α, but it is not so easy to see if the rest of the

parameters are identified - it is pretty obvious that we can not identify both β and δ, and my guess

is that you would choose to fix β and the system would then be identified. We won’t have time

to discuss identification much in this course (and there are not really any general results), but be

aware of the problem. I could also mention a 4th typical feature of linear RE models: they are often

complicated. Some of the linear RE models that Hansen and Sargent developed in the early 80ies

are very complicated (the above were very much simplified), and they may well be too complicated

to estimate on most datasets, which may well be the reason why this type of models are not more

popular.

The example is also useful in order to illustrate the Lucas critique. The main point of the

Lucas critique is that if one estimates the model for nt, one will get an estimate of the parameter

b, but if the model is not derived from a basic optimization problem the model will break down

if an intervention (in most examples a policy intervention) changes one of the basic parameters,

e.g. α. See Lucas (1976) (printed in Lucas and Sargent (1976)). The Lucas critique was seen as

a scathing critique against the large Keynesian macroeconometric models; but even though it was

widely influential it is not obvious how important it is in practice (Sims (1982) argues that it may

turn out to be more a cautionary footnote than a devastating critique).

For our purpose here it is most important to notice the model building strategy that explicitly

takes into account the stochastic nature of the variables at the model building stage and typically

imposes numerous non-linear restrictions on the parameters of the model.

Can one say that an economic theory approach is better than a statistical approach. I doubt

it. There seems to have been quite a bit of discussion of various models advantages (see the articles

in Granger (1990)); but in general my point of view is that such a discussion is totally meaningless

unless one discusses which method is best for a specific purpose. For short term forecasting a more

statistically based model may be preferable; but if one want to test economic theory, the model

has to be based tightly on theory. An appreciation of that point would, I think, make for a more

enlightened debate.

An interesting example is the consumption function. Here “British” and “American” methods

have competed head on. Two very famous articles which are in the British and the American tra-

dition, respectively, are the Error Correction Model (ECM) of Davidson et al. (1978), sometimes
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referred to as DHSY (1978) after the authors Davidson, Hendry, Srba and Yeo, and Hall (1978)

(reprinted in Lucas and Sargent (1981)), which “showed” that consumption is a martingale. (A

time series Xt is a martingale if the conditional expectation of the change in the series is 0, i.e.

Et(Xt+1) = Xt. A lot of effort has gone into testing Hall’s model, and it proved surprisingly

hard to reject the simple prediction, although the consensus now is that “consumption” is not a

martingale. (Notice that I haven’t made very explicit whether I talk about aggregate consumption

or individual consumption or how that is defined). Some authors seemed to take that as a rejection

of RE. That is of course crazy. In order to derive his conclusion Hall assume quadratic utility

and a fixed rate of return that furthermore had to equal the subjective rate of time preference.

Talk about protective belt! More understandable some authors might take the fact that the ECM

model seems to behave better as support for the British school. I think that there is no doubt the

ECM model predict consumption better; but that might be beside the point if you want to criticize

Hall, who was not really interested in prediction. Because the Hall model is derived from explicit

theoretical assumptions it gives a direct feedback to theory. For example, there seems to have

developed a general consensus in the profession that quadratic utility functions do not really do

the trick. (An interesting footnote is that the DHSY model can only be derived from a theoretical

model by assuming quadratic utility - see Nickell (1985)). The ECM model is still relevant since it

gave the impetus to the modern co-integration models (the ECM model is an example of a single

equation cointegration model), and much of the applied cointegration modeling is in the tradition

of Hendry et al. with a strong focus on statistical fit as opposed to economic theory content.

Bayesian approaches are also gaining terrain. Arnold Zellner from university of Chicago has for

many years tried to recruit econometricians to the Bayesian school, but so far has not convinced the

mainstream. Also Chris Sims from Yale has been proposing Bayesian methods, as for example in

Sims and Uhlig (1991). This paper (and related articles) seem to have provoked strong reactions as

witnessed by Phillips (1991) (a special issue of Journal of Empirical Economics). Bayesian theory

will, however, not be a focus of the present course. Talk to Tony if that has your interest.

Presently the dominating approach in main stream macro/general journals like the QJE and the

AER is the “Cambridge” or “NBER” style, which stresses simplicity and transparancy. This tradi-

tion reminds me personally a bit too much of 60ies econometrics. For a provocative methodological

paper from an influential Cambridge macro economist see the article by Summers (1991). Summers

claims that econometric studies has had very little influence on macroeconomic theory, and only

very simple estimations or even tabulations have been convincing. Summers challenges the reader

to find one simple instance where an econometric test has changed the way that macroeconomists

think about the world. I cannot think of any example of that, but I think that is besides the point.

As I argued previously, this is exactly what the “protective belt” analogy would make us expect,

but this does not imply that a series of empirical papers (maybe not all performing Tests with

capital T) will not change the way that macroeconomists think about the world if they consistently

reject (or confirm) a certain economic hypothesis.
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3 Time Series

This note gives a short introduction to time series. The aim is to define the most commonly used

concepts that you will meet in the literature and treat the concepts that are important for under-

standing of cointegration theory in more detail. Be aware that time series analysis is a huge area

and we will only touch the surface of it.

The book by Harvey (1981) is the easiest introduction for economists, and quite readable. The

book by Lütkepohl (1991) treats multivariate processes and it is fairly accessible to economists (it

is intended as a graduate textbook for economics students). It has most formulas that you might

want to use for standard vector time series models. If you need to go further than that, in the area

of vector time series, the book by Hannan and Deistler (1988) is good (but this is a much harder

book). If you need more general “probabilistic” results, by which I basically mean more general

(or different) assumptions about the probability structure of the model innovations, you may have

to go to the statistics or probability texts in the references or to journal articles. Granger and

Newbold’s book is also a quite popular textbook, it covers a lot of topics, but not quite at the same

level of detail as Lütkepohl’s book.

A time series is a collection of stochastic variables x1, .., xt, .., xT indexed by an integer value t.

The interpretation (which will be the only one applied in this course) is that the series represent a

vector of stochastic variables observed at equispaced time intervals. The series is also some times

called a stochastic process, but in this course I will try to restrict the term stochastic process to

series in continuous time, i.e. series of the form x(t) ; t ∈ [0, T ]. In engineering applications one

might have processes that are actually observed in continuous time, and even though stock prices

in principle can be observed continuously we will only meet continuous processes in this course in

connection with limiting distribution of unit root processes (to be defined). As you might expect,

continuous processes are much harder to treat rigorously than are discrete processes. The distin-

guishing feature of time series is that of temporal dependence: the distribution of xt conditioned

on the previous value of the series depends on the outcome of those previous observations, i.e. the

outcomes are not independent. For the purpose of analyzing a time series we will usually model

the time series over all the non-negative integers: xt ; t = {0, 1, ..,∞} or xt ; t = {−∞, .., 0, 1, ..,∞}.
Time 1 or time 0 will be the first period that you observe the series. In a specific model you will

have to be explicit about the initial value, as will be clear from the following.

3.1 Stationarity

Definition A time series is called stationary (or strictly stationary or completely stationary) if the

distribution of xt1, xt2, .., xtK for any selection of K time indices (for any K) is the same as the

distribution of xt1+m, xt2+m, .., xtK+m for any positive integer m. This is the rigorous definition. It

implies that the distribution of xt does not depend on the time index t; but this is not quite enough

for a stringent definition, since the marginal distribution conceivably could be constant over time

while the covariance between, say, neighboring observations could change. This is ruled out by the
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stringent definition.

For the following definition assume for simplicity that the series is univariate.

Definition A time series is called covariance stationary (or weakly stationary, or wide sense sta-

tionary, or 2nd order stationary, or (unfortunately) just stationary) if

E(xt) = µ ,

E[(xt − µ)2] = γ(0) ,

E[(xt − µ)(xt+k − µ)] = γ(k) ; k = 1, 2, ... ,

where γ(k) ; k = 0, 1.. are finite and (this is the stationarity) and independent of t.

Notice that this definition includes the condition that xt has finite variance. (It used to be possible

for econometricians to regard time series with infinite variance as pathological; but stock prices may

or may not have finite variance, and the class of ARCH models that are widely used at the present

also include models with infinite variance). Notice that there is a quite long tradition in time series

to focus on only the first two moments of the process, rather than on the actual distribution of

xt. If the process is normal all information is contained in the first two moments and most of the

statistical theory of time series estimators is asymptotic and more often than not only dependent

on the first two moments of the process. We will refer to theoretical constructs that only involve

the two first moments of the process as 2nd order concepts.

The first 2nd order concept we will consider is γ(k) considered as a function of k. This is

called the autocovariance function, and is (maybe in particular was) a heavily used tool in

applied time series analysis (see f.ex. Harvey’s book). It is still an important theoretical tool.

You may also come across the term autocorrelation function (often abbreviated ACF), which is the

autocovariance function divided through by the variance of xt, i.e. [1, ρ(1) = γ(1)/γ(0), ..].

Note that strict stationarity and finite variance implies covariance stationarity and that covariance

stationarity and normality implies strict stationarity.

For vector processes the definition is exactly the same; but the autocovariance function takes takes

matrix values Γ(k), where

E[(xt − µ)(xt+k − µ)′] = Γ(k) ; k = ..,−2,−1, 0, 1, 2, ... .

Note that we also define the autocovariance function for negative values. It is easy to see, though,

that Γ(k)′ = Γ(−k).

3.1.1 The lag- (backshift-) operator, the difference operator and their inverses

In this subsection I will try to explain lag-operators in some detail. There seems to be very few

explanations at this level in the literature, since the engineering oriented time-series books take the

engineers approach of just multiplying and dividing lag-polynomials without worrying the slightest

bit about what they are actually doing. There are of course mathematical statistics texts that are
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fully precise, but they are often difficult. The explanation I give here is precise, but not to the level

of the mathematical statistics texts, since I leave out a precise mathematical discussion of when

the limit of infinite sums are meaningful.

Recall that the backshift operator B (or the lag operator L - we will use both symbols for the

same thing) is defined by Bxt = Bxt−1. We will also define the symbol Bk as Bkxt = xt−k. You

should think of the lag-operator as moving the whole process {xt ; t = −∞, ...,∞}. Notice that it

is here practical to assume that the series is defined for all integer t - in applications this may not

always make sense, and in these cases you may have to worry about your starting values. We will

define lag polynomials as polynomials in the lag operator as follows. Let A(L) be the the lag

polynomial

A(L) = A0 + A1L + ... + ApL
p

which is defined as an operator such that

A(L)xt = A0 + A1xt−1 + ... + Apxt−p .

This simply means that the equation above defines A(L) by the way if operates on xt.

You can also invert the lag operator. The inverse lag-operator will be denoted

B−1 or
1

B
or L−1 or

1

L
.

These are just symbols for the operator that is the inverse of the lag-operator, namely the operator

that shifts the time-index one period forward in time: B−1xt = xt+1. Obviously BB−1 = I.

Similarly the inverse of the lag-polynomial is defined, we use the notation

A(L)−1 or
1

A(L)
,

where the “fractions” notation is used mostly for scalar processes. Of course A(L)−1 is defined as

the operator such that A(L)−1A(L)xt = A(L)A(L)−1xt = xt.

How do you find the inverse to a lag-polynomial? The key observation is that we can add

and multiply lag-polynomials in exactly the same way as we can add and multiply polynomials

in complex variables. For a given lag-polynomial A(L) we therefore define the corresponding z-

transform (also a label from the engineering literature) A(z) where z is a complex number. For

the purpose of this course you should always think of z as having length 1 (being on the complex

unit circle), even though some clever theorems for z-transforms can be shown using other z’s (using

complex function theory).

For now, restrict attention to scalar lag-polynomials, which I denote a(L). It is well know that

if a(z) = 1 + a1z + ....+ akz
k is a complex polynomial then

a(z) = (1− α1z)(1− α2z)...(1− αlz)

where 1
α1
, ..., 1

αk
are the roots of the polynomial. Recall that the roots will be complex conjugates if

the coefficients of a(z) are real numbers. Of course the lag-polynomial a(L) factors the same way.
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This means that all problems concerning inversion of lag polynomials can be reduced to inversion

of the first order polynomial 1 − az. This is really useful and even better: the multidimensional

case can also be reduced to considering the scalar first order polynomial. We will go through the

gory details below. You all know the formula (valid for |x| < 1)

1

1− x
= 1 + x + x2 + x3 + ....

(If you are not fully familiar with this equation, then you should take a long look at it, prove it for

yourself, and play around with it. It is very important for the following).

For |a| < 1 we now get

1

1− az
= 1 + az + (az)2 + (az)3 + ....

for |z| = 1 and
1

I − aL
= I + aL + (aL)2 + (aL)3 + ....

when this expression is well defined. Notice that this may depend on your assumptions about the

xt’s being operated upon by the lag operator. We will take the definition just given as the formal

definition of (1 − aL)−1 - then when you want to use the inverse of the lag operator on a given

series you have to make sure the expression

xt + axt−1 + a2xt−2 + ....

is well defined.

The inverse of the general scalar lag polynomial is now simply defined by inverting the “com-

ponent” first order lag polynomials one-by-one just as you invert a complex polynomial.

The difference operator ∆ is defined as ∆ = I −B giving ∆xt = xt − xt−1. The n’th power

of the difference operator is obtained by applying the difference operator k times. For example:

∆2xt = (xt − xt−1)− (xt−1 − xt−2) = xt − 2xt−1 + xt−2.

Polynomials in the difference operator are defined parallel to the definition of lag polynomials.

The inverse of the difference operator is the summation operator

∆−1xt =
t∑
i=0

xi .

Notice that you have to even more careful with inverse difference operators than with inverse lag

operators. This is because the infinite sum xt + xt−1 + xt−2 + ... typically is not well defined. You

therefore have to be explicit about the initial value x0 in order to obtain

∆−1∆xt = ∆∆−1xt = xt
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3.2 Order of integration

Definition A time series is called integrated of order k if ∆k is stationary. We say that xt is I(k).

Notice that k can be positive or negative, although k=1 and k=2 are most commonly encountered.

The definition can also be extended to non-integer k (in which case the series is called fractionally

integrated - fractional integration has recently been quite popular in econometric research, and may

turn out to become very useful in economics). An I(1) series is also often called difference stationary.

So an I(1) process is an example of a time series that is not stationary. Another example is

the process yt = βt + xt, where xt is stationary, which contain a linear trend. It is usually quite

easy to detrend a series containing linear (or polynomial) trends, so the fact that series may con-

tain deterministic trends does not subtract from the importance the theory of stationary processes.

Sometimes you may get the impression from a paper, that follows a strategy of testing the series

used for stationarity vs. difference stationarity, that the author is not imposing any stationarity

assumptions a priori. Nothing could be more wrong. The most devastating form of non stationarity

is when a time series just not follows the same distribution over time even after detrending, differ-

encing or whatever you could think of. In economics this could for example be caused by changes in

policy, cf. the Lucas critique, so doing pure time series analysis does not make one immune to this

critique even if all economic assumptions are implicit. As empirical economists you just have to

hope that the structure of the economy that you are modeling show enough stability to make your

models useful. (Testing for structural breaks in time series is, by the way, a very active research

area at the present).

Another very common example of a non stationary process is a process where x0 is considered fixed.

Such a process can not be stationary (unless it is degenerate and only takes one value). Sometimes

it is simpler to assume that the process is “started” at minus infinity, which is one major reason

that processes are often modeled for all integer t. We will discuss the problem of initial values again

in connection with AR(1) models and I(1) processes.

Definition: A process xt is called a martingale with respect to an increasing sequence of sigma-

fields (or σ-fields) {Fn, n ∈]−∞,∞[} if E{xt+k|Ft} = xt for all k > 0. For all practical purposes

you should think of Fn as yn, yn−1, .... where yn is a vector of variables that at least contains xn.

In economics we will always think of yn as either the universe of our model or as xn. We will

normally write Etxt+k as an abbreviation for E{xt+k|Ft}. Note that we here are not explicit about

the conditioning set. If nothing else is mentioned think of the conditioning set as being the past

of the process itself. In modern rational expectations economics, models can have very different

implications depending on which σ-field (often called “information set” in that literature) that

you condition upon, so you should not be cavalier about that. In this course, we will be often be

imprecise about the conditioning sets because we only focus on estimation issues. For a rigorous

mathematical introduction to martingale theory you should consult Hall and Heyde (1980) (and

if you want to know exactly what σ-fields are, you should consult standard textbooks in measure

theory).
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Definition: A process et is called a martingale difference sequence if Et(et+1) = 0.

Convince yourself that if xt is a martingale the ∆xt is a martingale difference sequence and vice

versa (the partial sum up to time t of a martingale difference sequence is a martingale).

Definition: A stationary process et with mean 0 is called white noise if γ(k) = 0 for k 6= 0.

Notice that a stationary martingale difference sequence is white noise.

Unfortunately not all authors define white noise exactly like this (some define it to be iid), but

this is the most common definition. Notice that in these notes, white noise is a 2nd order concept.

3.3 The Wold decomposition:

Wold’s theorem

Any stationary process Xt has a decomposition in an infinite MA-part and a deterministic part:

Xt = vt + B(L)ut ,

where vt is “deterministic” and the MA-representation is infinite in general. The series ut is mean

zero and uncorrelated.

A sketch of a proof in the normal case is the following:

Define

ut = xt − E[xt|xt−1, xt−2, ....]

Since the conditional expectation is linear in the variables that we condition upon (this is well

known in the case where we condition on a finite number of variables), we find

ut = xt − α1xt−1 − α2xt−2 + ... ,

or

xt = ut + α1xt−1 + α2xt−2 + ... .

Now use this equation shifted one period back to substitute for xt−1 and you get

xt = ut + α1 ∗ [ut−1 + α1xt−2 + α3xt−3 + ...] + α2xt−2 + α3xt−3... ,

from which

xt = ut + α1ut−1 + [α2
1 + α2]xt−2 + [α1α2 + α3]xt−3 + ... .

Substituting again, we find

xt = ut + α1ut−1 + [α2
1 + α2]ut−2 + .....

It is now clear that the coefficients of B(L) can be obtained by repeated substitutions. (Of course

this quickly becomes very tedious and this derivation is not used much in practice, but it shows

that it can be done). The “deterministic” term is then Xt − B(L)ut. Now you can see that this
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term is not necessarily deterministic in a strict since any random term that was decided at −∞
would be part of vt. In economics, where normally only one realization of a time series is available,

I do not see much use for a model where the vt were not assumed to be deterministic. Since a drift

term leaves the process non-stationary the vt term would have to be a constant. For that reason

you can basically think of the Wold representation as saying that any stationary process can be

written as an infinite moving average.

3.3.1 2nd-order representations and normality

In the case where xt is not normally distributed then you will get the same Wold-expansion as if

xt were normal. Why is that? This is because the Wold-expansion is an expansion in terms of

uncorrelated terms. In other words a 2nd order concept. The conditional expectation (E(X|Y ), say)

in a normal model is the function f(Y ) of Y that minimizes E(X−f(Y ))2. In the normal case this

happens to be a linear function. In the general (non-normal) case you find the Wold-representation

by finding the linear function that minimizes the variance of the remainder everywhere where the

conditional expectation was used in the above sketch of the proof. This is called a linear projection.

The linear projection gives you the same linear combinations as you get if you assume that the

process is normal and use the conditional mean. Think about this for a second or two - it all follows

because the formula for the variance of a linear combination is independent of the distribution of

the random variables.

For a rigorous proof (which unfortunately needs the introduction of a more advanced mathe-

matical machinery), see chapter 2 of Hansen and Sargent (1991). The rigorous proof is not much

different from what is done here, but here we have not shown carefully that all the infinite sums

always are well-defined (which they are).

3.4 MA models:

The simplest time series models are the moving average (MA) models:

xt = µ + ut + B1ut−1 + ... + Blut−l = µ + B(L)ut,

where the innovation ut is a martingale difference sequence (or white noise) and the lag-polynomial

is defined by the equation. The positive integer l is called the order of the MA-process. MA pro-

cesses are quite easy to analyze because they are given as a sum of independent (or uncorrelated)

variables. However, they may not always be easy to estimate: since it is only the xts that are

observed, the uts are unobserved, i.e. latent variables.

Consider the simple scalar MA(1)-model (I leave out the mean for simplicity)

(∗) xt = ut + but−1 .

If ut is an independent series of N(0, σ2
u) variables, then this model really only says that xt has

mean zero and and autocovariance function: γ(0) = (1+b2)σ2
u; γ(1) = γ(−1) = bσ2

u; γ(k) = 0; k 6=
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−1, 0, 1. (Notice that I here figured out what the model says about the distribution of the observed

x’s. Therefore this is what the model “really” says. The autocorrelation function for the MA(1)

model is trivial except for ρ(−1) = ρ(1) = b
1+b2

. By elementary calculus, it is easy to show that

the MA(1) has a maximum of 0.5 for the first order autocorrelation function.

This same statistical model could also be modeled

(∗∗) xt = vt + bvt+1 .

with vt having the same distribution as ut. Typically one will rule out the model (**) by assumption,

but even the model (*) does not identify the parameter b uniquely. If you only observe the data then

you can calculate the empirical autocovariance function and if the data are normally distributed

then this is basically all the information that the data is is going to give you (apart from the

mean). Assume that the autocovariance function for xt is γx(0) = 1 (you can always normalize)

and γx(1) = r and the higher order autocorrelations are all 0. Then we find the equation

c

1 + c2
= r

to determine c. But this is a second order polynomial, which has the solution c = 0 if r = 0 and

c = 1
2r ± .5

√
r−2 − 4, otherwise. Notice that this in general gives one solution in the interval [−1, 1]

and one solution outside this interval.

Consider equation (*) again. In lag-operator notation it reads

xt = (1 + bL)ut ,

which can be inverted to

ut = (1 + bL)−1xt = xt − bxt−1 + b2xt−2 + ...

It is quite obvious that this expression is not meaningful if |b| ≥ 1 since the power term blows up.

In the case where |b| < 1 the right hand side converges to a well defined random variable. This

follows for example from the following theorem for absolutely summable sequences:

Theorem

Let zt be a sequence of random variables with Ez2
t < c for some finite constant c, and let bi be

an absolutely summable sequence (i.e.
∑∞
i=1 |bi| < ∞) then

∑N
i=1 bizi converges (for N → ∞) in

probability to a well defined random variable, which we will denote by
∑∞
i=1 bizi

Definition: The scalar MA(q) model is called invertible if all the roots of the lag-polynomial

b(L) (strictly speaking the corresponding z-transform b(z)) are outside the unit circle.

In the invertible model the innovation term ut is a function of (the infinite past of) the observable

xts. This is often the most sensible assumption, and in any event the invertibility assumption is

almost always imposed in estimations in order for the maximum likelihood estimator to have a

unique maximum (i.e. for the model to be identified). Of course you may have an economic model
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where the uts have another interpretation - there is nothing inherently wrong with the non-invertible

MA model, but then you have to be careful with identification if you are estimating the model.

Let me finish this subsection by discussing the assumption on the ut terms in a little more detail.

In time series books you will often read that the exact assumptions on ut (white noise, independence

etc.) do not matter. It may not matter a lot for your estimations; but an economist/econometrician

ought not (except under extreme duress) write down a model without making clear to him- or herself

what are the assumptions on the error terms and the initial conditions. This type of modeling goes

back to the old days when economists build deterministic models and then at the last moment

tagged on an error term before sending the model down in the basement for processing by the

research assistants. In modern empirical model building the model is usually formulated explicitly

in terms of random variables and the the innovation terms will therefore have a clear interpretation.

I think it is almost correct to say that all discussions about what to assume about the innovation

term could have been avoided if the researcher had considered the fact that he is working with

stochastic variables from the outset. In a stochastic economic model it will very often be the case

that the error term has the character of a martingale difference sequence (which stops all discussion

of whether the model go backward or forward in time). A statistician may be more prone to assume

that the innovation terms are iid (and maybe normal) which is convenient for Maximum Likelihood

estimation. Notice that (assuming stationarity)

IID ⇒ MDS ⇒ white noise ,

so the white noise assumption is the weakest assumption.

3.5 AR models:

The most commonly used type of time series models are the auto regressive (AR) models. In vector

form it is often denoted a VAR process:

xt = µ + A1xt−1 + ... + Akxt−k + ut ,

where the innovation ut is a martingale difference sequence (or white noise). Here k is a positive

integer called the order of the AR-process. Such a process is usually referred to as an AR(k) pro-

cess. For simplicity I will use the notation AR-processes whether the process is scalar or multi

dimensional.

Note that sometimes “VAR-modeling” is used in a much more specific sense as a specific ap-

proach (using vector ARs as a tool) to macro econometric modeling. The VAR approach in the

narrow sense was suggested by Christopher Sims as an alternative to the big Keynesian macro

econometric models. The basic philosophy was that the usual macro models only can be identified

under extensive a priori restrictions (in order for individual equations to be identified it is usually

assumed that a given endogenous variable only depends on a limited number of other endogenous

variables). Sims finds many of these a priori restrictions “incredible” and suggest that one starts
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with an unrestricted VAR model instead. Sims’ article “Macroeconomics and Reality” is reprinted

in Granger (1991). We will not go into any more detail with Sims’ methodology; but it is a pos-

sible subject for a representation of a paper (the RATS software is particular well suited for VAR

modeling).

Most of the intuition for AR processes can be gained from looking at the AR(1) process, which is

also by far the commonly applied model. Assume for simplicity that the mean is 0, and let us first

consider the scalar case.

xt = axt−1 + ut .

If |a| < 1 the process is called stable. For example assume that x0 is a fixed number. Then

xt = x0a
t + at−1u1 + ... + aut−1 + ut .

The important thing to notice is that asymptotically the influence on xt of the initial value x0

becomes negligible. It is also easy to see that if ut is i.i.d. with variance σ2 then

var(xt) = σ2[1 + a2 + ...+ (a2)t] =
1− a2(t+1)

1− a2
→ 1

1− a2
,

for t→∞.

Notice that the stable process is not stationary if x0 is fixed (as the variance varies). However,

for large t it approximately is, and if the process was started at −∞ then x0 would be stochastic

with variance 1
1−a2 . So the stationary AR(1) is a stable process with the initial condition that x0

is distributed like ut with variance 1
1−a2 .

Notice what happens if a → 1: the variance tends to infinity and the stationary initial condition

can not be defined - at least in typical case as where ut ∼ N(0, σ2) since a normal distribution with

infinite variance is not well defined.

The AR(1) process

xt = xt−1 + ut ,

with ut iid white noise, is called a random walk. A random walk is an I(1) process; but in the class

of I(1) processes is much more general than the class of random walks (why?). Nevertheless, the

random walk can be thought of as the archtypical I(1) process. Notice that the random walk is

a martingale, since Etxt+k = xt for all k. In words, it is often said that the random walk has

infinite memory. In contrast the stable AR(1) model is called mean reverting. Look at E0xt = x0a
t.

It is obvious that if |a| < 1 then the process revert very quickly to its mean (normalized to be 0 here).

In general a scalar AR(k) model is called stable if all the roots r1, ..., rk of the lag polynomial

a(L) are larger than 1 in absolute value. Let αi = 1
ri

; k = 1, ...k then in the stable case we get

xt = a(L)−1ut = (1− αk)−1....(1− α1)−1ut ;
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which is well defined since we can invert the stable first order lag polynomials one by one.

Notice what happens if a → 1: the variance tends to infinity and the stationary initial condition

can not be defined - at least in typical case as where ut ∼ N(0, σ2) since a normal distribution with

infinite variance is not well defined.

The AR(1) process

xt = xt−1 + ut ,

with ut iid white noise, is called a random walk.

Example: If you are given for example an AR(2) process, like

xt = 1.5xt−1 + xt−2 + ut ,

you should be able to tell if the process is stable. In the example we find the roots of the polynomial

1− 1.5z − x2 to be

ri = .5 ∗ (1.5±
√

2.25 + 4) ,

so the roots are 2 and -.5. Since -.5 is less than one in absolute value the process is not stable.

3.6 Stability of VAR-processes

The basic intuition from the scalar AR(1) model carries over to the VAR(1) case. To see this we

need the following theorem from linear algebra:

Theorem (The Jordan Form):

Any quadratic matrix A can be written as

A = C−1JC ,

where

J =


J1

. . .

Js


with blocks

Ji =


λi 1

. . . 1

λi

 .

The Jordan form is a very important tool, in particular in the analysis of systems of linear differen-

tial equations, but as you will see also in the analysis of VARs. In the case where all the eigenvalues

are different (which you may sometimes get away with assuming), the J matrix will be diagonal.

In the case where A is symmetric, J will be real valued and symmetric.

For a proof of the Jordan theorem, see for example Strang (1980).
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For the analysis of the VAR(1) we will now assume that the time series has been transformed

(by premultiplying by C−1) into diagonal blocks, which now behaves like univariate AR processes

and into Jordan blocks. It is enough to look at the simplest type of Jordan block in order to see

what goes on. So consider the time series(
x1t

x2t

)
=

(
a 1

a

)(
x1t−1

x2t−1

)
+

(
u1t

u2t

)
,

where the u-vector is white noise. Now if a is numerically less that 1 then x2t will be stable and

otherwise not.

Performing the same substitutions as we did for the scalar AR(1) we can write

x1t = ut + aut−1 + a2ut−2 + ...

+ x2t−1 + ax2t−2 + ...

The first term is asymptotically stationary from our previous reasoning and since x2t is asymp-

totically stationary, the second term is also asymptotically stationary if it converges to a random

variable.

The fact that a matrix has the absolute value of all eigenvalues less than 1, can also be expressed

as

det(A− zI) 6= 0 ; for |z| ≥ 1 ,

which of course is the same as

det(I −Az) 6= 0 ; for |z| ≤ 1 .

The general VAR(k) case poses no new problems (theoretically) as far as the analysis of stabil-

ity is concerned, since one can reduce the VAR(k) to a (higher dimensional) VAR(1). We will

demonstrate how for the scalar AR(k) case. Consider the AR(k) model

xt = a1xt−1 + ... + akxt−k + ut ,

where we assume the mean is zero for simplicity. This model corresponds to the model

Yt = CYt−1 + Ut ,

where

Yt = [xt, xt−1, ..., xt−k]
′ ,

Ut = [ut, 0, ..., 0]′ ,
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and

C =



a1 a2 . . . ak−1 ak
1 0 . . . 0 0

0 1 . . . 0 0
...

. . .
...

...

0 0 . . . 1 0


.

The C-matrix is sometimes known as the companion matrix. (This method is also the standard

method of treating systems of linear differential equations, wherefore a lot of results related to this

area of linear algebra are readily available in mathematical textbooks).

Now it follows from the previous result that Yt and therefore xt is stationary if

det(I − Cz) 6= 0 ; for |z| ≤ 1 .

It is an exercise to show that this is equivalent to

1− a1z − ... akz
k 6= 0 ; for |z| ≤ 1 .

This is the standard form of the stability condition for higher order AR processes that you will

meet in the literature. If you substitute matrices for the the scalar coefficients (i.e. A1 for a1 etc.)

the derivation carries over to vector AR(k) processes without change. For the VAR(k) process the

polynomial

det(I −A1z − ... Akz
k) ,

is know as the reverse characteristic polynomial for the AR(k) process (Lütkepohl (1991), p. 12);

but I think that the word “reverse” is often left out in the literature. You can look in Lütkepohl’s

book for more discussion and references although he does not show the actual derivation. It is

usually left out of textbooks but is not really hard (only the proof of Jordan’s theorem is hard, but

we don’t need to check that).

3.7 ARMA models.

The ARMA(k,l) process is defined as

xt = µ + A1xt−1 + ... + Akxt−k + ut + B1ut−1 + ... + Blut−l ,

where the innovation ut is a martingale difference sequence (or white noise). In the case where xt is

a vector process, the term VARMA(k,l) model is also commonly used. In these notes I will usually

use the term ARMA to denote both scalar and vector processes, unless I want to stress the vector

nature of a statement.

Defining the lag polynomials A(L) = −A1L − ... − AkL
k and B(L) = I + B1L + ... + BlL

l

the defining equation can be conveniently written as

A(L)xt = µ + B(L)ut .
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We will think of A(L)xt as the AR part of the model (strictly speaking the left hand side of the

equation is not defined on its own, but this should not cause any ambiguity) and B(L)ut as the

MA part of the model. Then we define an ARMA model to be stable if the AR part of the model

is stable.

The stable ARMA(k,l) process therefore also has the representation as an infinite MA-model

(assuming mean 0):

xt = A(L)−1B(L)ut .

If the characteristic polynomial det(I − Bz) corresponding to the MA part has all zeroes outside

the unit circle then the process is said to be invertible and the process has a representation as an

infinite AR process:

B(L)−1A(L)xt = ut .

For the purpose of estimating the ARMA process one would always formulate the model in the

ARMA(k,l) form, which only contains a finite number of parameters. For theoretical analysis of

processes the inversion of the AR part in particular is a useful tool.

The scalar ARMA model

(#) a(L)xt = b(L)ut

is not uniquely defined unless one imposes the restriction of no common factors. If a(L) = (1 −
αL)a1(L) (say) and b(L) = (1− αL)b1(L) then the equation (#) is identical to the model

a1(L)xt = b1(L)ut ,

so in the scalar ARMA case we will always (usually implicitly) impose the assumption that the AR

and the MA polynomials do not have common factors. (In the statistical analysis you may have to

test for common factors).

In the VARMA case this problem also arise, but here the problem is worse. We will not go into

this problem here - there is a quite readable discussion in Lütkepohl (1991) and a more theoretical

discussion in Hannan and Deistler (1988).

To find the variance of xt assume that the innovation ut has variance Ωu. We first notice that

the variance for a pure MA model, is

Ωx = B1ΩuB
′
1 + ... + BlΩuB

′
l .

To find the covariance matrix for the stationary vector AR(1) model, we note that if

xt = Axt−1 + ut ,

then (since var(xt) = var(xt−1) by stationarity), we get

Ωx = AΩxA
′ + Ωu .
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This can be written in vector form as

vec(Ωx) = (A⊗A)vec(Ωx) + vec(Ωu) ,

which has solution

vec(Ωx) = (I − A⊗A)−1vec(Ωu) .

Note that these operations are simple to perform in a matrix oriented software package like GAUSS.

For the general ARMA case you can combine the two derivations for the MA and the AR parts.

This can be useful for finding the likelihood function, even though I am going to present another

method below.

Another compact representation of the VARMA model is

X ′t = (x′t, ..., xt−k+1′ , u
′
t, ..., u

′
t−l+1) ,

and U ′t = (U1′
t , U

1′
t ) where U1

t is a kl × 1 vector defined by

U1′
t = (u′t, 0, ..., 0) ,

then it is an exercise to show that the original ARMA process can be written as

Xt = AXt−1 + Ut ,

for a suitable matrix A. Right now, as I revise this section, I have forgotten what this representation

is particularly useful for, but it is a good exercise anyway, since it is important to see that it is

easy to reformulate the model like this, and some times it can make all the difference (for the

difficulty of showing some result) whether on uses the right (i.e. convenient for the problem at

hand) representation.

The ARIMA model is defined as a model which follows and ARMA model after the data has

been differenced (one or sometimes more times).

3.8 Box-Jenkins methods and model-identification.

ARIMA modeling is a term that is primarily used to denote the approach to modeling in the

widely read book by Box and Jenkins (1976). Box and Jenkins suggested the use of the empirical

autocorrelations as a tool for identifying the order of the model, i.e. k and l in the representation

of the ARMA model above, and also for identifying the order of integration.

Box and Jenkins concentrated on the univariate case so we will do the same.

The empirical autocorrelations defined as rk = ck
c0

, where the ck are the empirical autocovariances

rk =
1

n− k

n∑
i=k

(xt − µ̂)(xt−k − µ̂) ; k = 0, 1, .. .

(Some time the empirical autocorrelation is called the sample autocorrelation function and abbre-

viated SACF). A plot of rk against k is called the covariogram. We will sketch the theoretical
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covariogram for a few simple processes. [Look at graphs]. If one has a lot of data then the sample

autocorrelation will be close to the true autocorrelation, and since the true autocorrelation function

ρ(k) = 0 when k > l in the case where the true process is an MA(l) process one may hope to be

able to identify an MA(l) model correctly from the data with the help of the sample ACF. For

identifying AR model the so-called partial autocorrelation function (PACF) is more suited. The

partial autocorrelation function is defined (for k = 1, 2, ..) as the coefficient φk to xt−k in the

regression

xt = µ + α1xt−1 + .... + αk−1xt−k+1 + φkxt−k + ut .

This autoregression is not necessarily the true model, but rather the k-th order autoregression that

minimizes the variance of the error-term. This is obviously a 2nd order concept and you can there-

fore assume normality (in order to find φk). In the normal case φk is the correlation between xt and

xt−k conditional on xt−1, ..., xt−k+1. It is obvious that the PACF may be useful for identifying AR

models. Maybe one can also identify low order ARMA models from the sample ACF and PACFs,

but it is not something that I recommend.

You may ask why one does not instead select a suitably (whatever that is) high order for the AR

and MA parts of the model and then estimate from there. Box and Jenkins argue that such a

strategy often will lead to models that contain a large number of parameters. In practice one is

likely to achieve more robust results with a low number of parameters. This is called the principle

of parsimony.

The Box-Jenkins method was very popular in th 70ies, and the method was instrumental in spark-

ing the incredible interest in testing for unit roots etc. that is such a hot topic these days. In my

opinion (shared with most econometricians) the Box-Jenkins methods are more useful for areas like

engineering where large data sets are available. Also in many fields, one can select a model and

then replace it if it does not perform well in practice. In economics we are often interested in testing

theories and we want more objective procedures than eye balling techniques, since testing on new

datasets is usually not an option. Box-Jenkins methods - in spite of their popularity - never became

mainstream econometrics, even among model builders (as opposed to theory testers). The standard

view among model builders was that “time series methods need much larger data sets than was

available to economists”. I agree with this statement when “time series methods” are interpreted

to mean Box-Jenkins methods; but I think many made the mistake of making that identification

and then, having discarded “time series methods”, went on to ignore the fact that they were ac-

tually working with time series data (for example read the preface to Granger and Newbold (1986)).

One improvement of the Box Jenkins strategy that has been made suggested is the use of cri-

teria that trades of parsimony against residual variance.

The most well-known being the Akaike AIC criterion that minimizes

log(σ2) +
2K

n
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where K is the number of freely estimated parameters and σ is the estimated variance of ut. One

can show, however, that the AIC criterion tends to overestimate the order of the models in large

samples and recently other criteria has been suggested that are better behaved in large samples

(read for example Lütkepohl (1991) or Granger and Newbold (1986)). It seems that this type of

order selection methods is gaining popularity (they have the huge advantage that they are auto-

matic, which limits the scope for data mining) and if we had more time we would give them more

consideration (this is a possible subject for a student presentation).

3.9 Estimation of ARMA models.

We will first consider estimation of the scalar AR(k) model:

xt = µ + a1xt−1 + ... + akxt−k + ut .

The mean µ will always be estimated by empirical mean of the process so let us disregard the mean

for simplicity.

The 2 standard methods of estimating the AR model is by ordinary least squares taking the k initial

values of the process to be fixed, and by ML methods assuming that the initial values follow the

stationary distribution. Asymptotically it does not matter, and usually it is more meaningful in

economics to condition on the initial values. In the case of fixed initial values the LS estimator turn

out to be identical to the ML estimator. (Note: I will often say ML estimation without mentioning

with probability distribution I have in mind - in this case it will always be implicit that I mean the

normal likelihood. In the case where the data do actually follow a normal distribution, the term

quasi maximum likelihood is often used for the estimator that maximizes the normal likelihood).

In the general VAR case

xt = µ + A1xt−1 + ... + Akxt−k + ut ,

it turns out (for fixed initial values) that again the maximum likelihood corresponds to the least

squares estimator. Let

B = (µ,A1, ..., Ak) ,

and let

Zt =


1

xt
...

xt−k+1

 .

Now let

Z = (Zk, ... , ZT−1) ,

and

X = (xk, ... , xT−1) ,
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where T is sample size. Then the least squares estimator of B is

B̂ = XZ ′(ZZ ′)−1 ,

independently of the variance-covariance of ut (compare this to the result for “seemingly unrelated

regressions”).

Estimation of the univariate AR model is covered in all introductory time series texts, whereas the

derivation in the multivariate case can be found in Lütkepohl (1991).

Let us now consider the scalar MA process.

xt = µ + ut + b1ut−1 + ... + blut−l ,

If you assume that the initial values u0, u−1, ..., u−l are all zero then we have

u1 = x1 − µ

u2 = x2 − µ − b1u1

and in general

ut = xt − µ − b1ut−1 ... − blut−l .

In order to use the above equations for estimation one has to calculate u1 first and then u2 etc.

recursively.

Now the ut terms has been found as functions of the parameters and the observed variables xt.

These equations are very convenient to use for estimation since the uts are identically independently

distributed (under stationarity), so that the likelihood function Lu in terms of the ut has the simple

form

Lu(u1, ..., uT ;ψ) = ΠT
t=1

1√
2πσ2

e
−u2t
2σ2 ,

where ψ is the vector of parameters of the model. Now, unfortunately it is not the ut’s that we

observe; but rather the xt vector. The equations above however gives ut as a function of the xts so

the likelihood function Lx(x1, ..., xt;ψ) (where b is the vector of parameters of the MA-model) is

just

Lx(x1, ..., xT ;ψ) = Lu(u1(x1), ..., uT (x1, ..., xT );ψ)ΠT
t=1

1√
2πσ2

e
−ut(x1,...,xt)

2

2σ2 .

Be aware that most of the parameters of the likelihood function in this notation are implicit in the

mapping from xts to uts. Note that in general, you have to be careful when making this kind of

substitutions in likelihood functions. The rule for changing the variable of the likelihood function

through a transformation is that if

y = f(x) ,

where x and y are both T-dimensional vectors, and f is a one-to-one mapping, that often will

depend on parameters, of RT onto RT (or relevant subsets), then

Ly(y1, ..., yT ) = Lx(f−1(y1, ..., yT ))|Df−1(y)| = Lx(f−1(y1, ..., yT ))
1

|Df(f−1y)|
.
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The last two forms are equivalent; but the last mentioned is often the most convenient form. The

matrix Df with i, jth element Dfij = ∂fi
∂xj

is known as the Jacobian matrix of the mapping (or

transformation). In the application to the MA-process you can check that u as a function of x

has unit Jacobian (so that the Jacobi-determinant is unity). You should also be aware that if

the Jacobi-determinant is a function of the observations but not of the parameters, then it can

be ignored for the purpose of maximizing the likelihood function, and this is often done without

comment in the literature.

The strategy of assuming the initial values of the innovation to be zero will not have any in-

fluence in large samples; but it may not be advisable in small datasets. It is possible to find the

exact likelihood function, see Granger and Newbold (1986) p 91 ff., but this is quite messy in gen-

eral. The reason that it is complicated to estimate the MA model (and therefore also the ARMA

models) is the the parameterizations involves terms that are unobserved (namely the uts). It turns

out that one can estimate the model by a very general algorithm, called the Kalman Filter, that

is incredibly useful - in particular for estimating models with unobserved components. This covers

many more models than the ARMA models, for example the Kalman filter has long been used

to estimate models with missing observations, but there are lots of other applications. One area

where the Kalman filter has recently been successfully introduced is to estimate continuous time

stochastic differential equations (here it is the differential that is unobserved), see Harvey (1989)

for an introduction. We will show how to use the Kalman filter to estimate ARMA model; but

keep it in mind for other potential applications.

3.10 The Kalman filter.

The Kalman filter is treated many places. There is an easy introduction in Harvey (1981), but

there is also another book by Harvey (1989) that gives a systematic coverage of the Kalman filter

and many of its applications.

We assume that we have a model that concerns a series of (vectors of) variables αt, which are

called “state vectors”. These variables are supposed to describe the current state of the system

in question. These state variables will typically not be observed and the other main ingredient is

therefore the observed variables yt. The first step is to write the model in state space form which

is in a form of a linear system which consists of 2 sets of linear equations. The first set of equations

describes the evolution of the system and is called the “Transition Equation”:

αt = Kαt−1 + Rηt ,

where K and R are matrices of constants and η is N(0, Q). The second set of equations describes

the relation between the state of the system and the observations and is called the “Measurement

Equation”:

yt = Zαt + ξt ,
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where ξt is N(0, H) and E(ξtηt−j) = 0 for all t and j.

It turns out that a lot of models can be put in the state space form with a little imagination. The

main restriction is of course on the linearity of the model. The state-space model as it is defined

here is not the most general possible - it is in principle easy to allow for non-stationary coefficient

matrices, see for example Harvey(1989). There is also extension of Kalman filter methods to non-

linear models. These are known as extended Kalman filters and they are also treated in Harvey

(1989) - be aware, however, that extended Kalman filters usually can not be used to evaluate

likelihood functions exactly; but only gives an approximation.

As an example, let us look at a model where the economy consists of two sectors producing a

homogeneous product, where we only observe the aggregate output subject to measurement error.

Assume that the output of the individual sectors follow a scalar VAR(1) model. Then the state-

space system becomes as follows. Transition equation:(
α1
t

α2
t

)
=

(
a11 a12

a21 a22

)(
α1
t−1

α2
t−1

)
+

(
1 0

0 1

)(
η1
t

η2
t

)
,

and measurement equation:

yt = (1 1)

(
α1
t

α2
t

)
+ ξt ,

In the case of a general ARMA process, one can use several representations; but the most compact

(and useful) one is the following. Assume that we have given the scalar ARMA process (where I

leave out the mean for simplicity):

xt = a1Xt−1 + ... + akXt−m + ut + b1ut−1 + ... + blut−l ,

where m = max{k, l + 1}. This process can be represented in the following state space form:

Transition equation

αt =



a1 1 0 . . . 0

a2 0 1 . . . 0
...

...
...

. . .
...

am−1 0 0 . . . 1

am 0 0 . . . 0


αt−1 +



1

b1
...

bm−2

bm−1


ut ,

and measurement equation

xt = (1, 0, . . . , 0) αt .

Example. The MA(1) model has the state-space representation

αt =

(
0 1

0 0

)
αt−1 +

(
1

b1

)
ut .

If αt = (α1t , α2t)
′, then α2t = b1ut and α1t = α2,t−1 + ut = ut + b1ut−1.

It is an exercise to show that the general ARMA-case does indeed have the state-space representa-

tion given above.
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The Kalman filter is very useful when you want to calculate the likelihood function. You will

typically have a general maximization algorithm at your disposal (e.g. the MAXMUM algorithm in

GAUSS). Such an algorithm takes as input a subroutine that evaluates the value of the likelihood

function for a given set of parameters. This is where you will use the Kalman filter algorithm.

For a start look at the general likelihood function:

f(yT , ..., y1; θ) ,

where θ is a vector of parameters. One can always factor such a likelihood function (independent

of which model or distribution the that generates the variables), as

f(yT , ..., y1; θ) = f(yT |yT−1, ..., y1; θ)f(yT−1, ..., y1; θ) .

Iterating this formula we find

f(yT , ..., y1; θ) = ΠT
t=p+1f(yt|yt−1, ..., y1; θ)f(yp, ..., y1; θ) ,

From which we find the log-likelihood function in recursive form as

L = lnf =
T∑

t=p+1

lnf(yt|yt−1, ..., y1; θ) + lnf(yp, ..., y1; θ) .

In the case of the normal likelihood function this becomes

L =
T∑

t=p+1

−1

2
ln|Ft| −

1

2
ν ′tF

−1
t νt + constant + lnf(yp, ..., y1; θ) ,

where

νt = yt − E(yt|yt−1, ..., y1) and Ft = E[νtν
′
t|yt−1, ..., y1] .

Now if we knew Ft and νt we would have a quite convenient way of evaluating the likelihood func-

tion. This is what the Kalman filter equations below are designed to do.

At this stage note the following aside. The likelihood equations in recursive form allows you to

evaluate the “impact” of a new observation arriving, in the sense that it immediately shows the

conditional likelihood. In engineering it is often important to be able to update a parameter esti-

mate instantly when a new observation occurs - and hopefully without having to reestimate using

all the data. The Kalman Filter does exactly that and it is therefore used extensively by engineers.

More surprising is the fact that it at the same time is so convenient to use that it is also a good

choice to use for the purpose of a single estimation on a given data set.

The ingredients of the Kalman filter (besides the state-space representation) consist of predict-

ing equations and updating equations.
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For any vector xt define xt|t−1 = E(xt|yt−1, ..., y1), where yj are the observed variables. This

definition gives the best guess of xt based on all the information available at time t − 1, xt|t−1 is

the prediction of xt at t − 1. As you may guess, the Kalman filter evolves around predicting and

updating the prediction of the state vector. Also define Pt|t−1 = E{(αt − αt|t−1)(αt − αt|t−1)′} -

Pt|t−1 is the conditional variance of the prediction error.

The prediction equations are then

αt|t−1 = Kαt−1|t−1

yt|t−1 = Zαt|t−1

Pt|t−1 = KPt−1|t−1K
′ + RQR′ .

Define

νt = yt − yt|t−1 .

We will need the variance matrix

Ft = E{νtν ′t} = E{(yt − yt|t−1)(yt − yt|t−1)′} .

To finish the Kalman filter we finally need the updating equations:

αt|t = αt|t−1 + Pt|t−1Z
′F−1
t νt

Pt|t = Pt|t−1 − Pt|t−1Z
′F−1
t ZPt|t−1 ,

where

Ft = ZPt|t−1Z
′ + H .

The term

Pt|t−1Z
′F−1
t νt ,

is called the Kalman gain. Any new information enters the system through the Kalman gain.

The Kalman filter can be derived from the rules of the Normal distribution.

We can write

νt = Z(αt − αt|t−1) + ξt

αt = αt|t−1 + (αt − αt|t−1) ,

One can show that(
νt
αt

)∣∣∣∣∣
yt−1,...,y1

= N
((

0

αt|t−1

)
,

[
Ft ZPt|t−1

Pt|t−1Z
′ Pt|t−1

])

Recall the following rule for the conditional Normal distribution (or see e.g. Lütkepohl (1991), pp.

480-81). If (
x1

x2

)
∼ N

((
µ1

µ2

)
,

[
Σ11 Σ12

Σ21 Σ22

])
,
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then the conditional distribution of x1 given x2 is

N(µ1 + Σ12Σ−1
22 (x2 − µ2), [Σ11 − Σ12Σ−1

22 Σ21]) .

Using this rule on the conditional distribution of (νt, αt) we find

L(αt|yt, ..., y1) = L(αt|νt, yt−1, ..., y1) = N(αt|t−1 +Z ′Pt|t−1F
−1
t νt, Pt|t−1−P ′t|t−1ZF

−1
t Z ′Pt|t−1) ,

which is the updating equation.

One problem is how to initialize the filter. It is natural to choose αt|t−1 = 0 since this is the

unconditional mean of αt. It is often also natural to choose the stationary value of the variance

as the initial value for the variance, even though this is only an option in the stable case). Other

choices are possible, for example you may want to condition on initial values as discussed earlier;

but in that case the special cases has to be considered one by one. One can, however, find the

stationary variance by the following method.

Combining the updating and the prediction equations we find

Pt+1|t = KPt|t−1K
′ − KPt|t−1Z

′(ZPt|t−1Z
′ + H )−1ZPt|t−1K

′ + RQR′ ,

which is known as the Riccatti equation. If the model is stable Pt|t−1 will converge to the solution

P̄ of the algebraic Ricatti equation

P̄ = KP̄K ′ − KP̄Z ′(ZP̄Z ′ + H )−1ZP̄K ′ + RQR′ .

In order to apply the Kalman filter one has to choose a set of starting values. The most natu-

ral choice for a stable system is the unconditional mean and variance. Since

αt = Kαt−1 + Rηt ,

has the form of an AR(1) model, we will then choose α1|0 = 0 and P0 such that

vec(P0) = (I − K ⊗K)−1vec(RQR′) .

If you want, you can choose other initial conditions, for example chosen from a Bayesian prior, or

if you want to condition on initial values. In the non-stationary case it is obviously not possible to

choose the initial distribution from the stationary distribution.

Example: The state-space representation for an AR(2) model is(
xt

a2xt−1

)
=

(
a1 1

a2 0

)(
xt−1

a2xt−2

)
+

(
1

0

)
ut ,

so here conditioning on inital observations just corresponds to an initial variance of zero; but in the

ARMA case one has to be a bit more sophisticated unless one want to condition on initial values
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of the innovation terms to be zero. This is not always advisable as discussed previously.

Now in order to use the Kalman filter you will need a general optimization routine as OPT-

MUM in GAUSS. Such a routine need a subroutine that returns the criterion function and the

optimization algorithm will then use some specified algorithm to minimize (or maximize) the value

of the criterion function. Let me sketch how a subroutine using the Kalman filter for evaluating a

Normal likelihood function would look. Assume the subroutine evaluating the likelihood function

is called CRITFUNC. If we evaluate the value of the likelihood function for a scalar ARMA model

if will have the parameters a1, ...ak, b1, ..., bl, σ of the ARMA model as arguments. The structure

of a GAUSS subroutine would be something like this:

CRITFUNC(a1, ...ak, b1, ..., bl, σ);

@ First create the matrices that is used in state-space form @

K[1, 1] = a1;

K[1, 2] = a2;

etc.

@ Initialize @

L = 0 @ L is the value of the likelihood function @

t = 0

@Initialize the Kalman Filter.@

P0 = ..

etc.

@ Loop @

DO UNTIL t == (T-1)

Prediction Equations for time t

Evaluate the condition likelihood = L(yt|yt−1, ..., y1)

L = L + L(yt|yt−1, ..., y1)

Updating equations for t ;

ENDO ;

@return the value of the likelihood function for all points@

RETURN(L);

END OF CRITFUN
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4 The Power Spectrum

Definition The power spectrum (or spectral density) of a stationary vector process xt is defined as

the function

F (λ) =
1

2π

∞∑
k=−∞

Γ(k)eiλk ,

where i is the complex number i. Note that the term spectral density is sometimes used for the

power spectrum divided by the variance of the process (Harvey’s book is one place). It may be

more natural to call this a density since the spectral density then integrates to 1. Of course it does

not matter; but you should be aware of the variation in usage - which definition an author uses will

be clear from the context - for example Phillips (1991) uses the term spectral density in the sense

that I defined it.

In the case of a scalar process, where the covariance function is an even function this reduces

to

f(λ) =
1

2π
[γ(0) + 2

∞∑
k=1

γ(k)cos(λk)] .

One can show that ∫ π

−π
f(λ)dλ = γ(0) ,

so the power spectrum can be interpreted as a decomposition of the variance into the variance at

different frequencies. In economics it is more natural to think of time series in the time domain than

in term of frequencies (the frequency domain), so to an economist it may sound slightly surprising

that estimation in the frequency domain was well developed before estimation in the time domain

(see e.g. Priestley (1981)). It is still a quite efficient strategy to estimate time series models in the

frequency domain; but we will not go further into the subject at this stage.

The most important reason for bringing up the subject here is that you will meet references to

spectra spread over the time series literature. Here is one connection where you will often meet it:

If xt is a covariance stationary process with power spectrum F (λ), then

V ar{ 1√
T

T∑
t=1

xt} → 2πf(0) ,

for T →∞. Check this by using the definition of the spectral density. This limit shows up in the

theory of I(1) processes for the following reason. If yt is a an I(1) process with

∆yt = xt ; y0 = c ,

where c is a constant, then limT→∞var(
1√
T
yT ) converges to 2π times the spectral density of xt at

frequency zero. You will meet that exact use of words in the literature.
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4.1 Estimation of the spectrum.

We will need the estimate of the spectrum at frequency zero.

If we estimate the auto covariances, given a sample of size T, by∑T
t=k[(xt − µ)(xt−k − µ)′]

T − k
= C(k) ; k = .., 0, 1, 2, ... ,

(and for negative k by C(k) = C(−k)′), we can estimate the power spectrum by

F̂ (λ) =
1

2π

T∑
k=−T

C(k)eiλk .

Take the mean of that expression and it is easy to see that this is an unbiased estimator of the

theoretical spectrum. However, since we are summing over T terms, we are likely to have a lot of

variance even if each element in the sum is consistent, and indeed it turns out that the spectral

estimator is not even consistent.

Instead one usually apply an estimator of the spectrum that has the form

F̂ (λ) =
1

2π

T∑
k=−T

w(
k

M(T )
) C(k)eiλk ,

where the function w(.) is called a weighting function, and M(T ) is called a bandwidth parameter.

M(T ) is assumed to converge to infinity but at a slower rate than T. A typical form for the weights

are

wT (k) = 1− k

M(T )
,

for k < M(T ) and 0 otherwise. This is a kernel suggested by Newey and West (1987); but that

has long been used in the time series literature under the name of a Bartlett kernel (and also

under other names). (One can show that this weighting corresponds to smoothing the graph of the

spectrum in the way that is taught in the Nonparametrics course. This is also the origin of the

terminology “kernel”). In connection with GMM estimation we will return to this subject.

4.2 z-transforms and spectra

It turns out that the z-transforms are useful for finding spectra. Let us define the spectrum as

F (z) =
1

2π

∞∑
k=−∞

Γ(k)zk ,

for z = eiλ.

Now one can show that if ut has spectrum Fu(z) (if ut is white noise it will just be constant), then

if A(L)xt = B(L)ut then x will have the spectrum

Fx(z) = A(z)−1B(z)Fu(z)B′(z̄)A′(z̄)−1
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for z = eiλ. In the scalar case this reduces to

fx(z) =
|b(z)|2

|a(z)|2
fu(z) .

This is sometimes taken as the definition of the spectrum of an ARMA process. Now if you consider

the random walk this will give a value for the spectrum at frequency 0 of infinity. You will sometimes

meet that statement in seminars or in articles. From the “basic” definition of the spectrum this is

of course meaningless since the spectrum is not defined for processes like the random walk that does

not have finite variance. (Be aware, however, that the so-called fractionally integrated processes

have finite variance but a value of infinity of the spectrum at frequency zero).

4.3 Periodicities and spectra

Given what we have already covered it is easy to demonstrate one of the main applications of

spectral theory - namely searching for periodicities. If we start with an extreme example you will

get the idea.

Assume that xt is periodic with period 4 (this is also a unit root model), so that

xt = xt−4 + ut ,

where ut is white noise. Then the power spectrum for ut is σ2
u

2π , and it then follows from the rule

above that

fx(λ) =
σ2
u

2π|1− ei4λ|2
,

which is easily found to be

fx(λ) =
σ2
u

2π(2− 2cos(4λ))
.

Now it is easy to see that the spectrum is infinite at λ = π
2 , π, ... This is an extreme case but one

can convince oneself that if

xt = axt−4 + ut .

where a is close to one, then the spectrum will have a spike a the “quarterly frequencies”, and that

this will still be the case even if ut itself is not white noise.

Look at some spectral densities e.g. in Granger and Newbold’s book. Granger showed long time

ago in the sixties that almost all economic time series have the same shape of the empirical spec-

trum, namely one that tends to infinity (or at least is very large) for λ → 0 and then decreases

rapidly (sort of looking like an irregular version of the graph of e−x). Granger called this the typical

spectral shape of economic time series.
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5 Least Squares Estimation of VAR Models

Consider the VAR(k) model

xt = µ + A1xt−1 + ... + Akxt−k + ut ,

where xt is an L dimensional vector and ut are Nid with variance Σ. Let

B = (µ,A1, ..., Ak) ,

and let

Zt =


1

xt
...

xt−k+1

 .

Now let

Z = (Zk, ... , ZT−1) ,

and

X = (xk+1, ... , xT ) ,

and

U = (uk+1, ... , uT ) ,

where T is sample size. Then we can write the VAR compactly as

X = BZ + U . (1)

The GLS estimator of B is

B̂ = XZ ′(ZZ ′)−1 .

independently of the variance-covariance, Σu, of ut. Note that this implies that the coefficients for

xit, i.e. the ith row, Bi, of B – is estimated by

Bi = (ZZ ′)−1ZXi ,

where Xi is the ith row of X, which is the values xit, xit−1, ..., xik+1. This means that the coefficients

on the ith equation in the VAR, when we consider each row of the VAR system as an equation,

can be estimated individually by OLS and one will get the same result as using system GLS. This

is a special case of a very well known theorem for “seemingly unrelated regressions (SURE)”.

I believe most of you have not seen the SURE result derived and I will therefore do it here.

Rewrite (??) as

vec(X) = vec(BZ) + vec(U) ,
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or

vec(X) = (Z ′ ⊗ I)vec(B) + vec(U) .

The equations are now written as a standard linear equation system. The variance-covariance

matrix for vec(U) is I ⊗ Σ. The ML estimator of vec(B) – conditional on the initial observations

– is the GLS estimator

vec(B̂) = [(Z ⊗ I)(I ⊗ Σ)−1(Z ′ ⊗ I)]−1(Z ⊗ I)(I ⊗ Σ)−1vec(X)

= [(Z ⊗ I)(I ⊗ Σ−1)(Z ′ ⊗ I)]−1(Z ⊗ I)(I ⊗ Σ−1)vec(X)

= [(ZZ ′ ⊗ Σ−1)]−1(Z ⊗ Σ−1)vec(X)

= (ZZ ′)−1 ⊗ Σ)(Z ⊗ Σ−1)vec(X)

= (ZZ ′)−1Z ⊗ I)vec(X)

= vec(X(ZZ ′)−1Z) .

The estimated variance matrix Σ̂ for U is 1
T ΣT

t=K+1ete
′
t where et = X − B̂Z (i.e. et is just the

residuals defined in the usual fashion), and the estimated variance of B̂ is then (ZZ ′)−1 ⊗ Σ̂.
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6 Granger Causality.

6.1 Linear Prediction.

Assume that you want to predict the value of yt+k based on the information set Ft. How do you do

that in the best possible way? This depends on your cost of making a wrong prediction, so if you

have a formal model for your cost of making an error of a given size, then you should minimize that

function (in statistics this is usually called a loss function). In econometrics it is usual to choose

to minimize the mean square error (MSE) of the forecast, i.e.

minE{(yt+k − ŷt+k)2}

where ŷt+k is the predictor of yt+k. One can show that the conditional mean E{yt+k|Ft} is the

best mean square predictor. If the information set Ft consists of a vector of observations zt (which

would usually include yt, yt−1, ..., y1), then the conditional mean in the case of normally distributed

variables is linear (as we know). In the case where the observations are not normally distributed

the conditional mean is not a linear function of the conditioning varibles, so if you can find the true

conditional mean you may want to do that, however, timeseries analysis is, as mentioned, mostly

in the 2nd order tradition, so often people use the best linear predictor rather than the conditional

mean. You find the best linear predictor as that linear function of the conditioning variables that

would give you the conditional mean if the data had been normally distributed.

Assume that your data are described by a VAR(2) model:

yt = µ + A1yt−1 + A2yt−2 + ut .

What would be the best (linear) forecast of yt+1 based on y1, ..., yt? Obviously,

ŷt+1 = µ + A1yt + A2yt−1.

It turns out that we can iterate this formula to find

ŷt+k = µ + A1ŷt+k−1 + A2ŷt+k−2.

for any k. Another approach would be to reformulate the model as a higher dimensional VAR(1)

system, since it is easy to see that

ŷt+k = (I +A+ ...+Ak−1)µ + Akyt ,

in this case. (Note that the best linear predictor in the stable case converges (for k → ∞) to the

unconditional mean of the process).

For models with MA components things are harder. Recall that one can write the ARMA

model as a high order VAR(1) (the state-space representation), so one can use the formula above,

but the complication is that even at time t one does not know ut. The Kalman filter does however,
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as a byproduct, give you the best guess of ut, ut−1, ..., (namely as part of αt|t), so you can use the

Kalman filter to generate αt|t and then you can use the formula above. For more elaborations, see

Harvey (1989).

6.2 Granger Causality.

Assume that the information set Ft has the form (xt, zt, xt−1, zt−1, ..., x1, z1), where xt and zt are

vectors (that includes scalars of course) and zt usually will include yt and zt may or may not include

other variables than yt.

Definition: We say that xt is Granger causal for yt wrt. Ft if the variance of the optimal linear

predictor of yt+h based on Ft has smaller variance than the optimal linear predictor of yt+h based

on zt, zt−1, ... - for any h. In other word xt is Granger causal for yt if xt helps predict yt at some

stage in the future.

Often you will have that xt Granger causes yt and yt Granger causes xt. In this case we talk

about a feedback system. Most economists will interpret a feedback system as simply showing that

the variables are related (or rather they do not interpret the feedback system).

Sometimes econometrians use the shorter terms “causes” as shorthand for “Granger causes”. You

should notice, however, that Granger causality is not causality in a deep sense of the word. It just

talk about linear prediction, and it only has “teeth” if one thing happens before another. (In other

words if we only find Granger causality in one direction). In economics you may often have that

all variables in the economy reacts to some unmodeled factor (the Gulf war) and if the response

of xt and yt is staggered in time you will see Granger causality even though the real causality is

different. There is nothing we can do about that (unless you can experiment with the economy) -

Granger causality measures whether one thing happens before another thing and helps predict it -

and nothing else. Of course we all secretly hope that it partly catches some “real” causality in the

process. In any event, you should try and use the full term Granger causality if if is not obvious

what you are refering to

The definition of Granger causality did not mention anything about possible instantaneous cor-

relation between xt and yt. If the innovation to yt and the innovation to xt are correlated we say

there is instantaneous causality. You will usually (or at least often) find instantaneous correlation

between two time series, but since the causality (in the “real” sense) can go either way, one usually

does not test for instantaneous correlation. However, if you do find Granger causality in only one

direction you may feel that the case for “real” causality is stronger if there is no instantaneous

causality, because then the innovations to each series can be thought of as actually being generated

from this particular series rather than part of some vector innovations to the vector system. Of
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course, if your data is ampled with a long sampling period, for example annually, then you would

have to explain why one variable would only cause the other after such a long lag (you may have

a story for that or you may not, depending on your application).

Granger causality is particularly easy to deal with in VAR models. Assume that our data can

be described by the model yt
zt
xt

 =

 µ1

µ2

µ3

+

 A1
11 A1

12 A1
13

A1
21 A1

22 A1
23

A1
31 A1

32 A1
33


 yt−1

zt−1

xt−1

+ ...+

 Ak11 Ak12 Ak13

Ak21 Ak22 Ak23

Ak31 Ak32 Ak33


 yt−k
zt−k
xt−k

+

 u1t

u2t

u3t


Also assume that

Σu =

 Σ11 Σ12 Σ13

Σ′12 Σ22 Σ23

Σ′13 Σ′23 Σ33

 .

This model is a totally general VAR-model - only the data vectors has been partitioned in 3 sub-

vectors - the yt and the xt vectors between which we will test for causality and the zt vector (which

may be empty) which we condition on.

In this model it is clear (convince yourself!) that xt does not Granger cause yt with respect to

the information set generated by zt if either Ai13 = 0 and Ai23 = 0; i = 1, ..., k or Ai13 = 0 and Ai12 =

0; i = 1, ..., k. Note that this is the way you will test for Granger causality. Usually you will use the

VAR approach if you have an econometric hypothesis of interest that states that xt Granger causes

yt but yt does not Granger cause xt. Sims (1972) is a paper that became very famous because it

showed that money Granger causes output, but output does not Granger cause money. (This was

in the old old days when people still took monetarism seriously, and here was a test that could tell

whether the Keynesians or the monetarists were right!!). Later Sims showed that this conclusion

did not hold if interest rates were included in the system. This also shows the major drawback of

the Granger causality test - namely the dependence on the right choice of the conditioning set. In

reality one can never be sure that the conditioning set has been choosen large enough (and in short

macro-economic series one is forced to choose a low dimension for the VAR model), but the test is

still a useful (although not perfect) test.

I think that the Granger causality tests are most useful in situations where one is willing to consider

2-dimensional systems. If the data are reasonably well described by a 2-dimensional system (“no

zt variables”) the Granger causality concept is most straightforward to think about and also to

test. By the way, be aware that there are special problems with testing for Granger causality in

co-integrated relations (see Toda and Phillips (1991)).

In summary, Granger causality tests are a useful tool to have in your toolbox, but they should

be used with care. It will very often be hard to find any clear conclusions unless the data can be

described by a simple “2-dimensional” system (since the test may be between 2 vectors the system

55



may not be 2-dimensional is the usual sense), and another potentially serious problem may be the

choice of sampling period: a long sampling period may hide the causality whereas for example

VAR-systems for monthly data may give you serious measurement errors (e.g. due to seasonal

adjustment procedures).

Extra reference:

Toda, H.Y. and P.C.B. Phillips (1994) : “Vector Autoregressions and Causality: A Theoretical

Overview and Simulation Study”, Econometric Reviews 13, 259-285.
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7 Asymptotic theory and testing.

Maximum likelihood theory was developed for models with independent identical observations, but

it turns out that most of the standard results and asymptotic formulae emerge in exactly the same

way for time series models as they do for iid models. This statement is only true for stable models,

so until further notice it is implicitly assumed that all the models are stable. The results below are

asymptotic so initial values will likewise be ignored.

A general result in maximum likelihood theory is that if ψ is a vector of parameters and L(ψ)

is the likelihood function for a single observation then the maximum likelihood estimator ψ̃ has an

asymptotically normal distribution with the true parameter as the mean and the inverse informa-

tion matrix as the variance.

The information matrix is defined as

I(ψ) = −E(
∂2logL

∂ψ∂ψ′
) ,

where L is the likelihood function corresponding to a single observation, and in the iid case one

can show that √
T (ψ − ψ̃) ⇒ N(0, I(ψ)−1) ,

subject to regularity conditions. The most important regularity conditions are sufficient differentia-

bility of the likelihood function (typically 2 times differentiable with continuous second derivative)

and that the likelihood function has a unique solution for ψ, i.e. that ψ is identified.

In the time series case we define the asymptotic information matrix

IA(ψ) = −plimT−1(
∂2logLT
∂ψ∂ψ′

) ,

where LT (ψ) is the likelihood function corresponding to the full set of observations. Under regularity

conditions (see below) one can then show that

√
T (ψ − ψ̃) ⇒ N(0, IA(ψ)−1) ,

where ⇒ indicates convergence in distribution for the sample size (T) going to infinity.

Following Harvey (1980,1989) I will express this as

ψ̃ ∼ AN(ψ, T−1IA(ψ)−1) .

Example For an AR(1) model with N(0,σ2)errors, it is straightforward to find the asymptotic

information matrix as

IA(a, σ2) =

(
1

1−a2
1

2σ4

)
.
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I will show it in detail for this example. The contribution from a single observation xt is:

logL(xt|xt−1) = −1

2
logσ2 − (xt − axt−1)2

2σ2
.

We find that

∂logL

∂a
=

(xt − axt−1)xt−1

σ2

∂logL

∂σ2
= − 1

2σ2
+

(xt − axt−1)2

2σ4

∂2logL

∂a∂a
= −

x2
t−1

σ2

∂2logL

∂σ2∂a
= −(xt − axt−1)xt−1

σ4

∂2logL

∂σ2∂σ2
=

1

2σ4
− (xt − axt−1)2

σ6
.

Now, by the law of large numbers, the asymptotic information matrix can be found by taking the

mean of the contribution to the likelihood function from a single observation.

In the general ARMA case it will still be the case that the estimator of the error variance will

be distributed independently of the parameters in the lag polynomials. If ψ is the vector of param-

eters a1, ..., ak, b1, ..., bl of an ARMA(k,l) model with normally distributed error terms then (as in

the example above) we find
∂2logL

∂ψ∂ψ′
= −ztz

′
t

σ2
,

where zt = −∂ut
∂ψ .

Example For the MA(1) we have

ut = xt − but−1 ,

from which we find the recursion equation

∂ut
∂b

= −b∂ut−1

∂b
− ut−1 .

Now use the following very elegant argument. The recursion implies that zt follows an AR(1)

process

zt = bzt−1 + ut−1 ,

where ut−1 is uncorrelated with zt−1 (why?). Now from our results fom AR(1) models we find that

E(z2
t ) = var(zt) =

σ2

1− b2
,

from which we conclude that b̂ is asymptotically normally distributed with mean b and variance

1− b2.
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For the ARMA(1,1) the same type of reasoning can be applied, see Harvey (1980) p. 131 where it

is shown that the asymptotic variance Avar(a,b) of
√
T (a, b) is

Avar(a, b) =
1 + ab

(a+ b)2

(
(1− a2)(1 + ab) −(1− a2)(1− b2)

−(1− a2)(1− b2) (1− b2)(1 + ab)

)
.

The formulae become more complicated for higher order processes, and one way around this is to

evaluate the asymptotic covariance matrix numerically, rather than analytically. Harvey (1989) p.

140-143, shows how one can extend the Kalman filter to include the derivatives of the likelihood

function in the updating and predicting loops so as to arrive at an estimate of the asymptotic

variance.

For the VAR(k) model I have already mentioned that the least squares estimator is identical to the

ML estimator. Consider the VAR(k) model for a p-dimensional xt-process.

xt = µ + A1xt−1 + ... + Akxt−k + ut ,

where var(ut) = Ωu. This model corresponds to the model

xt = BZt + ut ,

where

B = (ν,A1, ..., Ak)

and

Zt =



1

xt−1

xt−2

...

xt−k


.

If we define

X = (xk+1, ..., xT )

and

Z = (Zk+1, ..., ZT )

then the model can be written compactly (!) as

X = BZ + U ,

where

U = (uk+1, ..., uT ) .

The least squares estimator of B is

B̂ = XZ ′(ZZ ′)−1 ,
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which I have not proved (although I am very willing to do it if there is a demand).

Note: The indices are shifted a little bit compared to the presentation earlier.

I will repeat the definitions of X and Z here with more detail, so that you can compare with the

GAUSS-program.

X =


x1,k+1 ... x1t ... x1T

...
...

...

xp,k+1 ... xpt ... xpT


and

Z =



1 ... 1 ... 1

x1k ... x1,t−1 ... x1,T−1
...

...
...

xp,k ... xp,t−1 ... xp,T−1
...

...
...

x11 ... x1,t−k ... x1,T−k
...

...
...

xp,1 ... xp,t−k ... xp,T−k


.

Theorem If

a) Γ
def
= plimZZ ′/T exist and is nonsingular

and if

b)
1√
T
vec(UZ ′) =

1√
T

(Z ⊗ I)vec(U) ⇒ N(0,Γ⊗ Ωu)

then √
Tvec(B̂ −B) ⇒ N(0,Γ−1 ⊗ Ωu) .

Comment: Notice that the conditions are true for the stable VAR model with normally distributed

error terms.

The conditions are also true if xt is stable and ut satisfies the conditions: Eut = 0, E(utu
′
t) = Ωu

is constant and non-singular, us and ut are independent (but not necessarily identically distributed)

and

E|uitujtuktult| < c for i, j, k, l = 1, ..., p and all t

for some finite constant c.

This is the kind of assumptions that you will always need: i) some assumption of independence of

successive observations and ii) some condition on the size of the moments and of course iii) stability

of the model.

In order to use this theorem in practice one needs to estimate the variance parameters. You

will use

Γ̂ = ZZ ′/T ,
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and

Ω̂u =
Û Û ′

T − kp− 1
,

where

Û = X − B̂Z .

Lütkepohl (1991) shows that Γ̂−1 ⊗ Ω̂u is a consistent estimator of Γ−1 ⊗ Ωu.

In the scalar case the theorem says that

√
T


ν̂ − ν
â1 − a1

.̂..

âk − ak

 ⇒ N(0,Γ−1 ⊗ σ2
u) .

Which for the scalar AR(1) reduces to (disregrading the mean)

a1 − â1 ⇒ N(0,
σ2
u

1− a2
) ,

which we already knew. In the scalar AR(1) case this is widely known as the Mann-Wald theorem.

Testing

I will here give a brief introduction to the 3 common test of restrictions in econometrics. These

tests are the LR (likelihood ratio) test, The W (Wald) test (named after the brilliant statistician

Abraham Wald (?-1950)), and the LM (Lagrange Multiplier) test (the LM test is also know as the

score test).

The LR test.

Assume that you are estimating a vector of parameters ψ, and denote the logarithm of the likelihood

function evaluated at ψ by logL(ψ). Denote the value of ψ that maximizes the likelihood function

by ψ̂. Assume that you want to test a hypothesis (often this will be the model suggested by theory)

that involves constraints on your parameters. We will restrict ourselves to linear constraints which

can be written as

Rψ = 0 ,

where R is an m × n matrix of full rank. In other words, there are m restrictions. Note that the

most common test, namely that of an individual coefficient (the first say) being zero is covered by

setting R = (1, 0, ..., 0). Note that R is always a matrix that the econometrician chooses a priori.

The value of ψ that maximizes the likelihood function under the constraints will be denote ψ̂0.

The LR test is simply

LR = 2logL(ψ̂) − 2 logL(ψ̂0)
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Under the null hypothesis that the restrictions are true the LR statistic is distributed as χ2(m) -

the chi-square distribution with m degrees of freedom. A sketch of the proof is the following. A

Taylor series expansion of L(ψ) around ψ0 gives

logL(ψ̂0) = logL(ψ̂) + (ψ̂ − ψ̂0)′DlogL(ψ̂) +
1

2
(ψ̂ − ψ̂0)′D2logL(ψ̂ − ψ̂0) ,

where DlogL = ∂logL
∂ψ and D2logL = ∂2logL

∂ψ∂ψ′ . Now the first terms in this expansion is equal to 0

because DlogL(ψ̂) = 0 (why?), so that

LR = (ψ̂ − ψ̂0)′D2logL(ψ̂ − ψ̂0) ,

It is obvious that ψ̂−ψ̂0 has mean 0 under the null hypothesis. Also we know that if a k-dimensional

random variable x ∼ N(0,Σ) then x′Σ−1x is χ2-distributed with k degrees of freedom. Now com-

pare this to the asymptotic formulae on the first page of the present chapter and you see where

the asymptotic distribution comes from. (Note: to make this into a proper proof we have to be

more careful with the Taylor series expansion and we also have to figure out where the m-degrees

of freedom for the asymptotic χ2 distribution comes from).

The Wald test.

Recall that asymptotically √
T ψ̂ ⇒ N(ψ, IA(ψ)−1) ,

where ψ̂ is the unrestricted ML estimator. If Rψ = r (where ψ is the true value of the parameter,

then √
T (Rψ̂ − r)⇒ N(0, R IA(ψ)−1R′) ,

wherefore

T (Rψ̂ − r)′[RIA(ψ)−1R′ ]−1(Rψ̂ − r)

has a limiting χ2 distribution. This is the basis for the Wald test which is obtained by choosing a

matrix I(ψ̂) with the property that plimT−1I(ψ̂) = IA(ψ), such that the limiting χ2 distribution

still obtains even if the asymptotic variance matrix is also estimated. So the Wald statistic is

W = (Rψ̂ − r)′[RI(ψ̂)−1R′ ]−1(Rψ̂ − r) .

It is fairly obvious from the heuristics given here that the Wald test is asymptotically equivalent to

the LR test. The Wald test is simpler to use than the LR test since only one estimation has to be

performed. In the simple case where the test involves only one parameter ψ, say, the Wald test is

W = (ψ̂ − ψ0)2/avar(ψ̂) ,

where avar(ψ̂) is a consistent estimate of the asymptotic variance of ψ̂. Equivalently you may want

to perform a 2-sided test based on the statistic

t = (ψ̂ − ψ0)/
√
avar(ψ̂) ,
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which is asymptotically normally distributed. This is very often referred to as an asymptotic t-test.

The reason for this is of course that in the standard normal regression model (without time-series

structure) this statistic is just the standard t-distributed t-statistic. Most applied researchers do

not actually test their models for normality, which really is an implicit statement that expresses

that they rely on the asymptotic t-test. I find this practice quite ok.

All the tests (LR, Wald and ML) are equally valid for tests of non-linear restrictions. This is

most easily seen for the Wald test. Assume that we are interested in the non-linear hypothesis

r(ψ) = 0. Now if ψ̂ is distributed as N(ψ,Σ) then as well known theorem states that

r(ψ̂) ∼ N(r(ψ), RΣR′) ,

when r is differentiable with Jacobian R. This can be derived from the Taylor series expansion

r(ψ̂) = r(ψ) + (ψ̂ − ψ)R .

For that reason this theorem is often referred to as the “Delta-method” (a bit odd to my taste; but

you will probably meet that expression).

Anyway, it is now fairly obvious that the Wald test in the case of possibly non-linear restrictions

of the form r(ψ) = 0, takes the form

W = r(ψ̂)′ [RI(ψ̂)−1R′ ]−1r(ψ̂) .

where R now is the matrix of derivatives of r evaluated at ψ̂.

Take some time to go over this non-linear extension. When we get to the non-linear GMM estima-

tors this will be useful. I always guide my intuition in non-linear models by thinking of functions

as linear, and this has never - to my knowledge - mislead me (because of the “delta-method”).

The LM-test.

Loook at the Taylor series expansion of DlogL(ψ) around ψ̂:

DlogL(ψ̂0) = Dlog(ψ̂) + (ψ̂ − ψ̂0)′D2LogL ,

where D2logL is evaluated at ψ̂. But of course Dlog(ψ̂) = 0 so the Taylor series expansion gives

DlogL(ψ̂0) = (ψ̂ − ψ̂0)′D2LogL .

Now define the test statistic

LM = DlogL(ψ̂0)′ IA−1(ψ̂0)DlogL(ψ̂0) .

Using the Taylor series expansion gives

(ψ̂ − ψ̂0)′D2logL IA−1D2logL (ψ̂ − ψ̂0) .
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Now plim D2logL = −IA, so this expression is in large samples equivalent to

−(ψ̂ − ψ̂0)′D2logL (ψ̂ − ψ̂0) ,

which is exactly the same expression as the one given for the ML test above. Therefore the LM

test will also have an asymptotic χ2(m) distribution. The main advantage of the LM-test is that

one only has to evaluate the criterion function under the null hypothesis. In linear models that

does rarely make a big difference; but in non-linear models, where convergence of the optimization

alogorithms may be hard achieve, it can be a major advantage. Also note, that is often the case

in non-linear models, that if the null hypothesis is actually true, then the parameters of the more

general model will be badly determined from the data - something that often hampers convergence.

In the literature about LM-testing a gooddeal is often made out of the fact that the LM test often

can ve written in a convenient form that allows for easy computation using linear regression pack-

ages. To derive theorems of this sort you will have to find the derivative a particular likelihood

function explicitly. With a modern computer language like GAUSS, you can, however, just ask

GAUSS to evaluate the derivative of the likelihood function numerically and the just apply the

general form of the test. This is just as goo except in special cases, as for example where the

estimated parameters are near the boundary of the allowed region, in which case the derivatives

sometimes are badly determined (this all depends on your specific model).

The Portmanteau test.

In one has estimated an ARMA model (or another time series model) a “quick-and-dirty” test for

whether the model is underparameterrized is the “portmanteau” test. It was originally suggested

by Box and Pierse (1970) and modified to the form given below by Ljung and Box (1978).

Assume that ε̂t are the residuals from an estimated ARMA(k,l) model. If âi, b̂j are the estimated

(for example by Maximum Likelihood) parameters of the ARMA-model, then

ε̂t = xt − â1xt−1 − ...− âkxt−k − b̂1ε̂t−1 − ...− b̂lε̂t−l ,

where one will usually start the recursion by setting the inital ε̂t to zero. The portmanteau test is

Q = T (T + 2)
M∑
k=1

r2
k

T − k
,

where rk is the k-th autocorrelation of εt estimated in the usual fashion (as desribed earlier, where

we used the notation c(k) for the estimated autocorrelation); but from the residual process. The Q

statistic asymptotically distributed as χ2(M − k − l) under the hypothesis that the ARMA model

is correctly specified. Intuitively it is clear that if the residuals of the true model are white noise,

then the residuals from the estimated process will also tend to be white noise in which case the

estimated auto-correlations will all be close to 0.

There are quite a few other common tests. We will not go into them unless there is special interest.

One group of tests is known as misspecification tests. (These are also often called specification
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tests. I am not quite certain by I think that some authors may define “test for specification” as

different from “test for misspecification”; so don’t get confused). Misspecification tests are tests

that intned to evaluate the “fit” of the model; but not necessarily with any particular alternative

in mind. The most well known misspecification test is the Hausman test (Haussman (1978)), and

the White information matrix test. See Godfrey (1978) for references.

Another group of tests that one may need is tests for non-nested models. Sometimes it is hard to

come up with a general model nesting two competing models, and even if you can come up with

such an encompassing model it may be too unwieldy to estimate. In this case you may want ot

perform a test that allows for non-nested models. The most famous class of non-nested tests are

known as Cox-tests. There is a special issue of the Journal of Econometrics (White (1983)), that

can serve as an introduction to this area.
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8 Unit Roots.

A very good place to look after you have read this section is the survey in Handbook of Econometrics

Vol. IV by Jim Stock.

In the statistical literature it has long been known that unit root processes behave differently from

stable processes.

For example in the scalar AR(1) model, consider the distribution of the OLS estimator of the

parameter a in the simple first order process,

(1) yt = a yt−1 + et .

If et are independently identically normally distributed (niid) variables and aN denotes the least

squares estimator of b based on y0, y1, .., yN , then Mann and Wald (1943) showed that N1/2(aN−a)

has a limiting normal distribution if a < 1. White (1958) showed that |a | N(a2 − 1) (aN − a) has

a limiting Cauchy distribution if a > 1, whereas N(aN − 1) has a limiting distribution that can be

written in terms of a ratio of two functionals of a Wiener process, when a = 1. In the later years a

lot of theoretical work has been done on the distribution of least squares estimators in the presence

of unit roots. Some notable early contributions are Fuller (1976), Dickey and Fuller (1979,1981),

and Evans and Savin (1981,1984). The authoritative paper by Phillips (1987) sums up most of the

theory.

It was the paper by Nelson and Plosser (1982) that sparked the huge surge in interest for unit

root models among economists. They examined time series for some of the most important U.S.

aggregate economic variables and concluded that almost all them were better described as being

integrated of order one rather than stable. (They further went on to suggest that this favored

real-business-cycle type of classical models in favor of monetarist and Keynesian models. In my

opinion it is plain crazy to try and derive such sweeping conclusions from atheoretical time series

modeling, and it is even crazier to do so on aggregate data; but maybe the huge interest that this

paper generated is partly due to this provocative statement).

The reason why unit roots are so important is that the limiting distributions of estimates and

test statistics are very different from the stationary case. Most importantly, one can not (in gen-

eral) obtain limiting χ2 (or t- or F-) distributions. Rather one obtains limiting distributions that

can be expressed as functionals of Brownian motions. Also notice that in the case where you have

a stable model that is “close” to an integrated process, then the distributions of estimators will

look more like the distributions from unit root models than it will look like the asymptotic (normal

type) distribution in small samples. This phenomenon is treated in the literature under the heading

of near-integrated (or near unit-root, or nearly non-stationary) models. We may not have time to

go into this; but the reading list contains a quite detailed bibliography (since I happened to have

written a paper in that area - I had the references typed up already). I personally doubt whether

many series in economics are best thought of as genuinely non-stationary, and I don’t think that

one really can decide that on the basis of the statistical evidence (there has been written lots of
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papers on that question since the influential paper of Nelson and Plosser (1982)). My point of view

is that it does not really matter. The models will have very different predictions for the very long

run whether they truly have unit roots or not; but to cite Lord Keynes: “In the long run we are

all dead”; or to say it less dramatically - I do not think that simple time series models are useful

for forecasting 20 years ahead under any circumstances. What matters is that the small sample

distributions look like the asymptotic unit root distributions, so if you do not use those you will

make wrong statistical inferences.

8.1 Brownian Motions and Stochastic Integrals.

The easiest way to think of the Brownian motions is in the following way (which corresponds exactly

to the way that you will simulate Brownian motions on the computer): Let

BN (t) =
1√
N

( e1 + e2 + ... + e[Nt]) ; t ∈ [0, T ] ,

where e1, ..., e[NT ] are iid N(0, 1). The notation [Nt] means the integer part of Nt, i.e. the largest

integer less than of equal to Nt. Note that BN (t) is a stochastic function from the closed interval

[0, T ] to the real numbers. If N is large BN (.) is a good approximation to the Brownian motion

B(t); t ∈ [0, T ] which is defined as

B(t) = lim
N→∞

BN (t) .

For a fixed value of t it is obvious that BN (t) converges to a normally distributed random variable

with mean zero and variance t. To show that BN (t) converges as a function to a continuous function

B(t) takes a large mathematical apparatus. You can find that in the classical text of Billingsley

(1968); but be warned that this is a book written for mathematicians (but given that it is very well

written).

For the purpose of the present course this is all you need to know about the Brownian motion. One

can show that any stationary continuous stochastic process B(t) for which

B(t4)−B(t3) and B(t2)−B(t1)

are independent for all t4 ≥ t3 ≥ t2 ≥ t1 and with

E{B(t2)−B(t1)} = 0 , and V ar{B(t2)−B(t1)} = t2 − t1 ;

has to be a Brownian Motion. The Brownian motion is an example of a process with identical

independent increments. You can convince yourself from the definition I gave of Brownian motion,

that this formula for the variance is true. Notice that if you start the process at time 0 then

V ar(B(t)) = t .

So it is obvious that the unconditional variance of B(t) tends to infinity as t tends to infinity. This

corresponds to the behavior of the discrete time random walk, which again is just an AR(1) with
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an autoregressive coefficient of 1. So it is not surprising that Brownian motions show up in the

(properly normalized) asymptotic distribution of estimators of AR models. Brownian motions are

quite complicated if you look into some of the finer details of their sample paths. One can show

that Brownian motions with probability 1 are only differentiable on a set of measure zero. You

can also show that a Brownian motion that you start at zero at time zero will cross the x-axis

infinitely many times in any finite interval that includes 0. Properties like those are very important

in continuous time finance, so if you want to specialize in that field you should go deeper into the

theory of Brownian motions. I have supplied a list of references in the reading list, that will be

useful for that purpose; but for unit root theory this is not absolutely necessary.

You will also need to be able to integrate with respect to Brownian motions. We want to give

meaning to the symbol
∫ 1

0 f(s)dB(s), where f is a function that will often be stochastic itself. In

many asymptotic formulae f(s) is actually the same as B(s). We will define the so-called Ito-integral

(named after the Japanese mathematician Kiyosi Ito):∫ 1

0
f(s)dB(s) = lim

K→∞

K∑
k=0

f(
k − 1

K
)∆B(

k

K
) ,

where ∆B( kK ) = B( kK −B(k−1
K ), and where the limit is in probability. You can not obtain conver-

gence sample path by sample path almost surely (with probability one). If we temporarily call the

stochastic integral on the left hand side for I and the approximating sum on the right hand side for

IK then the convergence in probability means that there exists a stochastic variable I such that

lim
K→∞

P{|I − IK | > ε} = 0

for any given ε > 0. This is however a probability statement and it does not preclude that IK for a

given sample path can be found arbitrarily far from I for arbitrarily large K. For our purpose that

does not really matter, since convergence in probability is all we need. If you want to go through

the mathematics (which is detailed in the probability books in the reading list, with the book by

Øksendal as the most accessible), then the hard part is to show the existence of the limit I to which

IK converges, and if you don’t want to go through the mathematics you should just take it for a

fact that the limit exists in a well defined sense.

Notice that the sum in the approximating sum is over values of the function multiplied by a

“forward looking” increment in the integrator B. This is essential and you will not get the right

answer if you do not do it like that. This is in contrast to the standard Riemann-Stieltjes integral

where this does not matter. The definition of the stochastic integral is given in the way that you

can actually simulate the distribution, and this is the way it is done in many Monte Carlo studies

in the literature.

Ito’s Lemma

The main tool of modern stochastic calculus is Ito’s lemma. It is usually formulated as

df(X, t) =
∂f

∂t
dt +

∂f

∂X
dX +

1

2

∂2f

∂X2
(dX)2 where dt2 = 0 , and dB2 = dt .
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In this course Ito’s lemma is not so central; but you may meet the following equality

(∗)
∫ 1

0
B(s)dB(s) =

1

2
(B(1)2 − 1) ,

which is a simple consequence of Ito’s lemma. Ito’s lemma is essential in continuous time finance

and in more advanced examinations of unit root theory.

I leave the proof of (*) for the homework.

Example:

Find d log(logB). We do this is 2 stages. First we set X = log(B). Then (since (dB)2 = dt)

dX =
1

B
dB − 1

2

1

B2
dt .

Then

d log(logB) =
1

B
dX − 1

2

1

B2
(dX)2

=
1

B
(

1

B
dB − 1

2B2
dt) − 1

2B2

1

B2
dt

=
1

B2
dB − (

1

2B3
+

1

2B4
)dt

(I cannot think of an application of this particular result but it illustrates the method clearly.)

Now consider the process (1) again. Notice that if a = 1 then

yt = yt−1 + et =
t∑

k=1

ek .

We will consider the least squares estimator

â =

∑T
t=1 ytyt−1∑T
t=1 y

2
t−1

=

∑T
t=1(yt−1 + ∆yt)yt−1∑T

t=1 y
2
t−1

= 1 +

∑T
t=1 yt−1∆yt∑T
t=1 y

2
t−1

Now notice that this implies that

T (â − 1) = T

∑T
t=1 yt−1∆yt∑T
t=1 y

2
t−1

=

∑T
t=1(yt−1/

√
T )(et/

√
T )∑T

t=1(yt−1/
√
T )2 1

T

One can now see from the way that we defined the Brownian motion that yt−1/
√
T converges to a

Brownian motion, and from the way that we defined the stochastic integral, one can see (at least

one would guess) that

T (â − 1) ⇒
∫ 1

0 B(s)dB(s)∫ 1
0 B(s)2ds

.

Intuitively you should always think of et as dB(t) and yt which under the null of a unit root is

equal to
∑t
k=0 et corresponds then to

∫ t/T
0 dB(s) = B(s/T ) (for B(0) = 0). From our application

of Ito’s lemma one can see that another expression would be

T (â − 1) ⇒ 1

2

B(1)2 − 1∫ 1
0 B(s)2ds

.
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Notice that B(1) is just a standard normal distribution, so that B(1)2 is just a standard χ2(1)

distributed random variable. Contrary to the stable model the denominator of the expression for

the least squares estimator does not converge to a constant almost surely; but rather to a stochastic

variable that is strongly correlated with the numerator. For these reasons the asymptotic distribu-

tion does not look like a normal, and it turns our that the limiting distribution of the least squares

estimator is highly skewed, with a long tail to the left - look at the graph of the distribution in e.g.

Evans and Savin (1981).

OK, if you couldn’t quite follow the “derivation” of the limiting distribution, don’t despair. One

needs quite a bit more machinery and notation to make sure that all the limit operations are legal;

but all you need is the basic intuition, so try and get that. Most of the part of the unit root

literature that is concerned with asymptotic theory contains the limiting distribution given here.

We will refer to the distribution of ∫ 1
0 B(s)dB(s)∫ 1

0 B(s)2ds

as the unit root distribution. It is not possible to find any simple expression for the density of this

distribution but one can find the characteristic function, which can be inverted in order to tabulate

the distribution function - (see Evans and Savin (1981)). You can also evaluate the distribution

by Monte Carlo simulation, which is performed by choosing a large value of T, and then drawing

the innovation terms from a pseudo random number generator (this is very easy in GAUSS) and

the generating the series yt from the defining equation (1). For large T the distribution of the LS

estimator is close to the limiting distribution, which can be graphed by repeating this exercise like

10- or 20,000 times and plotting the result.

TS and DS models

If you look at a plot of a typical macro economic time series, like real GNP, it is obvious that it

displays are very pronounced trend. What is a trend? Well, for many years that question was not

considered for many seconds - a trend was simply assumed to be linear function of time, and econo-

metricians would routinely “detrend” their series by using the residuals from a regression on time

(and a constant) rather than the original series. This practice was challenged by the Box-Jenkins

methodology, which became somewhat popular in economics in the seventies, although it originated

from engineering. The Box-Jenkins methodology had as one of its major steps the “detrending”

of variables by the taking of differences. In the 80ies a major battle between thes two approaches

raged, with the difference-detrenders seemingly having the upper hand in the late 80ies, although

challenged from many sides - the Bayesians being the most aggressive.

During that period the following terminology took hold. The model

(DS) yt = µ + yt−1 + et
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is called Difference Stationary (DS) since it is stationary after the application of the differencing

operation, and the model and

(TS) yt = µ + βt + a yt−1 + et ; a < 1 ,

is called Trend Stationary (TS) since it is stationary after good old-fashioned detrending by re-

gressing on a time-trend. Most tests for unit roots are formulated as testing TS versus DS.

8.2 Unit Root tests

8.2.1 Dickey-Fuller tests

The most famous of the unit root tests are the ones derived by Dickey and Fuller and described in

Fuller (1976).

Dickey and Fuller considered the estimation of the parameter a from the models

(1) yt = ρ yt−1 + et ,

(2) yt = µ + ρ yt−1 + et .

and

(3) yt = µ + βt + ρ yt−1 + et .

The parameter ρ is just the AR-parameter that we have denoted by a so far; but here I use the

notation of Fuller (1976). It is assumed that y0 = 0.

The simplest Dickey-Fuller test is simply to estimate (1) by least squares and compare T (ρ̂ − 1)

to a table of the distribution derived from a Monte Carlo study (or, as shown in Evans and Savin

(1981), one can find the characteristic function and invert it). This test is sometimes known as the

Dickey-Fuller ρ-test. The critical values for this and the following Dickey-Fuller (DF) tests can be

found in Fuller (1976), p. 373. Simplified versions of the tables from Fuller can be found many

places, f. ex. in Maddala (1992). (The Monte Carlo simulations were actually done as part of

David Dickey’s Ph.D. thesis). In practice the model (1) is often too simple and one would like to

allow for a mean term in the estimation. Dickey and Fuller suggested that one estimates (2) by first

calculating the average ȳ of the observations y2, ..., yT and the average ȳ0 of y1, ..., yT−1 and then

calculates the least squares estimator ρ̂µ by regressing yt− ȳ on yt−1− ȳ0. Comparing T (ρ̂µ− 1) to

the critical values in Fuller is known as the Dickey-Fuller ρµ-test. Dickey and Fuller also suggested

estimating ρ̂τ from model (3) by a standard regression and they tabulated the critical values of

T (ρ̂τ − 1) under the composite null hypothesis ρ = 1 and β = 0.

Note that this last test is a test for the DS model against the TS model, and it is known as Dickey-

Fuller ρτ -test.

It is often not realistic that a data series should follow as simple a model as (1), (2), or (3) with iid
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error terms. In most economic data series there will also be substantial short term autocorrelations,

so it may be more reasonable to assume the model

(4) yt = a1yt−1 + ...+ apyt−p + et ,

where et is iid normal, rather than model (1) (and equivalent for models (2) and (3)). An equivalent

way of writing model (4) is

(4′) yt = θ1yt−1 + θ2∆yt−1 + ...+ θp∆yt−p+1 + et .

It is simple to show the equivalence of (4) and (4’) and it is left as an exercise. A unit root in (4)

will show up as θ1 = 1 in (4’). So to test for a unit root in (4) you might want to use T (θ̂1 − 1).

One would expect the distribution of this statistic to depend on nuisance parameters as e.g. the

minimum order p of the autoregression, and it does. One can show (see Fuller (1976) that c T (θ̂1−1)

has the same limiting distribution as T (ρ̂− 1) has, for some constant c, where c is the sum of the

terms in the MA representation for et. It is somewhat complicated to find c which makes this test

less appealing; but it turns out that if you instead of using the distribution of the coefficient you use

the distribution of the t-statistic, then the test will not depend on the form of the autoregression.

The t-statistic has the usual form, that is calculated by any regression package, namely

τ̂ =
ρ̂− 1√

s2(
∑T
t=2 y

2
t−1)−1

,

in the simplest model with zero mean and no trend.

For model (1) Dickey and Fuller simulated the critical values under the null of a unit root and the

critical values of the test (called the τ̂ -test) is tabulated in Fuller (1976) p. 373. Dickey and Fuller

also simulated the corresponding t-test for model (2) and (3), which they denoted τ̂µ and τ̂τ .

Testing for unit roots using one of the models (1)-(3) is known as Dickey-Fuller tests, whether the

ρ̂ or the τ̂ -tests are used. Estimating a higher order autoregressive process (maybe with non-zero

mean and trend) and using the critical τ̂ tables are known as Augmented Dickey-Fuller (ADF)

tests. ADF-tests are the most widely applied tests for unit roots. In the influential paper by Engle

and Granger (1987) on co-integration, they recommended ADF tests after examining ADF and

several of its competitors. (In the case of co-integration test the critical values are different, see

the section on co-integration).

Since the publication of Engle and Granger’s article scores of new tests have been developed and

we will look at the most popular contenders below. But let us consider how to choose between the

different DF tests. Experience from Monte Carlo studies, see for example Dickey, Bell, and Miller

(1986), shows clearly that the ρ̂-tests have the highest power, as was to be expected. Which ρ̂-test

should you choose then? That depends, but in any raw series you typically must assume a non-zero

mean, which means that you should “at least” use the ρ̂µ- test. If you think that it is likely that

there may be a linear trend, then you should use the ρ̂τ -test; but as a general rule this is not “for

free”. In small samples (as we quite commonlu use in economics) there is a loss in power that
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increases with the number of parameters that you estimate. On the other hand it you allow for too

few parameters, then your model is misspecified and your tests will be wrong. In the present case

this means that you will prefer not to include a time-trend if you are reasonably sure that it can

safely be left out. Note, however, that the model 2 under the null hypothesis has

(2′) yt = µt +
∑

et ,

which is not invariant to the µ- term after subtracting the mean yt. In the stable process on the

contrary, the de-meaned value of yt will be independent of the mean term µ (since µ here shows up

as a mean term µ/[1− ρ]). Therefore you have to use the τ̂τ test if you think that model (2) might

be true with a unit root and a non-zero µ.

What do phrases like “reasonably sure” mean? That is hard to tell - it depends strongly on the

number of observations that you have, if you have lots of data: take the most general model. If

you have few data points, you will have to rely partly on the knowledge that you have about the

particular area of economics, that you are researching. You may even feel that you need higher

order deterministic terms than Fuller’s tables allow for, in which case you may have to simulate the

distribution under the null yourself (although you should consult a time series specialist first to see

if they are already available). Be aware that it is not very hard to simulate the null distribution in

GAUSS (or most other modern computer languages).

Now then should you use DF or the ADF test? For example for U.S. macro economic time se-

ries it is not safe to assume that there is no autocorrelation apart from the potential unit root,

which means that you should use the ADF test. How many lags should you include? Again, it

depends on the number of data points that you have and on your a priori expectations - the con-

siderations are totally parallel to those about mean and trend terms. What if the process really

is an ARIMA(k,1,1)? The MA term corresponds to an infinite AR process, so you may hope that

including enough AR-terms and letting the number of included terms go to infinity with T, then

you will obtain a consistent test. Said and Dickey (1984) show that this is exactly the case, given

that on chooses k = k(T ) = k0T
1/3. This is nice to know; but since k0 is unknown it is pretty much

useless as a practical guideline. You may sometimes see the ADF test referred to as the Said-Dickey

test - that is a way of indicating that the author does not consider the order of the AR model as

more than an approximation.

8.2.2 Phillips-Perron tests

The tests that has been most popular next to the DF-tests are the Phillips-Perron (PP) tests sug-

gested in Phillips and Perron (1988).

In the case where you are convinced that there is no autocorrelation apart from the unit root, the

PP test is identical to the DF test. The difference between the PP and the DF tests lies in the

treatment of the autocorrelation. If there is autocorrelation that is not accounted for you will get
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bias. The hard part is to rid of that bias. The ADF does that by choosing an AR(p) process, but

the weak point in that procedure is exactly the choice of p. Not only does a researcher usually

only have vague ideas about the appropriate chice of p; but for many applied researches it is just

too tempting to try out a bunch of different values for p until the results corresponds to what the

researcher wanted a priori. If results are derived by data-mining of that sort the asymptotic test

statistics reported will be meaningless.

The idea of the Phillips-Perron test is to run a non-augmented Dickey Fuller regression, and then

to adjust for the bias that might occur due to correlation in the innovation term so that the Dickey-

Fuller tables can be used anyway.

Phillips-Perron suggest estimating ρ̂ from model (2), then estimate the innovation error variance

s2 =
∑T
t=2 ê

2
t and 2π times the spectral density at frequency zero by, 2πf̂e(0), (we will cover

techniques for doing this later on). The Phillips-Perron Z(α̂) test is then

Z(α̂) = T (ρ̂µ − 1) − T 2(2πf̂(0)− s2)

2
∑T
t=2(yt−1 − ȳ−1)2

,

where ȳ−1 is the mean of yt−1. (It has its name because Phillips-Perron uses α rather that ρ for

the AR-parameter; but here we will not change notation again). The corresponding t-statistic is

Z(tα̂) = τµ

√
s2

2πf̂(0)
− T (2πf̂(0)− s2)

2
√

2πf̂(0)
∑T
t=2(yt−1 − ȳ−1)2

.

Correspondingly for the model that allows for a time trend under the alternative Phillips and

Perron suggest the adjusted DF tests

Z(α̃) = T (ρ̂τ − 1) − T 2(2πf̂(0)− s2)

2
∑T
t=2(yt−1 − ŷ)2

,

and

Z(tα̃) = ττ

√
s2

2πf̂(0)
− T (2πf̂(0)− s2)

2
√

2πf̂(0)
∑T
t=2(yt−1 − ŷ)2

,

where ŷ is the projection of yt−1 on 1, t (i.e. the fitted value from a regression of lagged y on a

constant and a time trend) and s2 is defined as before but now from the residuals from the regres-

sion of yt on yt−1, 1, t. The PP-tests now consist of comparing those adjusted DF-values with the

corresponding tables used for the basic Dickey-Fuller test. You will hear those tests referred to as

the Phillips- Perron tests or as the Zα and Zt tests.

An interesting (and extensive) Monte Carlo study is Schwert (1987). Schwert examines what

happens to the size of the above mentioned tests if the true process is an ARIMA(1,1,1) and the

Phillips-Perron or the ADF tests are used. A very clear conclusion from Schwert’s study is that

the ADF test, used with “many” lags, have the best size-properties in the sense that the size of
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the small sample distribution is close to the true 5% size if the Dickey-Fuller tables are used. The

other tests can be very far of in terms of size, especially if the ARIMA-process has a large negative

MA-coefficient, in which case the PP tests (and also the ADF test when the MA-coefficient is very

close to -1), almost always reject the unit root model (even if it is true). Note that the happens

because the model has the form

(1− L)yt = (1 + bL)et .

One can see that the two lag polynomials “nearly cancel” when b is close to −1. Some authors call

processes like that “nearly white noise processes”.

Does this mean that one should always use the ADF-test with a high number of AR-terms? Not

necessarily, since there is a cost in terms of power. It seems that this cost is not nearly as high

as the cost incurred by falsely allowing for a trend-term (see Dickey, Bell and Miller (1986)), but

there will presumably still be some loss in power. In an interesting Monte Carlo study, Campbell

and Perron (1991) show that both the Said-Dickey test (with 6 lags) and the Phillips-Perron test

falsely reject the unit root almost every time in the case of nearly white noise processes. They also

show, however, that for simple short term forecasting, this will not necessarily result in a decline

in the ability to make simple forecasts, since the trend stationary model forecasts just as well in

the cases where the unit root model tends to be falsely rejected.

8.2.3 Approximate POI-tests

In a recent interesting paper Elliott, Rothenberg and Stock (1992) (ERS) examine “point optimal

invariant tests” (POI) for unit roots. An invariant test is a test – like the augmented Dickey-Fuller

test – that is invariant to nuisance parameters. In the unit root case that will be tests that are

invariant to the parameters that capture the stationary movements around the unit roots (i.e., the

parameters to ∆Xt−1,∆Xt−2, · · · ,∆Xt−k in the ADF-case).

The most commonly used test are the “τ -tests” that allows for a deterministic time trend (in

the case where you do not allow for a time trend most tests are pretty well behaved), so I will only

consider this type of test in this subsection.

When

yt = µ+ σt+ ut ; ut = ρut−1 + εt ,

ERS show that the POI test for a unit root against ρ = ρ has the form

MT =
σ̃2

σ̂2
,

where

σ̃2 = T−1
T∑
t=1

ẽ2
t ; σ̂2 = T−1

T∑
t=1

ê2
t ,
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and êt and ẽb are the residuals from the GLS estimation of yt on zt = (1, t) under ρ = 1 and

ρ = ρ respectively:

ê = ŷt − β̂′ẑt ; (β̂ = (
∑

ẑtẑ
′
t)
−1(
∑

ẑtyt) ,

where

(ŷ1, · · · , ŷT ) = (y1,∆y2, · · · ,∆yT ) ,

and

(ẑ1, · · · , ẑT ) = (z1,∆z2, · · · ,∆zT ) ,

and correspondingly for ẽ except

(ỹ1, · · · , ỹT ) = (y1, (1− ρL)y2, · · · , (1− ρL)yT ) ,

and

(z̃1, · · · , z̃T ) = (z1, (1− ρL)z2, · · · , (1− ρL)zT ) .

This last transformation is the GLS-detrending (if you are not quite sure what I mean by that, check

your first year econometrics text (look under AR(1) disturbances) - most often the first observation

will also be rescaled, but asymptotically that does not make a difference).

The critical value for the test will depend on c where

ρ = 1− c

T
.

When

ut = ρut−1 + β2∆ut−2 + · · ·+ βk∆ut−k + εt ,

the critical value of the test statistic has to be adjusted in the same way as for the Phillips-Perron

(PP) test (in practice you adjust the test-statistic rather than the critical value, (and you don’t

have to assume a finite AR-representation), exactly as in the PP case).

In practice, ρ is not known, so ERS suggest choosing an approximate value of c. They suggest

using the value of c that asymptotically gives a power of 50%. These values are c = −7 in case of

a mean and c = −13.5 in the case of a trend ). ERS show that this way we get approximately the

POI test asymptotically.

Also, it turns out that if we instead do the GLS-adjustment and then perform the ADF-test

(now without allowing for a mean or trend) we get approximately the POI-test. Elliott et al. call

this test the DF-GLSτ test. They argue that the theoretical examinations above point to the GLS-

adjustment as the critical factor, and they then show by Monte Carlo simulation that the DF-GLSτ

seems to behave as well as the approximate POI test (using the values for c that I listed above).

The critical values depend on T . The critical values are
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T 1% 5%

50 -3.77 -3.19

100 -3.58 -3.03

200 -3.46 -2.93

500 -3.47 -2.89

∞ -3.48 -2.89

If you need critical values for the variant of the test with mean but not trend, see the article by

ERS. (They call that test the DF-GLSµ test.)

8.3 The importance of unit roots

The discussion above indicates that there is not necessarily a sharp distinction between unit root

processes and stable processes, which has led some researchers (Cochrane (1991), Christiano and

Eichenbaum (1989) - the later paper titled “Unit roots in real GNP: Do we know and do we care?”)

to question the importance of unit root tests.

I do not think that arguments that stresses that some stable processes look a lot like unit root

processes in finite time, makes it less important to test for unit roots. But it is true that there

are models, like the ARIMA models where the MA-process nearly cancels with the unit root, in

which it really isn’t interesting whether the model “truly” is a unit root model. In my opinion

no time series model is true in econometrics anyway. If one accepts that these models are just

approximations then there isn’t really a problem - if the stable process does a good enough job at

modeling the data, then let it!

It turns out that one can always decompose a unit root process into the sum of a random walk and

a stable process. This is known as the Beveridge-Nelson (1981) composition. The Beveridge-Nelson

(BN) decomposition states that any I(1) time series can be decomposed into the sum of a random

walk an I(0) time series. In the vector case we can state the results as

Theorem: Beveridge-Nelson decomposition

Any I(1) process yt can be written as the sum of a random walk st and a stable process ct (st and

ct will not be independently distributed):

yt = st + ct

Proof: Since (1− L)yt is a stable process it has a Wold-decomposition

(1− L)yt = ψ(L)et ,
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now write

(1− L)yt = ψ(L)et = ψ(1)et + (ψ(L)− ψ(1))et ,

which is equivalent to

(1− L)yt = ψ(L)et = ψ(1)et + ψ∗∗(L)et ,

where ψ∗∗(1) = 0. This implies that

yt = ψ(1)(1− L)−1et + (1− L)−1ψ∗∗(L)et ,

which has the form

yt = st + ψ∗(L)et ,

where ψ∗(L)et is a stable process and st is the random walk ψ(1)(1− L)−1et = ψ(1)
∑t
s es.

QED.

Note that ψ(1)et is the long run effect of et. For example if y0 = 0 then yT → ψ(1)e1 +hT (e2, e3, ..)

for some function h. Also note that the derivation of the Campbell and Mankiw (1987) suggested

the use of ψ(1) as a measure of the persistence in yt; whereas Cochrane (1988) suggests the use of

ψ(1)2σ2
e/σ

2
∆y ,

where σ2
∆y and σ2

e is the variance of ∆yt and et, respectively. (Note the importance of the spectral

density for ∆y at frequency zero). Cochrane refers to his measure as the size of the unit root. This

may be a slightly unfortunate term, and some researchers prefer not to use it; but you will meet it

in the literature. Cochrane’s measure is best if you want to measure the importance of the random

walk component of a series relative to the stationary part of the series (if Cochrane’s measure is

very small an ADF test would most likely conclude falsely that the process was stable) whereas

Campbell and Mankiw’s measure is better if you are a macroeconomist who wants to know the

impact in the infinite future of a shock happening today.
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9 Cointegration.

The survey by Campbell and Perron (1991) is a very good supplement to this chapter - for further

study read Watson’s survey for the handbook of econometrics Vol. IV, and for multivariate models

use Johansen’s (1995) book.

Cointegration theory is definitely the innovation in theoretical econometrics that has created

the most interest among economists in the last decade. The definition in the simple case of 2 time

series xt and yt, that are both integrated of order one (this is abbreviated I(1), and means that the

process contains a unit root), is the following:

Definition:

xt and yt are said to be cointegrated if there exists a parameter α such that

ut = yt − αxt

is a stationary process.

This turns out to be a pathbreaking way of looking at time series. Why? because it seems that

lots of lots of economic series behaves that way and because this is often predicted by theory. The

first thing to notice is of course that economic series behave like I(1) processes, i.e. they seem to

“drift all over the place”; but the second thing to notice is that they seem to drift in such a way

that the they do not drift away from each other. If you formulate this statistically you come up

with the cointegration model.

The famous paper by Davidson, Hendry, Srba and Yeo (1978), argued heuristically for models that

imposed the “long run” condition that the series modeled should not be allowed to drift arbitrarily

far from each other.

The reason unit roots and cointegration is so important is the following. Consider the regression

yt = α0 + α1xt + ut . (2)

A: Assume that xt is a random walk and that yt is an independent random walk (so that xt is

independent of ys for all s). Then the true value of α1 is of course 0, but the limiting distribution

of α̂1 is such that α̂1 converges to a function of Brownian motions. This is called a spurious

regression, and was first noted by Monte Carlo studies by Granger and Newbold (1974) and

Phillips (1986) analyzed the model rigorously and found expressions for the limiting distribution.

One can furthermore show that the t-statistic diverges at rate
√
T , so you can not detect the problem

from the t-statistics. The problem does reveal itself in typical OLS regression output though - if

you find a very high R2 and a very low Durbin-Watson value, you usually face a regression where

unit roots should be taken into account. I usually consider any reported time series regression with

R2 coefficients above (say) .95 with extreme suspicion. Of course, if you test and find unit roots,

then you can get standard consistent estimators by running the regression

∆yt = α0 + α1∆xt + et , (3)
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since you now regress a stationary variable on a stationary variable, and the classical statistical

theory applies.

B: Assume that xt is a random walk and the yt is another random walk, such that (1) holds

for non-zero α1, but with the error term ut following a unit root distribution. In this case you

still get inconsistent estimates and you need to estimate the relation (2). This may also be called

a spurious regression, even though there actually is a relation between xt and yt – I don’t think

there is quite an established way of referring to this situation (which is often “forgotten” in the

discussion of case A and Case C).

C: Now assume that (1) holds with a stationary error term. This is exactly the case where x

and y are cointegrated. In this case, α̂1 is not only consistent, but it converges to the true value

at rate T . We say that the OLS estimater is superconsistent. In the case where xt is a sim-

ple random walk and ut is serially uncorrelated you will find that T ∗ (α̂1 − α1) is asymptotically

distributed as a
∫ 1

0 B2dB1/(
∫ 1

0 B
2
2dt), where B1 and B2 are independent Brownian motions. This

limiting distribution has mean zero, but more importantly the standard t-test is asymptotically

normally distributed. In the situation where there is serial correlation or xt may be correlated with

us for some s you do not get a symmetric asymptotic distribution of T ∗ (α̂1 − α1), and even if the

estimate converges at the very fast rate T , this may translate into non-negligible bias in typical

macro data samples. In this situation the t-statistic is no longer asymptotically normal. The best

way to test is therefore to use the multivariate Johansen estimator (see below), although you can

also use the so-called “Fully Modified” estimator of Phillips (the idea is to estimate a correction

term, similarly to what is done in the Phillips-Perron unit root tests), or you can allow for more

dynamics in the relation (1). A good place to start reading about this issue is the book by Banerjee,

Dolado, Galbraith, and Hendry (1993).

Note that in the situation where xt and yt are cointegrated the regression (2) is still consistent

(although you would introduce a unit root in the MA representation for the error term). So the

differenced regression is always consistent and one could argue that it would be “safe” to always

estimate this relation. The loss of efficiency is, however, very big and most macro time series are so

short that the gain in efficiency from running the cointegrating regression can be critical for getting

decent results.

A stochastic process is said to be integrated of order p, abbreviated as I(p), if it need to be

differenced p times in order to achieve stationarity. More generally xt and yt are said to be co-

integrated of order CI(d,p) if xt and yt are both integrated of order d; but there exist an α such

that yt − αxt is integrated of order d-p. For the rest of this chapter I will only treat the CI(1,1)

case, which will be referred to simple as cointegration. Most applications of cointegration methods

treats that case, and it will allow for a much simpler presentation to limit the development to the

CI(1,1) case.
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For many purposes the above definition of cointegration is too narrow. It is true that economic

series tend to move together but in order to obtain a linear combination of the series, that is sta-

tionary one may have to include more variables. The general definition of co-integration (for the

I(1) case) is therefore the following:

Definition A vector of I(1) variables yt is said to be cointegrated if there exist at vector βi such

that β′iyt is trend stationary. If there exist r such linearly independent vectors βi, i = 1,...,r, then

yt is said to be cointegrated with cointegrating rank r. The matrix β = (β1, ...βr) is called the coin-

tegrating matrix.

Note that β′yt is an r-dimensional vector of trend-stationary variables.

Also note that this definition is symmetric in the variables, i.e. there is no designated left-hand side

variable. This is usually an advantage for the statistical testing but of course it makes it harder for

the economic intuition.

Note the βi vectors are individually identified only up to scale since βiyt stationary implies that

cβiyt is stationary. This of course implies that one can normalize one of the coefficients to one -

but only in the case where one is willing to impose the a priori restriction that this coefficient is

not zero. As far as the identification of the matrix β is concerned it is also clear that if β is a

cointegrating matrix then βF ′ is also a cointegrating matrix for any non-singular matrix F .

Finally note that the treatment of constants and drift terms are suppressed here. One has to

consider those for any practical applications of cointegration methods.

9.1 Cointegration in the autoregressive representation

The general VAR(k) model can be written as

∆yt = Πyt−1 +
k−1∑
j=1

Γj∆yt−j + et ,

as considered earlier.

If Π is equal to zero this means that there is no cointegration. This is the model that is implicit

in the Box-Jenkins method. The variables may be I(1); but that can easily be “cured” by taking

differences (in order to achieve the usual asymptotic distribution theory).

If Π has full rank then all yt must be stationary since the left hand side and the other right hand

side variables are stationary (since we limit ourselves to variables that are either I(0) or I(1)).

The most interesting case is when Π has less than full rank but is not equal to zero. This is the

case of cointegration. In this case Π can be written as Π = αβ′ (yes, this β corresponds to the

cointegration matrix introduced above), where α and β are n × r matrices. Note that α and β

are only identified up to non-singular transformations since Π = αβ′ = αF−1(βF ′)′ for any non-

singular F . This lack of identification can sometimes render results from multivariate cointegration

analysis impossible to interpret and finding a proper way of normalizing β (and thereby α) is often

the hardest part of the work. α can be interpreted as a “speed of adjustment towards equilibrium”.
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9.2 Cointegration in the moving average representation

The multivariate Wold-representation states that the stationary series ∆yt can be written as

(1− L)yt = Ψ(L)et ,

which, by the Beveridge-Nelson decomposition, can be written as

(1) yt = Ψ(1)St + Ψ∗(L)et ,

where St is the n-dimensional random walk St =
∑t
s=1 es and Ψ∗(L) = (1− L)−1(Ψ(L)−Ψ(1)).

Now βyt is stationary in the case of cointegration, so that

βyt = βΨ(1)St + βΨ∗(L)et ,

is stationary, which implies that βΨ(1)St is equal to 0. This gives another characterization of

cointegration that may be useful for testing.

One can show that the representation (1) can be reformulated in the case of cointegration as

yt = Ψ̃S∗t + Ψ∗(L)et ,

where S∗t is the (n-r)-dimensional random walk. This is called a common trend representation in

Stock and Watson 1988, and this representation can also be used as the basis for cointegration tests

(some of which are included in coint package for GAUSS).

9.3 Testing for cointegration

9.4 The Engle-Granger test

The most well known test, suggested by Engle and Granger (1987) (sometimes known as the EG

test) is to run a static regression (after first having verified that yt and xt both are I(1))

yt = θ′xt + et ,

where xt is one- or higher-dimensional. The asymptotic distribution of θ is not standard, but the

test suggested by Engle and Granger was to estimate θ̂ by OLS and the test for unit roots in

êt = yt − θ̂′xt .

Note, that since the unit root tests test the null-hypothesis of a unit root, most cointegration tests

test the Null of no cointegration. Unfortunately the limiting distribution of for example the
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t-test, does not have the limiting distribution tabulated by Dickey and Fuller. The limiting dis-

tribution does, however, resemble the Dickey-Fuller distribution even though you need a separate

table for each dimension of the regressor. Typically, you will allow for dynamics in the residual

and perform the equivalent of the ADF test (using the slightly different critical values in this case).

Such a procedure is usually called a Cointegration ADF test, abbreviated CADF-test. Engle and

Granger (1987) compared different tests and recommended the CADF test. They supplied critical

values based on Monte Carlo simulations for the case of just one regressor. Engle and Yoo (1987)

extend those tables to the case of more than one regressor, and MacKinnon (1991) has the most

complete tables available so far. You can find the critical values for this residual based test in

Hamilton Table B.9.

New tests for unit roots in residuals from a potentially cointegrating relation (like the Phillips-

Perron tests) have been suggested since the publication of Engle and Granger (1987) and critical

values have been simulated for some of those (see Phillips and Ouliaris (1990) for critical values

for the PP test - these values are built into the COINT package), but it seems that the CADF

test stands up pretty well. Again, you have to be careful if the series contains trends. If the xt
series contain a trend (or may contain a trend) then you should be careful to include a trend in

the cointegrating regression, otherwise the asymptotic critical values will be different. In the case

of a one-dimensional xt, that include a deterministic trend, a regression of yt on xt that does not

include the trend will give you an asymptotically normal coefficient (this is not too surprising since

a deterministic trend always will dominate a unit root trend). Bruce Hansen’s article in Journal

of Econometrics (Hansen (1992)) treats this topic in more detail. Also note that Campbell and

Perron (1991) refer to the case where there is a deterministic trend in yt and xt, but not in yt−θ′xt
as “deterministic cointegration”. If you include a trend in the CADF test, as I suggested, you

use (e.g.) Table IIc in Phillips and Ouliaris (1990). Hamilton p 596-7 suggests (based on Hansen

(1992)) a slightly more efficient test where you do not include a time trend in the regression – I

find the biggest drawback of this strategy that this test is not invariant to whether there is a trend

in the data or not.

9.4.1 Estimation of the parameters in case of cointegration

NOTE: Be aware that the issue of efficient estimation of parameters in cointegrating relationships

is quite a different issue from the issue of testing for cointegration.

Engle and Granger (1987) suggested the following simple two-step estimator (which is not

efficient and therefore not recommended). First estimate the static cointegrating relationship yt =

θ′xt + et, then define zt = yt − θ̂′xt, and finally estimate the error correction model

∆yt = A1(L)∆yt−1 +A2(L)∆xt−1 + γzt + et .

The fact that θ̂ is super-consistent implies that the parameters of the lag polynomials have the

same (asymptotically normal) distribution as they would have if θ had been known.
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9.5 The Johansen ML estimator

The best way of testing for unit roots is by using the system ML estimator of Johansen (1988,1991)

is a test for cointegration restrictions in a VAR representation. “Johansen” estimation is treated in

much detail in the book by Johansen (1995). This estimator also gives you asymptotically efficient

estimates of the cointegrating vectors (the β’s) and of the adjustment parameters (the α’s).

“Johansen’s method” is the maximum likelihood estimator of the so-called reduced rank model.

We start with the AR(k) model

∆yt = µ + Γ1∆yt−1 + ... + Γk−1∆yt−k+1 + Πyt−k + et ,

which under the assumption of cointegration of order k can be written as

∆yt = µ + Γ1∆yt−1 + ... + Γk−1∆yt−k+1 + αβ′yt−k + et , (4)

where α and β both have dimension p × k. The number of parameters in the unrestricted model

is p + kp2 + p(p + 1)/2. Let Z0t = ∆yt, Z1t = (∆y′t−1, ...,∆y
′
t−k+1, 1)′ and Zkt = yt−k. Define the

moment matrices as

Mij = T−1
T∑
t=1

ZitZ
′
jt (i, j = 0, 1, k) ,

We first regress Zit , i = 0, k on Z1t and get residuals Rit , i = 0, k. You should think of this

as “purging” ∆yt and yt−k of the short-run parameters which can be considered “noise” in the

cointegrating relation. We are also purging those variables of their mean, and if you want to

include exogenous variables (e.g. dummy variables) they should also be included in the Z1t vector.

Denote the residual sum of squares from regressing Z0 and Zk on Z1 as Sij ; i, j = 0, k, in other

words

Sij =
1

T

T∑
t=1

RitR
′
jt .

The maximum likelihood estimator of α and β is a function of these residuals. Johansen (1988,1991)

shows that β̂ can be found from choosing the eigenvectors (v̂1, ..., v̂r), where V̂ = (v̂1, ..., v̂p) are the

eigenvectors of the equation

(∗) |λSkk − Sk0S
−1
00 S0k| = 0 ,

normalized such that V̂ ′SkkV̂ = I, and ordered in the order of the corresponding eigenvalues such

that λ̂1 > ... > λ̂p > 0. Make sure you get the intuition here: Cointegration of order r implies

that λ1 6= 0, ..., λr 6= 0, while λr+1 = ... = λp = 0. (Since the estimated eigenvalues are continuous

random variables they are different from zero (and from each other) with probability 1.) And it is

intuitively clear now that you want the eigenvectors corresponding to the non-zero eigenvalues to

be the estimators of the cointegrating vectors.

In order to find those eigenvalues pre- and post-multiply the equation above by S
−1/2
kk (you can

use the Cholesky factorization in e.g. GAUSS to get S
−1/2
kk , but the inverse of any matrix X that

satisfies XX ′ = Skk will do) and get the equivalent problem

(∗∗) |λ− S−1/2
kk Sk0S

−1
00 S0kS

′−1/2
kk | = 0 .
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Note that this is a standard eigenvalue problem that programs like GAUSS can solve directly. The

eigenvalues will be the ones that you are looking for. The eigenvectors (ui, say ) that GAUSS gives

you will be normalized such that u′iui = 1 so you will use (v̂1, ..., v̂r) = S
−1/2
kk u1, ..., S

−1/2
kk ur.

In order to give some interpretation of this equation remember that the least squares Π̂ can be

obtained by regressing R0t on Rkt, by the Frisch-Waugh theorem. So the least squares estimate of

Π is

Π̂ = S−1
kk Sk0 .

Now note that

S
−1/2
kk Sk0S

−1
00 S0kS

−1/2
kk = S

1/2
kk S

−1
kk Sk0S

−1/2
00 S

−1/2
00 S0kS

−1
kk S

1/2
kk = (S

1/2
kk Π̂S

−1/2
00 )(S

1/2
kk Π̂S

−1/2
00 )′ .

The intuitively natural approach would be to consider the eigenvalues of Π̂Π̂′ and you can see that

this is actually what the Maximum Likelihood algorithm does apart from the fact that Π̂ has been

normalized by pre-multiplying by S
−1/2
kk and post-multiplying by S

−1/2
00 .

The maximized likelihood function is

L−2/T
max (r) = |S00|

r∏
i=1

(1− λ̂i) .

Notice that this is a function of the estimated eigenvalues where all the eigenvalues except the

largest r eigenvectors are set equal to zero. So for example the test for one cointegrating vector

against no cointegrating vectors consist of testing whether the largest eigenvalue is significantly

different from zero. Johansen further finds

α̂ = S0kβ̂ ,

{Γ̂1, ..., Γ̂k−1, µ̂} = (M01 − α̂β̂′Mk1)M−1
11 ,

and

Λ̂ = S00 − α̂α̂′ .

The likelihood ratio test statistic H for the hypothesis that Π = αβ′ is of rank r against the

unrestricted model where Π has full rank p is

H = −2 ln(Q) = −T
p∑

i=r+1

ln(1− λ̂i) .

Note that the Null hypothesis here is that there are (p − r) unit roots. This corresponds to the

simple residual based test previously, where we have p = 2 (if the X variable is one dimensional),

and we test for 1 cointegrating relation, the null is then that there are 2 unit roots. This test statistic

is often referred to as the “trace”-statistic, see e.g. Johansen and Juselius (1992). Note that this

statistic is expected to be close to zero if there is at most r (linearly independent) cointegrating

vectors. Another test that is often used it the “λ − max” test which looks at −T ln(1 − λ̂r+1)

- the idea being that if the (r + 1)th eigenvalue can be accepted to be zero, then all the smaller

eigenvalues can also. This test is a test of r+1 cointegrating vectors against r cointegrating vectors.
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The asymptotic distribution of the likelihood ratio test is a functional of multivariate Brownian

motion (Johansen (1991)), and is tabulated for values of p up to 11 in Osterwald-Lenum (1992)

and reproduced in Hamilton – Table B. 10. The case that allows for a a deterministic trend in the

variables is the one that you will “normally” use – this is denoted “Case 3” in Table B. 10.

Often you do not really want to test whether there is (say) 3 cointegrating vectors against no

cointegrating vectors, rather you want to make a decision on to what is the number of cointegrating

vectors. In the situation where you directly want to test r + 1 cointegrating vectors against r

cointegrating vectors you should of course use the “λ −max” test, but this test will not give you

a consistent way of deciding the cointegration rank. A consistent (in the sense that you with

probability 1 will not underestimate the number of cointegrating vectors) way to do this, using the

trace test, is to start by testing for zero cointegrating vectors. (I.e. if your system is 4 dimensional,

you compare the test statistic −T
∑4
i=1 ln(1 − λ̂i) to the row labelled 4 in Hamilton Table B.10).

If you reject zero cointegrating vectors, you then test for (at most) 1 cointegrating vectors. (In

the 4-dimensional case, you compare the test statistic −T
∑4
i=2 ln(1− λ̂i) to the row labelled 3 in

Hamilton Table B.10). If this is not rejected you stop and decide that r = 1 - if you reject this you

move on until you can not longer reject and stop there. See Johansen (1992b) for further details.

Even though there is a constant in the error correction representation (eqn. (??)), this may

not translate into a deterministic trend in yt. Note that this is not the same as what Campbell

and Perron (1992) refer to as “deterministic cointegration”, namely the case where there is trend

in yt but no trend in β′yt. Johansen (1991) derives the likelihood ratio test (which we will denote

H∗) for reduced rank in the case where there is a constant in the ECM but no trend in yt, see

Johansen (1991) or Johansen (1995) for the full explanation. Johansen (1992b) discusses how to

obtain a consistent test for the number of stochastic trends and for trend in yt at the same time. See

Johansen (1991) for the derivation of the maximum likelihood estimator when there may or may

not be trend. It turns out to be very convenient to program the Maximum Likelihood estimator in

this case: all you have to do is to move the vector of ones in to Zkt and delete if from Z1t. (The

Johansen (1991) article also has the most readable proof of the Granger representation theorem in

my opinion).

There are two drawbacks of the Johansen method. One is that it takes a little getting used to

interpreting the results and formulating hypotheses in this setting. In the VAR system all variables

are treated symmetrically, as opposed to the standard univariate models that usually have a clear

interpretation in terms of exogenous and endogenous variables. The other drawback of the VAR

system is one has to model all the variables at the same time, which will be a problem if the relation

for some variable is flawed. This may give bias in the whole system and one may have been better

of conditioning on that variable. Further, the multidimensional VAR model uses many degrees of

freedom

9.6 Hypothesis testing in the Johansen model

This is just a very short introduction - Bannerjee et al. p. 276-277 have a slightly longer (but also

much too short for the purpose of really learning it) introduction and Hamilton p. 648-650 has
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a discussion that is also very brief. The best place to look for more results is the Johansen and

Juselius (1992) paper, which explains the method and uses them on an actual economic model, or

you may look in Johansen (1995), chapter 7. Here is just an example. Assume that your system

consists of 3 variables (y1t, y2t, y3t) and that you have found that there are 2 cointegrating vectors.

In other words you have an estimate of β where β11 β12

β21 β22

β31 β32

 .

Assume then that you have a long-run hypothesis of the form y1t − y3t = 0 (e.g. the PPP-model

has this form). This would be the case if for example β11 = −β13 and β12 = 0. Note that the

model only identifies the parameters up to scale. But even worse the β matrix is only identified up

to rotations so it is not obvious how one can do a Wald test. However a Likelihood Ratio test will

give you a standard χ2-test (if you condition on cointegration of order 2). Under the alternative

you have to parameterize β as (H,ψ), where ψ is a 3 × 1 vector of parameters, and

H =

 1

0

−1

 .

Johansen and Juselius explain how one can estimate models with restrictions of this and similar

forms (and also how to impose linear restrictions on α). (It is actually surprisingly easy to modify

the program that does the “standard” Johansen ML-estimator to impose these restrictions). I will

not go further into this here, but notice that the hypoteses have to formulated in the form of linear

relationships rather than as explicit null-restrictions. I need to explain how to find the degrees of

freedom (df) for such a hypothesis. Theoretically we can normalize the β vector to 1 0

β21 1

β31 β32

 ,

so there are 3 df in the β matrix. The reason I use the word “theoretically” is that you may have

to re-order the rows since we have not imposed the restriction that any particular βij is equal to

zero. (You may have a model that implies such a restriction, but the general ML estimator does

not do that and Johansen himself is quite critical against imposing such a restriction a priori). In

the restricted model there are 2 df (since you can normalize one of the coefficients (but again you

may not know which one a priori) to be 1. So the “PPP” hypothesis that one of the cointegration

vectors is (1, 0,−1) can then be tested against the χ2(1) distribution. The null hypothesis is esti-

mated by modifying the ML-algorithm for the unrestricted model - I will not go into the details,

see Johansen and Juselius (1992), but it is not exceedingly hard to do.
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9.6.1 “Common Trends”

Following Johansen (1988,1991) one can choose a set of vectors β⊥ such that the matrix {β, β⊥}
has full rank and β′β⊥ = 0. In other words the p× (p− r) matrix β⊥ is orthogonal to the matrix

β and the columns of β⊥ are orthogonal to the columns of β. The vectors β′⊥yt constitute the

noncointegrated part of the time series yt. We call β⊥ the common trends loading matrix and will

refer to the space spanned by β′⊥yt as the unit root space of the series yt. See also Stock and Watson

(1988).

9.7 Multicointegration

“Multicointegration” denotes the case where there is cointegration between processes of different

order of integration, f.ex. where zt is I(2), xt is I(1), and there exist γ such that zt − γxt is I(0).

We will not have time to go into the theory of multicointegration, but you should now it exists and

where to look in the literature. Some models imply a relation between I(2) and I(1) variables, and

by extending the ideas of cointegration for I(1) variables above, these models can be analyzed. See

Granger and Lee (1990) for a simple introduction, and Johansen (1992c) and Johansen (1992d) for

a comprehensive treatment. Also see Stock and Watson (1992.

9.8 Asymptotically efficient single equation methods

The simple two-step estimator of Engle and Granger is not asymptotically efficient; but recently

several asymptotically efficient single equation methods have been proposed. Phillips (1991b)

suggests a regression in the spectral domain, Phillips and Loretan (1991) suggests a non-linear

error-correction estimation, Phillips and Hansen (1990) suggests an instrumental regression with a

correction a la Phillips-Perron, Saikkonen (1991) suggests a simple trick of including leads as well as

lags in the lag-polynomials of the error correction model in order to achieve asymptotic efficiency,

Saikkonen (1992) suggests a simple GLS type estimator, whereas Park’s (1991) CCR estimator

transforms the data so that OLS afterwards gives asymptotically efficient estimators, and finally

Engle and Yoo (1991) suggest a 3 step estimator starting from the static Engle-Granger estimation.

From all of those estimators it is possible to obtain simple t-values for the short term adjustment

parameters.

The routines for implementing these single equation procedures are all available in the COINT

package for GAUSS, except Engle and Yoo (1991). NOTE, however, that it is not obvious what

you are estimating if the system contains more than one cointegrating relation. This makes a very

strong case for using the Johansen test in the case of a higher dimensional system, where you rarely

can rule out the possibility of more than one conintegrating vector a priori.
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10 GMM.

Generalized Method of Moment (GMM) estimation is the only other development in econometrics

in the 80ies that might threaten the position of cointegration for the number one spot on the hit

parade. The path breaking articles being Hansen (1982) and Hansen and Singleton (1982).

Until quite recently GMM theory was quite inaccessible, but the surveys by Hall (1992) and

Ogaki (1992) has made the theory much easier to get into. Davidson and MacKinnon (1993) also

has a quite comprehensive chapter on GMM. For the harder theory you should still consult Hansen

(1982) or Gallant (1987).

I think that one can claim that there wasn’t that much material in Hansen (1982) that was

not known already (although the article definitely was not redundant); but the demonstration in

Hansen and Singleton (1982), that this allowed for the estimation of non-linear rational expectations

models, that could not be estimated by other methods, really catapulted Hansen and Singleton to

major fame. We will start by reviewing linear instrumental variables estimation, since that will

contain all the ideas and intuition for the general GMM estimation.

10.1 Linear IV estimation

Consider the following simple model

(1) yt = xtθ + ut , t = 1, ..., T

where yt and ut scalar and xt is 1 × K . NOTE from the beginning that even though I use the

index “t” - indicating time, that GMM methods are applicable, and indeed much used, in cross

sectional studies.

In vector form the equation (1) can be written

(2) Y = Xθ + U ,

in the usual fashion. If xt and ut are potentially correlated, one will obtain a consistent estimator

by instrumental variables (IV) estimation. The idea is to find a 1 × L vector zt that is as highly

correlated with xt as possible and at the same time is independent of ut - so if xt is actually

uncorrelated with ut you will use xt itself as instruments - in this way all the simple estimators

that you know, like OLS, are special cases of GMM-estimation. If Z denotes the T × L (L ≤ K)

vector of the z-observations then we get by premultiplying (2) by Z that

Z ′Y = Z ′Xθ + Z ′U .

If we now denote Z ′Y by Ỹ , Z ′X by X̃, and Z ′U by Ũ then the system has the form

Ỹ = X̃ + Ũ ,
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which corresponds to a standard OLS formulation with L observations. Now the standard OLS

estimator of θ is

θ̂ = (X̃ ′X̃)−1X̃ ′Ỹ ,

which is consistent and unbiased with variance

V ar(Ũ) = Z ′V ar(U)Z .

For simplicity let us now consider drop the tilde’s, and just remember that the system (of the

form (2)) often will have been obtained via the use of instrumental variables. (Most of the GMM-

literature uses very sparse notation, which is nice when you are familiar with it, but makes it hard

to get started on).

If U does not have a variance matrix that is proportional to the identity matrix the OLS estimator

is not efficient. Remember that the OLS estimator is chosen to minimize the criterion function

U ′U = (Y −Xθ)′(Y −Xθ) .

To obtain a more efficient estimator than the OLS estimator we have to give different weights to

the different equations. Assume that we have given a weighting matrixW (the choice of weighting

matrices is an important subject that we will return to) and instead choose θ̂ to minimize

U ′WU = (Y −Xθ)′W (Y −Xθ) ,

or (in the typical compact notation)

θ̂ = argminθU
′WU .

In this linear case one can then easily show that θ̂ is the GLS-estimator

θ̂ = (X ′WX)−1X ′WY .

Let the variance of U be denoted Ω and we find that θ̂ have variance

var((X ′WX)−1X ′WU = (X ′WX)−1X ′WΩWX(X ′WX)−1 .

We want to choose the weighting matrix optimally, so as to achieve the lowest variance of the

estimator. It is fairly obvious that one will get the most efficient estimator by weighing each

equation by the inverse of its standard deviation which suggests choosing the weighting matrix

Ω−1. In this case we find by substituting Ω−1 for W in the previous equation that

var((X ′Ω−1X)−1X ′Ω−1U = (X ′Ω−1X)−1X ′Ω−1ΩΩ−1X(X ′Ω−1X)−1 = (X ′Ω−1X)−1 .

We recognize this as the variance of the GLS estimator. Since we know that the GLS estimator is

the most efficient estimator we have indeed shown Ω−1 is the optimal weighting matrix.

For practical purposes one would have to do a 2-step estimation. First perform a preliminary

estimation by OLS (for example), then estimate Ω (from the residuals), and perform a second
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step using this estimate of Ω to perform “feasible GLS”. This is asymptotically fully efficient. It

sometimes can improve finite sample performance to iterate one step more in order to get a better

estimate of the weighting matrix.

The derivations above illustrate all the concepts of GMM. Personally I always guide my intu-

ition by the GLS model. For the general GMM estimators the formulas look just the same (in

particular the formulas for the variance) except that if we consider the nonlinear estimation

(1) Y = h(X, θ) + U , t = 1, ..., T ,

then “X” in the GLS-formulas should be changed to ∂h
∂θ .

In GMM jargon the model would usually be formulated as

U = Y − h(X, θ) ,

or more often as

(∗∗) U = f(X̃, θ) ,

(where X̃ = Y,X and f(X̃, θ) = Y − Xθ. The later - very compact - notation is the one that is

commonly used in the GMM literature and we will follow it here. We again drop the tilde and

denote all the variables by X. It is typical for the newer methods (typically inspired from statistics)

that the variables are treated symmetrically.

In the language of GMM the whole model is summarized by the orthogonality conditions:

EU = 0 ,

or (when you want to be really explicit!):

EU(X, θ) = 0 .

Here you should thing of U as being a theoretical model. It is not quite explicit here whether we

think of U as equations that have been premultiplied by instrument vectors or not. In rational

expectations models, the theory often implies which variables will be valid instruments; but this is

not always so. For the statistical development the terse notation is good; but in applications you

will of course have to be more explicit.

Before developing the general theory for non-linear models let us look at a famous example.

10.2 Hansen and Singleton’s 1982 model

The model in Hansen and Singleton (1982) is a simple non-linear rational expectations representa-

tive agent model for the demand for financial assets. The model is a simple version of the model of

Lucas (1978), and here the model is simplified even more in order to highlight the structure. Note

that the considerations below are very typical for implementations of non linear rational expecta-

tions models.
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We consider an agent that maximize a time-separable von Neumann-Morgenstern utility func-

tion over an infinite time horizon. In each period the consumer has to choose between consuming

or investing. It is assumed that the consumers utility index is of the constant relative risk aversion

(CRRA) type. There is only one consumption good (as in Hansen and Singleton) and one asset (a

simplification here).

The consumers problem is

Max Et [
∞∑
j=0

βj
1

γ
Cγt+j ]

s.t. Ct+j + It+j ≤ rt+jIt+j−1 + Wt+j ; j = 0, 1, ..,∞

where Et is the comsumer’s expectations at time t and

Ct : Consumption

It : Investment in (one-period) asset

Wt : Other Income

rt : Rate of Return

β : Discount Factor

γ : Parameter of Utility Function

If you knew how Ct and It was determined this model could be used to find rt (which is why it

called an asset pricing model), but here we will consider this optimization problem as if it was

part of a larger unknown system. Hansen and Singleton’s purpose was to estimate the unknown

parameters (β and γ), and to test the model.

The first order conditions (called the “Euler equation”) for maximum in the model is that

Cγ−1
t = βEt[C

γ−1
t+1 rt+1] .

The model can not be solved for the optimal consumption path and the major insight of Hansen

and Singleton (1982) was that knowledge of the Euler equations are sufficient for estimating the

model.

The assumption of rational expectations is critical here - if we assume that the agents expectations at

time t (as expressed through Et corresponds to the true expectations as derived from the probability

measure that describes that actual evolution of the variables then the Euler equation can be used

to form the “orthogonality condition”

U(Ct, θ) = βCγ−1
t+1 rt+1 − Cγ−1

t ,

where EtU = 0 (why?), where we now interpret Et as the “objective” or “true” conditional ex-

pectation. Note that EtU = 0 implies that EU = 0 by the “law of iterated expectations”, which

is all that is needed in order to estimate the parameters by GMM. The fact that the conditional

expectation of U is equal to zero can be quite useful for the purpose of selecting instruments. In
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the Hansen-Singleton model we have one orthogonality condition and that is not enough in order

to estimate two parameters (more about that shortly), but if we can find two or more independent

instrumental variables to use as instruments then we effectively have more than 2 orthogonality

conditions.

We denote the agents information set at time t by Ωt. Ωt will typically be a set of previous observa-

tions of economic variables {z1t, z1t−1, ...; z2t, z2t−1, ...; zKt, zKt−1, ...}. (Including Ct, and It among

the z’s. Then any variable in Ωt will be a valid instrument in the sense that

E[ztU(Ct, θ)] = 0

for any zt in Ωt. Notice that zt here denotes any valid instrument at time t, for example zt could be

z1t−3 - this convention indexing the instruments will prove quite convenient. The E[., .] operation

can be considered an inner product, so this equation is really the origin of the term orthogonality

conditions. For those of you who want to see how this can be developed rigorously, see the book

by Hansen and Sargent (1991).

10.3 The GMM estimator

Here we will develop the general theory for GMM-estimation - it is probably a good idea to under-

stand the previous sections fully before reading this.

We have given an economic model

ut(xt, θ) ,

where the vector ut satisfies

Eut(xt, θ) = 0 .

Also assume that we have given a vector zt of instruments, such that

Eut ⊗ zt = 0 .

We will use the notation

ft = ut ⊗ zt ,

where ft now has dimension K × 1, say. Here we have suppressed the explicit dependence on the

underlying series, but when we will use ft(θ) rather than ft when it is important to make the

dependence on the parameter explicit.

Now comes the most important feature of GMM. We will work not with gt itself; but with the time

average of gt. Define

gT =
1

T

T∑
t=1

ft .

We will use the notation gT or gT (θ), but from now on the dependence of gT on the underlying

series will be implicit. The GMM estimator will be the estimator that makes gT (θ) as close to zero

as possible. Notice that gT is the empirical first moment of the series gt which is why the estimator

is called a moment estimator. Also note that the standard idea of moment estimation, which
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consists of equating as well as possible a series of moments. This would be achieved by choosing

g′T = [xT − Ext, x2
T − E{x2

t }, ..., xKT − E{xKt }]. (The moments used for the GMM-estimator in

Ho, Perraudin, and Sørensen (1992) are of that form).

We now define the GMM-estimator as

θ̂ = argminθ g
′
TWT gT ,

where WT is a weighting matrix that (typically) depends on T such that there exist a positive

definite matrix W0, such that WT →W0 (a.s.). The latter condition allows us to let the weighting

matrix be dependent on an initial consistent estimator, which is very important since the optimal

GMM estimator will be a two step estimator, just as in the GLS-case above.

10.4 Asymptotic theory

We will assume that the series (x′t, z
′
t)
′ is ergodic which means that

1

T

T∑
t=1

h(xt) → Eh(xt)

for all functions h(.) (for which the mean is well defined). Notice that the right hand side of the

above equation is assumed to not be a function of t.

We will also assume that the series ft(θ) satisfies a central limit theorem, i.e. that

1√
T

T∑
t=1

ft(θ) ⇒ N(0,Ω) ,

where Ω = E[f2
t ] if ft is not autocorrelated, but in general

Ω = lim
t→∞

J∑
j=−J

E[ftf
′
t−j ] .

So intuitively, where we in the GLS model had T (or L in the IV case) normally distributed error

terms, we here have K asymptotically normally distributed moment (or orthogonality) conditions.

Let Df = E ∂ft
∂θ . One can then show that for any convergent sequence of weighting matrices

the GMM-estimator is consistent and asymptotically normal with

√
T (θ̂ − θ )⇒ N(0,Σ) ,

where

Σ = (Df ′W0Df)−1Df ′W0ΩW0Df(Df ′W0Df)−1 .

Notice that this formula corresponds exactly to the one obtained in the linear case if you substitute

X for Df . Of course the reasoning behind the GLS estimator also carries over and the optimal
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GMM-estimator is the one where WT → Ω−1 in which case the asymptotic covariance of the

GMM-estimator is

Σo = (Df ′Ω−1Df)−1 .

Notice that this is the optimal estimator for a given set of instruments. The problem of finding

the best instruments is much harder and no satisfactory solution exists to that problem in general

(although often for special cases, like the OLS model).

10.5 Estimation of the asymptotically optimal weighting matrix

To find an estimate of the optimal weighting matrix one has to start with a consistent estimate

θ̂1 = argminθ g
′
T IgT ,

where we have used the identity matrix as the weighting matrix for the first stage estimator. One

can choose any initial weighting matrix but it is very common to use the identity matrix in the

first step, and if you use any other matrix as the initial weighting matrix you will be expected to

supply some argument for your choice - even if one can use any positive definite matrix and still

get a consistent estimate.

Now estimate the auto covariances, given a sample of size T, the same way as we did earlier in the

course by

C(k) =

∑T
t=k[(ft(θ̂1)(ft−k(θ̂1)′]

T − k
; k = −T,−T + 1, ..., T − 1, T .

We can estimate the asymptotic covariance matrix for
√
TgT (which corresponds to the spectrum

at frequency zero for ft) by

Ω̂ =
T∑

k=−T
w(

k

M(T )
) C(k) ,

where the function w(.) is the weighting function, and M(T ) is the bandwidth parameter. (Note

that it is not necessary to divide by
√

2π since the GMM estimator is unaffected by a scalar mul-

tiplication of the weighting matrix). The Newey-West/Bartlett kernel is very often used, although

one can improve a bit on this asymptotically (see Andrews (1991)). More important is the choice of

M(T ), and there is an approximately asymptotically optimal method available for choosing M(T ),

see Andrews (1991) and Andrews and Monahan (1991). The basic idea of the choice of M(T ) is

that there is a trade-off between bias and variance as previously explained, and the bias will be

worse the lower M(T ) is chosen. This is however most serious if there is high autocorrelation (if

there is no autocorrelation M(T ) should be chosen as low as possible), so the Andrews selection

of M(T ) is based on an estimation of the degree of autocorrelation. If that estimate is high then

M(T ) is chosen to be large and vice versa. We will not go into detail with those methods here, but

you should probably apply them in an actual application. I think that whatever their other merits,

it is important to have automatic methods for selecting aspects of the estimation, since it reduces

fiddling. The more fiddling the more useless the asymptotic t-values etc. are.
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When an estimator Ω̂T of the asymptotic variance-covariance matrix has been formed, then the

asymptotically optimal 2nd stage GMM estimator can be found as

θ̂2 = argminθ g
′
T Ω̂−1

T gT .

This is the GMM-estimator as it is typically found.

10.6 Testing in a GMM-framework

Hansen (1982) suggested the following test for misspecification: Consider

JT = TgT (θ̂2)′Ω̂−1
T gT (θ̂2) .

If the model is correctly specified this statistic is asymptotically χ2 distributed with degrees of

freedom equal to K − p, where p is the number of parameters estimated. So a value that is far out

in the tail indicates that the whole model is mis-specified. By the whole model I do not mean that

all parts of the model are mis-specified; but rather that some part of the model is mis-specified

- it could be that it was just the instruments that were not pre-determined. This test is known

as the test for overidentifying restrictions or sometimes as the “Hansen J-test”. In Hansen

and Singleton (1982) the model was rejected by the J-test, and my subjective impression is that

from then on it really became just as acceptable to present an econometric estimation that rejected

the model, as one that accepted the model. Exaggerating a bit one could claim that in the earlier

period models were never rejected; but at least I am strongly convinced that they were not rejected

the 5% of the times that they should have been even in the case that they were true.

I often find the J-test useless. Models are never exactly true so the result of the J-test will usually

be that it accepts the model (due to lack of power) if the number of observations is low, and rejects

the model if the number of observations is high.

More useful (to my taste) are the standard tests for specific restrictions. There exists equiva-

lents of the standard Wald-, LM-, and ML-test in the case of GMM estimation. Note: This is only

true in the case where the optimal weighting matrix has been applied. In a case where you apply a

non-optimal weighting matrix then there is no equivalent of the ML-test available. (Ho, Perraudin,

and Sørensen (1992) is an example of a paper that applies a non-optimal weighting matrix). For

the development here I will assume that the optimal GMM-estimator has been estimated - for the

more general case, see Gallant (1987).

Consider a test for s nonlinear restrictions

R(θ) = 0 ,

where R is a s× 1 vector of functions.

Let DR be dR
dθ (and we assume that DR is evaluated at the optimal GMM-estimator in the unre-

stricted model, then the Wald test is

TR′[DR(D̂g
′
T Ω̂−1

T D̂gT )−1DR′]−1R ,
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where Dg (and DR if this is dependent on the parameters) are evaluated at the restricted estimator

of θ. Sometimes you can find the analytical derivatives, but otherwise you will have to use numerical

derivatives, which are easy to evaluate in GAUSS. In this formula (D̂g
′
T Ω̂−1

T D̂gT )−1 is our estimator

of the variance of θ̂ and when we pre- and post-multiply this by DR we get an estimate of the

asymptotic variance of R(θ̂). Let us define

Σ̂ = (D̂g
′
T Ω̂−1

T D̂gT )−1 ,

The LM-test is then

LM = TgT Ω̂−1
T D̂gT Σ̂DR′ [DR Σ̂DR′]−1DR Σ̂ D̂g

′
T Ω̂−1

T gT ,

which is pretty ugly looking, so you may want to check against Gallant (1987) on your own to

see if you get the same (there is a formula in Ogaki (1992) that I cannot quite get to agree with

Gallant’s formula and a much simpler looking formula in Davidson and MacKinnon, that I can-

not see how they get, so I recommend using the terrible Gallant formula if you do need the LM-test).

Finally the LR-test (of course it should strictly speaking be “LR-type test”) is

LR = T [JT (θr2)− JT (θu2 )] ,

where JT is the criterion function (NB) evaluated at the same estimator or Ω and where the su-

perscripts u and r of course indicates that the estimators were found in the unrestricted and the

restricted models respectively.

The Wald-, LM-, and LR-test can all be shown to converge in distribution to a χ2-distribution

with s degrees of freedom in the case where the restrictions are true.
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11 ARCH and generalizations.

For further or alternative readings, the very up-to-date survey by Bollerslev, Chou, and Kroner

(1992) is highly recommended.

Many financial time series exhibit volatility clustering, which means that the series have peri-

ods where volatility is low and other periods where volatility is high. As econometricians we will

understand “volatility” to mean “conditional variance”. The conditioning set will always be the

behavior of relevant variables up to “time t” - the time when we observe the series. There have

recently been developed many different models for data that shows volatility clustering, and it is

still a very active research area. The main differences between competing models will often be

the choice of which variables to condition on, and (as usual) the choice of functional forms. The

problems of modeling series with varying volatility is of course well known in econometrics under

the heading of heteroskedasticity; but most of the interest in time-varying volatility models comes

from finance.

One of the main ideas of asset-pricing is that the variability of an asset should be reflected in its

price. One would expect an asset with high variance (“risk”) to give a higher return (for investors

to want to hold it). With some polishing and generalizations this is the main point of the CAPM-,

and APT-models that are common in finance. But standard economic reasoning also says that

risk should not be measured as the unconditional variance but rather as the conditional variance,

and therefore finance characters are interested in modeling conditional heteroskedasticity in its own

right (e.g. for the purpose of pricing options).

11.1 Engle’s ARCH model

Consider the following simple scalar model

yt = µ + et , t = 1, ..., T

(1) et = ztσt

σ2
t = ω +

q∑
i=1

αiε
2
t−i = ω + a(L)ε2t

where α1, .., αq, µ and ω are scalar parameters to be estimated. zt is supposed to have mean zero

and variance one, and will often (but not always) be assumed to be normally distributed. One has

to assume that ω and αi are all positive in order to obtain positive values for the estimate of the

condition variance. In practice you have to assume this by either penalize the likelihood by setting

it to a large negative number when negative values are met or by parameterizing it for example as

the square of the parameter. I tend to prefer the later method since the former method potentially

will create problems because the likelihood then will not be differentiable.
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11.2 The GARCH model

Bollerslev (1986) suggested the following natural generalization of the ARCH model. Let the et = σt
as before, but now let

σ2
t = ω +

p∑
i=1

βiσ
2
t−i +

q∑
i=1

αiε
2
t−i

which is a natural generalization corresponding to an ARMA model for the variance. This model

is called a GARCH(p,q) model. Also in the GARCH model one will restrict the parameters to be

positive, which will ensure a positive estimate of the conditional variance (even though I am not

sure whether this is also a necessary condition in higher order models). More compactly we write

σ2
t = ω + b(L)σ2

t + a(L)ε2t .

Bollerslev and Engle (1986) looks at the case where the variance process follows the equivalent of

an ARIMA model, allowing for unit roots in the lag polynomials. In the case where

α1 + ... + αq + β1 + ... + βp = 1

they refer to the model as an IGARCH(p,q) model.

11.3 The E-GARCH model

One limitation of the GARCH models is that it a priori restricts the shocks to the model to have

the same effect on the conditional variance whether the shocks are negative or positive. This

may or may not be a reasonable assumption but one would like to be able to test this. The

positivity constraints on the parameters can also be viewed as restrictive, since it rules out cyclical

behavior in the conditional variance. For those reasons (among others) Nelson (1991) suggests the

EGARCH(p,q) model:

log(σ2
t ) = ω +

p∑
i=1

βilog(σ2
t−i)

q∑
i=1

αi(φzt−i + γ[|zt−i| − E|zt−i|]) .

In the EGARCH the parameters are not restricted to be positive. Note that the term |zt−i|−E|zt−i|
is positive if the error term is larger than its expected value and negative otherwise. One can use

other models for log(σ2
t ), but for the particular model suggested by Nelson, he shows that the

model seems to behave well asymptotically. We will look a little bit at the issue of stationarity of

*ARCH models.

11.4 Stationarity of ARCH models

The GARCH model is covariance stationary if A(1)+B(1) < 1. It turns out that if A(1)+B(1) = 1

then the process is still stationary; but not covariance stationary since the variance is infinite.

Notice that this is very different from the ARMA models where strict stationarity and covariance

stationarity coincides (if the intial conditions are chosen properly). One can also show for the
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standard GARCH model that if ω is equal to zero then the conditional variance of the process will

converge to zero almost surely. I will not go into details of the stochastic properties of *ARCH

processes, but you should be aware that they can be quite tricky. It is obvious that the form of

the ARCH models is chosen to give convenient estimations, and not to give convenient theoretical

properties.

11.5 ARCH-M models

As mentioned in the introduction, one of the major motivations for looking at conditional variances

is that financial theory says that the expected return on an asset should be correlated with its

conditional variance. (The expected return will actually depend on the covariance with other

assets as well as on the variance, but we will not go into finance theory here). Therefore one may

want to combine the models for σ2
t , whether one prefers ARCH, GARCH, or whatever, with a

model for the mean (f.eks. a mean return). So now one would model

yt = g(σt, b) + et , t = 1, ..., T ,

where b is a parameter. (Of course one will usually also want to include regressors but that is

supressed here). The ARCH-M model was first suggested by Engle, Lillien and Roberts (1987).

It is usually more complicated to estimate ARCH-M models, because of the fact that the model

for the conditional mean now depends on the conditional variance, making the model a lot more

non-linear.

11.6 Estimation of ARCH models

The most commonly used estimation strategy is Maximum Likelihood, with an assumption of

normality of the error terms. (One may also use the normal likelihood function without wanting to

claim that the error terms are normally distributed, in which case one speaks of Quasi Maximum

Likelihood estimation). For financial data this is often not a reasonable assumption and there

has been articles in the literature that performs Maximum Likelihood using distributions like the

t-distribution, that has heavier tails than the normal distribution.

There are also articles in the literature that estimates ARCH models using GMM.

11.7 Other ARCH models

A lot of research is still being devoted to ARCH models. Some other of the newer research concerns

factor-ARCH models, non-parametric ARCH models (you can have a nonparametric representa-

tion of the conditional variance of the probability density), multivariate ARCH, and all possible

combinations. There is also STARCH (structural ARCH), and threshold ARCH and probably a

lot of others. How about a non-parametric multivariate threshold factor-GARCH-M model? (I

don’t know if anybody has done that one yet). In the paper Ho, Perraudin and Sørensen (1992)

we suggest an alternative to ARCH, modeling conditional heteroskedasticity in continuous time,

which has some major advantages, but this becomes a bit technical.
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