Energy Optimization Early in Design Process Minimizes Process Energy Consumption – and Minimizes Total Projects Costs

Andrew McMullan
David Severson
KBC (A Yokogawa Company)
Compelling justifications for investment

- Switches to Gas
- Changing crude slates
- Push into petrochemicals and chemicals
- Regulatory changes – emissions standard, such as IMO2020
Investments are under pressure from vigilant stakeholders
Traditional design process needs to respond
Cost of change increases but data, information and insight are added
Wait for more definition or make changes before design starts?

Early In Design
- Limited Data
- Many Interacting Options
- Hard to understand overall picture

Later In Design
- Modification Costly
- Changes lead to delays
- Complex Impacts on multiple systems
CapEx and OpEx savings are in the Gap

Early In Design
- Limited Data
- Many Interacting Options
- Hard to understand overall picture

Later In Design
- Modification Costly
- Changes lead to delays
- Complex Impacts on multiple systems

Case Study GAP worth
IRR improvement = 1%
CapEx = $103MM
OpEx = $66MM per year
14% less energy
CapEx and OpEx savings are in the Gap

Early development of technology models
Requirements captured in the PDP

Case Study GAP worth
IRR improvement = 1%
CapEx = $103MM
OpEx = $66MM per year
14% less energy

Almost no re-work as improvements are designed in from the beginning
Breaking the Vicious Cycle

Simulation to “patch up” uncertain data
Plant Wide Model to model global impacts

Pinch and TotalSite Analysis to optimise inter unit interactions
Detailed Pinch to improve heat integration

Utility Model to understand steam/fuel/power balances
Optimise driver selection and utility design

Experience & Expertise – anticipate what the design will look like
Best Practice and smart ideas from other plants

Proprietary Information
Plant Wide, pinch, utility, best technology (BT) now all in Petro-SIM Model

Simulation to “patch up” uncertain data
- Plant Wide Model to model global impacts
- Pinch and TotalSite Analysis to optimise inter unit interactions
- Detailed Pinch to improve heat integration
- Utility Model to understand steam/fuel/power balances
- Optimise driver selection and utility design

Experience & Expertise - anticipate what the design will look like
- Best Practice and smart ideas from other plants
Develops into the Operations Digital Twin

Early In Design

Later In Design

Proprietary Information
Case Study

Client Situation
• Planning a significant plant expansion

Objectives
• Minimize Capex
 • Reduce Capex in utility system by reducing energy provided and removed from new units
 • Ensure adequate utility sizing for both new units and the existing refinery for all required normal and abnormal operating cases
 Improve the integration between the new units and the existing refinery
• Maximize energy efficiency
 • Build improvements with <5 year paybacks into design
 • Ensure suitable integration with existing refinery

Project Goals
• Minimize Capex
• Reduce energy use by maximizing the efficiency of each new unit
• Improve the integration between the new units and the existing refinery

Proprietary Information
Procedures Performed:

- **Before FEED**
 - Process Simulation, to fill-in missing data and determine opportunities for process improvements
 - Site wide utility strategy, including power generation/import philosophy and steam conditions to maximise integration potential
 - DT min analysis to optimise capital/energy trade-off for heat recovery design

- **In Parallel with PDP/FEED**
 - Kick-off meetings with licensors to discuss and agree to proposed improvements
 - Pinch analysis for heat integration improvement
 - Utility/reliability modelling to optimise sparing and utility generation design
 - BT Benchmarking to assure efficiency of design

Objectives

- **Before FEED**
 - Changed utility strategy to motor-centric rather than turbine-centric, modified electrical design accordingly
 - Opportunities identified in all licensed units

- **In Parallel with FEED**
 - 14 ideas agreed for implementation
 - 14% energy reduction in final design
 - – 66 MM USD/Y saving
 - 103 MM USD Capital cost reduction
 - Significantly Exceeded Target Savings
 - Improved overall project IRR by more than 1%
Net Impact of Energy Changes

<table>
<thead>
<tr>
<th>Units</th>
<th>Items</th>
<th>Cost Increase (MM USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHDS</td>
<td>Switching to a motor</td>
<td>-6</td>
</tr>
<tr>
<td>HS-FCC</td>
<td>Driver selection</td>
<td>-112</td>
</tr>
<tr>
<td>ERU</td>
<td>Driver selection</td>
<td>-22</td>
</tr>
<tr>
<td>RHDS</td>
<td>Pinch improvement</td>
<td>21.5</td>
</tr>
<tr>
<td>HS-FCC</td>
<td>Pinch improvement</td>
<td>8</td>
</tr>
<tr>
<td>C4 block</td>
<td>Pinch improvement</td>
<td>3</td>
</tr>
<tr>
<td>C4 Block</td>
<td>Distillation column improvement</td>
<td>3.1</td>
</tr>
<tr>
<td>NHDS</td>
<td>Pinch improvement</td>
<td>4</td>
</tr>
<tr>
<td>Alkylation</td>
<td>Distillation column improvement</td>
<td>14</td>
</tr>
<tr>
<td>SRU</td>
<td>Pinch improvement</td>
<td>1</td>
</tr>
<tr>
<td>Utility</td>
<td>Smaller boiler & associated system sizing</td>
<td>-19.9</td>
</tr>
<tr>
<td>Utility</td>
<td>LLP header</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>-103.3</td>
</tr>
</tbody>
</table>

- Overall Steam generation reduced by 130 T/h
- Fewer boilers required to meet demand

Proprietary Information
Optimisation in the conceptual or feasibility stage provides:

- Specifications for the Licensor Process Design Package (PDP) before design begins
 - Identify suggested process design features
 - Number of pumparounds on columns
 - Use of hot separators on hydrotreaters
 - Suggested new heat integrations and exchanger approach temperatures
 - Suggested process operating conditions
 - Equipment specifications for key equipment
 - Process operating conditions, including specifications for product transfers between units

- Opportunities to minimize Utilities Capital Costs
 - Recommended driver selection to give the best fit with the overall steam balance
 - Recommendations for additional utilities, such as intermediate or low-low pressure steam headers, to allow units to be cross integrated
Thank You

ANDREW MCMULLAN

AMCMULLAN@KBCAT.COM

DAVID SEVERSON

DSEVERSON@KBCAT.COM

WWW.KBC.GLOBAL