

Figure 13-2. Key to Metabolism. Overview of catabolism. Complex metabolites such as carbohydrates, proteins, and lipids are degraded first to their monomeric units, chiefly glucose, amino acids, fatty acids, and glycerol, and then to the common intermediate, acetyl-CoA. The acetyl group is oxidized to CO₂ via the citric acid cycle with the concomitant reduction of NAD⁺ and FAD. Reoxidation of NADH and FADH₂ by O₂ during oxidative phosphorylation yields H₂O and ATP.

NADH & FADH₂

In heterotroph organisms: oxidative phosporylation

NAD⁺ (Nicotinamide Adenine Dinucleotide) and FAD (Flavin Adenine Dinucleotide) are the intermediate electron acceptors.

Figure 17-7, page 449; Figures 17-8 and 17-9, page 450

T-49

flavin

mononucleotide

(FMN)

AMP unit

unit

Stryer: *Biochemistry*, Fourth Edition © 1995 by W. H. Freeman and Company

Set I

con
$$H_2$$

$$+ H^{\dagger} + 2e^{-} \Longrightarrow \begin{pmatrix} H & H \\ & & \\ &$$

$$NAD^{+} + R - C - R' \Longrightarrow NADH + R - C - R' + H^{+}$$

$$OH$$

dehydrogenation reaction

Stereospecificity of Dehydrogenases That Employ NAD+ or NADP+ as Coenzymes

Enzyme	Coenzyme	Stereochemical specificity for nicotinamide ring (A or B)	
Isocitrate dehydrogenase	NAD+	Α	
α-Ketoglutarate dehydrogenase	NAD+	В	
Glucose 6-phosphate dehydrogenase	NADP+	В	
Malate dehydrogenase	NAD+	Α	
Glutamate dehydrogenase	NAD+ or NADP+	В	
Glyceraldehyde 3-phosphate			
dehydrogenase	NAD+	В	
Lactate dehydrogenase	NAD+	Α	
Alcohol dehydrogenase	NAD+	Α	

Some Enzymes (Flavoproteins) That Employ Flavin Nucleotide Coenzymes

Flavin nucleotide
FAD
FMN
FMN

ORIGIN OF RIBONUCLEOTIDES

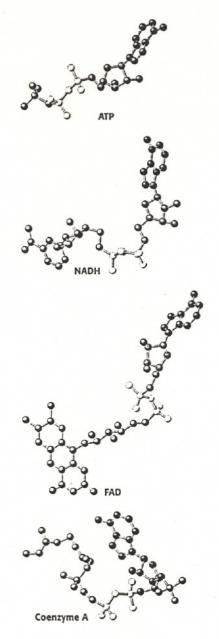


FIGURE 14.19 Adenosine diphosphate (ADP) is an ancient module in metabolism. This fundamental building block is present in key molecules such as ATP, NADH, FAD, and coenzyme A. The adenine unit is shown in blue, the ribose unit in red, and the diphosphate unit in yellow.

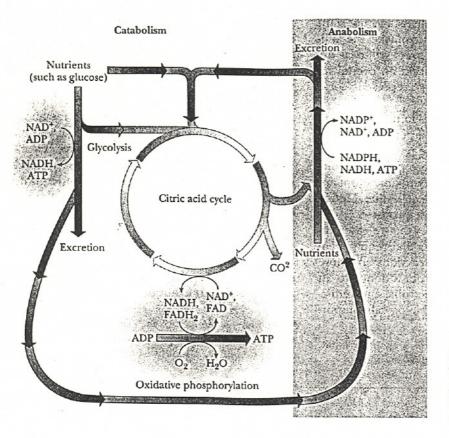


FIGURE 12.14
The role of electron transfer and ATP production in metabolism. NAD*, FAD*, and ATP are constantly recycled.

COENZYME A (CoA)

Coenzyme A: A heat- stable enzyme cofactor that is required in many enzyme- catalyzed acetylation reactions

CoA

0

11

AcylCoA

0

II

Acetyl CoA

Acetyl CoA + $H_2O \Leftrightarrow$ Acetate + CoA + H^+ $\Delta G^{\circ\prime} = -7.5$ kcal/ mol

Acetyl CoA has a high acetyl potential

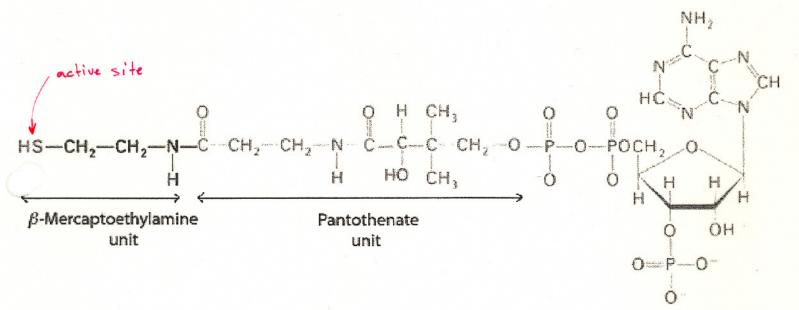


Fig 17-10

Minerals:

- (i) majors: present in more than 5 g quantities in the human body
- (ii) minors: present at lower quantities
 - <u>calcium</u> and <u>phosphorus</u> are the principal minerals in the skeleton, but both also play important roles in metabolism
 - <u>calcium</u> is a prominent intracellular signaling agent
 - <u>phosphate</u> is part of DNA and RNA and organic phosphates
 are key intermediates in energy metabolism
 - <u>potassium</u>, <u>sodium</u>, and <u>chloride</u> are crucial in maintaining fluid and electrolyte balance
 - potassium is also an essential activator for some enzyme
 - most of the remaining minerals serve as cofactors for enzymes

Table 14.7 Principal Minerals in the Human Body

Mineral	Amount*	ı	
Major	onini steraleter betokki		secous
Calcium	1150	i	
Phosphorus	600		
Potassium	210		
Sulfur	150		
Sodium	90		
Chloride	90		
Magnesium	30		
Trace			
Iron	2.4		
Zinc	2.0		
Copper	0.09		
Manganese	0.02		
Iodine	0.02		
Selenium	0.02		

Fluoride, molybdenum, and chromium are essential trace elements present in even lower amounts in the body. Evidence for silicon, tin, vanadium, boron, aluminum, and even arsenic as essential trace elements for humans has been reported.

^{*}Amounts given are grams present in a typical 60-kg human.