Flexible Single-Crystal Semiconductor Heterostructures by Direct Growth and Methods of Making Thereof

Summary
An innovative method to produce flexible III-V material based semiconductors. The method allows for the growth of III-V materials directly onto a substrate. Graphene is used as an intermediate layer between the III-V material and the substrate. The graphene layer is grown on the substrate with the assistance of a metal catalyst layer. Aluminum nitride is layered on top of graphene to facilitate the growth of the III-V material and the III-V material is grown on the aluminum nitride layer. Thus, this invention provides a direct and efficient method of growing III-V materials directly on substrates. The method can utilize flexible substrates, producing a more durable and functional semiconductor than traditional crystalline substrates. This method can also utilize traditional crystalline substrates, like silicon, allowing for integration of III-V semiconductors in silicon devices. Furthermore, this method also allows for roll-to-roll processing, creating an easier and more cost-effective method of manufacturing III-V material semiconductors.

Competitive Advantages
- Utilizes III-V materials which have greater electronic and photonic capabilities than traditional silicon semiconductors
- Ability to grow III-V semiconductors on both flexible and rigid substrates using a graphene intermediate layer
- Unique method of growing III-V semiconductors directly on the substrate, which allows for efficient roll-to-roll processing of the semiconductors

Problem Addressed
- Increasing the electronic and photonic capabilities of semiconductors
- Growing the semiconductor layers directly upon a variety of substrates rather than transferring layers onto a substrate
- Resolving the dislocation between III-V materials and crystalline substrates
- Developing an efficient manufacturing process for III-V semiconductors

Applications
- LEDs
- High electron mobility transistors (HEMT)
- RF electronics
- Wearable electronics

Patents
- PCT/US2017/037457
- NPA: US2017/050844

Meet the Inventor
Dr. Jae-Hyun Ryou
Assistant Professor
MECHANICAL ENGINEERING AND
TEXAS CENTER FOR SUPERCONDUCTIVITY

Contact
Tanu Chatterji, PhD.
Technology Transfer Associate
oipm@central.uh.edu | 713-743-0201
Case ID: 2016-048