Department of Mathematics

Summer 2018

GRADUATE COURSE SUMMER 2018

SENIOR UNDERGRADUATE COURSES

This schedule is subject to changes. Please contact the Course Instructor for confirmation

Course	Section	Course Title & Session	Course Day & Time	Rm #	Instructor
Math 4377	11286	Advanced Linear Algebra I (Session #2: 06/04—07/05)	MTWThF, 10am-Noon	F 154	K. Kaiser
Math 4378	12582	Advanced Linear Algebra II (Session #4:07/09—08/08)	MTWThF, Noon-2PM	SEC 201	A. Török
Math 4389	18279	Survey of Undergraduate Math (Session #4: 07/09—08/08)	MTWThF, 10am-Noon	GAR 201	D. Blecher

GRADUATE ONLINE COURSES

Course	Section	Course Title	Course Day & Time	Instructor
Math 5310	18254	History of Mathematics (Session #4: 07/09—08/08)	(online)	S. Ji
Math 5336	11825	Discrete Mathematics (Session #2: 06/04—07/05)	(online)	K. Kaiser
Math 5378	16257	Axiomatic Geometry (Session #4: 07/09—08/08)	(online)	L. Hollyer
Math 5382	14515	Probability (Session #3: 06/04—07/25/)	(online)	C. Peters
Math 5383-TBD	TBD	Number Theory-TBD (TBD)	(online)	TBD
Math 5389	14931	Survey of Mathematics (Session #2: 06/04—07/05)	(online)	G. Etgen

GRADUATE COURSES (under construction)

Course Section Course Title	Course Day & Time	Rm #	Instructor
-----------------------------	-------------------	------	------------

Math xxxx	TBD	TBD (TBD)	TBD, TBD	TBD	TBD
		C(ourse Details		
		SENIOR UI	NDERGRADUATE COURSE	S	
Prereguisites:		Math 4377 - Adva	inced Linear Algebra I		
Text(s):	Linea Lawı Sylla 5.2) (ar Algebra, Fourth E rence E. Spence bus: Chapter 1, Ch probably not cover	dition by Stephen H. Frie apter 2, Chapter 3, Chapte ed)	dberg, Arnold J. Inse er 4 (4.1-4.4), Chapter	l, 5 (5.1-
Description:	Cour Tran be co Grad test s on h	rse Description: The sformations will be overed to study eig ing: There will be t scores (60%) and th omework problems	general theory of Vector developed in an axiomat envalues, eigenvectors an three Tests and the Final. e mandatory final (40%). and material covered in o	Spaces and Linear ic fashion. Determina id diagonalization. I will take the two hig Tests and the Final an class.	nts will ghest re based
		Math 4378 - Adva	nced Linear Algebra II		<< back to top >>
Prerequisites:	Math	4377 or Math 6308			
Text(s):	Line: 0084	ar Algebra, 4th editi 51-4	on, by Friedberg, Insel, ar	nd Spence, ISBN 0-13	-
Description:	The Eiger Eiger Norr Orth Poly	nstructor will cover nvalues/Eigenvecto ns, Adjoints of Linea ogonal and Unitary nomials.	⁻ Sections 5-7 of the textbors, Cayley-Hamilton Theo ar Operators, Normal and Operators, Jordan Canor	ook. Topics include: rem, Inner Products Self-Adjoint Operato iical Form, Minimal	and rs,
					<< back to top >>
Proroquisitos	Ν.Λ	Math 4389 - S	urvey of Undergraduate N	lath	Asthomatics
Text(s):	In	structors notes	st, matti ssss, and thee		
Description:	A cu	review of some of t ırriculum.	he most important topics	in the undergraduate	e mathematics

ONLINE GRADUATE COURSES

<< back to top >>

	MATH 5310 - History of Mathematics
Prerequisites:	Graduate standing
Text(s):	No textbook is required.
	This course is designed to provide a college-level experience in history of
	mathematics. Students will understand some critical historical mathematics
	events, such as creation of classical Greek mathematics, and development of
	calculus; recognize notable mathematicians and the impact of their
	discoveries, such as Fermat, Descartes, Newton and Leibniz, Euler and Gauss;
	understand the development of certain mathematical topics, such as
	Pythagoras theorem, the real number theory and calculus.
	Aims of the course: To help students
	to understand the history of mathematics:
	to attain an orientation in the history and philosophy of mathematics:
	to gain an appreciation for our ancestor's effort and great contribution:
	to gain an appreciation for the current state of mathematics:
	to obtain inspiration for mathematical education.
	and to obtain inspiration for further development of mathematics.
Description:	On-line course is taught through Blackboard Learn, visit
	http://www.uh.edu/webct/ for information on obtaining ID and password.
	The course will be based on my notes.
	Homework and Essays assignement are posted in Blackboard Learn. There are
	four submissions for homework and essays and each of them covers 10
	lecture notes. The dates of submission will be announced.
	All homework and essays, handwriting or typed, should be turned into PDF
	files and be submitted through Blackboard Learn. Late homework is not
	acceptable.
	There is one final exam in multiple choice.
	Grading: 40% homework, 45% projects, 15 % Final exam
	<< back to top >>
	MATH 5336 - Discrete Mathematics

MATH 5336 - Discrete Mathematics Prerequisites: Graduate standing

	Discrete Mathematics and Its Applications, Kenneth H. Rosen, seventh edition, McGraw Hill,
Text(s):	ISBN-13 978-0-07-288008-3, ISBN-10 0-07-288008-2. Instructor lecture note: Plus: on the Zermelo-Fraenkel Axioms and Equivalence of Sets.
	Syllabus: Chapter 1 (Logic and Proofs): 1.1, 1.3, 1.4 -1.6 , Chapter 2 (Sets and Functions), Chapter 5 (Induction): 5.1-5.3, Chapter 9 (Relations)
	The Zermelo Fraenkel Axioms; Equivalence of Sets in form of my notes.
Description:	Grading: Midterm is worth 40%, the final is worth 40% and Homework is worth 20%.
	For turning in Homework, students need to get the software program Scientific Notebook.

<< back to top >>

	MATH 5378- Axiomatic Geometry
Prerequisites:	Graduate standing
Text(s):	College Geometry: A Discovery Approach, David Kay, 2nd. Ed. ISBN:9780321046246
	An axiomatic approach to Finite Geometries, Taxicab Geometry, Spherical Geometry,
Description:	Hyperbolic Geometry and a review of Euclidean Geometry. Does not apply toward the
	Master of Science in Mathematics of Applied Mathematics.

<< back to top >>

<< back to top >>

	MATH 5382 - Probability
Prerequisites:	Graduate standing and Two semesters of calculus and one semester of linear algebra
Text(s):	Probability: With Applications and R Edition: 1 by Robert P. Dobrow, ISBN: 9781118241257
	Sample spaces, events and axioms of probability; basic discrete and continuous distributions and their relationships; Markov chains, Poisson
Description:	processes and renewal processes; applications. Applies toward the Master of Arts in Mathematics degree; does not apply toward Master of Science in Mathematics or the Master of Science in Applied Mathematics degrees.

Prerequisites:	Graduate standing.
Text(s):	Instructor's lecture notes. The reference book will be "Beginning Number Theory" by Neville Robbins, second Edition.
Description:	Number theory is a subject that has interested people for thousand of years. This course is a one-semester long graduate course on number theory. Topics to be covered include divisibility and factorization, linear Diophantine equations, congruences, applications of congruences, solving linear congruences, primes of special forms, the Chinese Remainder Theorem, multiplicative orders, the Euler function, primitive roots, quadratic congruences, and introduction to cryptography. There'll be no specific prerequisites beyond basic algebra and some ability in reading and writing mathematical proofs.
	<< back to top >>
	MATH 5389 - Survey of Mathematics
Prerequisites.	Graduate standing

Flelequisites.	Graduate standing
Text(s):	Instructor's notes
	A review and consolidation of undergraduate courses in linear algebra,
Description:	differential equations, analysis, probability, and astract algebra. Students may
	not receive credit for both MATH 4389 and MATH 5389.

GRADUATE COURSES

<< back to top >>

	TBD (TBD) -TBD
Prerequisites: Text(s):	Graduate standing. TBD
Description:	TBD

<< back to top >>