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Abstract
Dynamical systems with small noise can exhibit important rare events on long

timescales. For systems driven by stochastic differential equations (SDEs) with small

noise and no delay, classical large deviations theory quantifies rare events which are

difficult to evaluate through direct simulation such as escapes from nominally stable

fixed points. Near such fixed points, one can approximate nonlinear SDEs by linear

SDEs. When delay is introduced, the situation is quite similar where nonlinear delay

SDEs can be approximated by linear delay SDEs near metastable states.

For genetic evolution of bacterial populations of E. Coli modeled by discrete

Markov chains with small mutation rates and random dilution, radical shifts in the

genetic composition of large cell populations are rare events with quite low proba-

bilities. Direct simulations generally fail to evaluate these events accurately. Large

deviations theory then becomes a natural approach in order to quantify transition

pathways linking a fixed initial population state to a desired target state.

In this dissertation, we first develop a fully explicit large deviations framework for

(necessarily Gaussian) processes Xt driven by linear delay SDEs with small diffusion

coefficients. Our approach enables fast numerical computation of the action func-

tional controlling rare events for Xt and of the most likely paths transitioning from

X0 = p to XT = q. Via linear noise local approximations, we can then compute most

likely routes of escape from metastable states for nonlinear delay SDEs. We apply

our methodology to the detailed dynamics of a genetic regulatory circuit, namely

the co-repressive toggle switch, which may be described by a nonlinear chemical

Langevin SDE with delay. Second, we develop an applicable large deviations frame-

work for a class of Markov chains used to model genetic evolution of E. Coli bacteria.
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Finally, we apply this framework using realistic parameter sets in order to solve sev-

eral difficult numerical and mathematical questions of high biological interest, such

as computing the most likely evolutionary path linking two given population states

in the fitness landscape and evaluating transition probabilities between successive

genotype fixations.
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Chapter 1

Introduction

1.1 Broad Outline

Dynamical processes are often influenced by small random fluctuations acting on a

variety of spatiotemporal scales. Small noise can dramatically affect the underly-

ing deterministic dynamics by transforming stable states into metastable states and

giving positive probability to rare events of high interest, such as excursions away

from nominally stable states, transitions between metastable states, and fixations of

genotypes in cell populations. These rare events play important functional roles in

a wide range of applied settings, including genetic circuits [16], molecular dynamics,

turbulent flows [7] and other systems with multiple timescales [6].

Populations of bacteria or viruses exhibit strong genetic adaptivity through emer-

gence and fixation of beneficial mutations. Predictive studies of these evolutions
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have strong potential impact on questions such as bacterial resistance to antibiotics

or emergence of viral strains transferable from animal to humans. However, existing

stochastic dynamic models for these populations still lack applicable algorithmic tools

to quantify genetic evolution trajectories in the fitness landscape. Current analysis

tends to rely on intensive simulations, which are not efficient to evaluate key rare

events such as specific chains of beneficial genotype fixations.

Large deviations approaches then become natural tools to obtain quantitative

information on rare events of interest. Their numerical applicability is still quite

unexploited in concrete models, including cell population experiments and nonlin-

ear stochastic differential equations (SDEs). In this dissertation, we will focus our

theoretical and computational study on two stochastic models: genetic evolution of

bacterial populations with concrete applications to the analysis of long-term labo-

ratory experiments on Escherichia Coli and Gaussian diffusions with delay with a

focus on applications to biochemical systems.

In the bacterial experiments (see [12, 22]), on day n, the current cell population

popn has a fixed large size N and grows freely until nutrients exhaustion. At any

time during this phase, the cells have a small chance of mutating. One then extracts

(by dilution or otherwise) a random sample of roughly N cells, which constitutes

the next day population popn+1. Therefore, many widely used genetic evolution

models involve a succession of fixed duration growth phases with Poisson distributed

mutations, alternating with random selection of a fixed size subsample. Typically,

at the start of growth phase n, the population popn has then a roughly stable large

size N ≥ 105.
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For Gaussian diffusions with delay, we are motivated in part by the importance

of delay for the dynamics of genetic regulatory circuits. Many of these circuits can

be modeled by a nonlinear delay SDE of Langevin type. Near metastable states,

genetic circuits can be approximated by Gaussian diffusions with delay, which are

linear delay SDEs, using Taylor expansions based at the stable state.

For bacterial populations, our first goal will be to develop, for a large popu-

lation size N , a rigorous large deviations theory for population trajectories in the

fitness landscape, where the state of popn is identified by the histogram Hn de-

scribing the g genotype frequencies. We will hence study the random histograms

trajectories H(0, T ) = [H1H2 . . . HT ] of arbitrary length T , which live on the path

spaces ST , where S ⊂ Rg is the compact convex set of histograms. We will derive

an explicit large deviations cost function λ(w, T ) ≥ 0 verifying P (H(0, T ) = w) ∼

exp(−Nλ(w, T )) for all paths w ∈ ST .

Our second goal will be, for any given histograms H and G, to characterize the

histogram paths w∗ which minimize the cost λ(w, T ) over all histogram paths w

starting at w1 = H and reaching wT = G at some finite time T . We will prove

that for large N , these “cost geodesics” w∗ = w∗(H,G) are indeed the most likely

population trajectories between the initial state H and terminal state G. We will

derive a new and explicit second order recurrence equation satisfied by these “cost

geodesics”, which essentially solve in Rg the discretized Hamilton-Jacobi-Bellmann

partial differential equations verified by the cost function λ(w, T ) .

Our third goal will be to develop feasible algorithms to solve the cost geodesics’

second-order difference equation by geodesic shooting in reverse time. For genotype
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numbers g ≤ 8, this innovative approach will enable us to numerically compute in

reasonable time the most likely population trajectories linking any two successive

genotype fixations and to estimate the probabilities of these long term transitions.

In doing so, we will also obtain the approximate time needed to complete this transi-

tion. We will apply our new computational techniques to analyze the genotypic data

gathered by T. Cooper in his long term experiments on Escherichia Coli [11, 12],

which deepen and extend the celebrated Lenski experiments [26,27].

For Gaussian diffusions with delay, we rigorously develop and implement a fully

explicit large deviations framework enabling fast numerical computation of optimal

transition paths along with probabilistic estimates of such transitions occurring. We

thus center our study on the Itô delay SDE
dXε

t = (a+BXε
t + CXε

t−τ ) dt+ εΣ dWt,

Xε
t = γ(t) for t ∈ [−τ, 0].

(1.1)

Here Xε
t ∈ Rd, t denotes time, τ > 0 is the delay, a ∈ Rd, B and C are real d × d

matrices, Wt denotes standard n-dimensional Brownian motion, Σ ∈ Rd×n denotes

the diffusion matrix, and ε > 0 is a small noise parameter. The initial history of

the process is given by the Lipschitz continuous curve γ : [−τ, 0] → Rd. We work

with fixed delay to simplify the presentation – all of our results apply just as well

to multiple delays and to random delay distributed over a finite time interval. We

demonstrate the utility of our approach by computing optimal escape trajectories

from a small neighborhood of a metastable state for the co-repressive toggle switch,

a bistable genetic circuit driven by a nonlinear delay Langevin equation.
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1.2 Outline of Each Chapter

This dissertation will focus on applications of large deviations principles. The chap-

ters to follow will discuss the systems in biochemistry and bacterial evolution to

which the principles will be applied, as stated in the outline above.

In Chapter 2, we discuss the biology background in relation to the systems we

study. In Section 2.1, we discuss the concept of excitability in biochemical systems.

We note the importance of cellular noise and transcriptional delay in influencing

the dynamics of genetic regulatory networks where bistability becomes a character-

istic of interest. These dynamical networks can be described by chemical Langevin

equations, which are nonlinear delay SDEs, where the delay and noise appear explic-

itly. In Section 2.1.1, we discuss how these systems can be simplified and linearized

through a linear noise approximation, which involves Taylor expansions. Doing so

yields a linear delay SDE with additive noise called a Gaussian diffusion with delay.

In Section 2.2, we present a particular biochemical system known as the corepressive

toggle switch which models two protein species who represses the production of each

other along with the resulting linearization in Section 2.2.1.

Once this is completed, we move on to discuss evolution of bacterial populations

in Section 2.3. We focus on populations of E. Coli in Section 2.3.1 where we discuss

characteristics of E. Coli cells. We also discuss relevant experiments conducted to

analyze the behavior of these populations as well as estimate systems parameters such

as mutation rates, growth rates, et cetera. Motivated by these experiments, we end

this chapter by presenting the stochastic model used to study E. Coli populations,

5



which is a discrete Markov chain consisting of daily cycles involving growth, mutation,

and dilution.

With the necessary background and stochastic models presented, we shift to

some probabilistic and statistical calculations in Chapter 3 that will be relevant in

our later large deviations study. We begin with the mean and covariance of Gaussian

diffusions with delay in Section 3.1. We justify that a Gaussian diffusion with delay

is indeed a Gaussian process. Therefore, it is reasonable to expect that the mean

and covariance become key elements in the large deviations analysis to follow. Since

a Gaussian diffusion with delay has such a nice form, we can write a delay ODE

for the mean, which is presented in Section 3.1.1. Later large deviations principles

apply only to centered processes (mean zero), so by writing a centered version of

the Gaussian diffusion with delay Xt, we get another Gaussian diffusion with delay

Zt that is centered. Thus, the covariance of this centered process becomes useful.

In Section 3.1.3, we derive a first-order nonhomogeneous linear delay ODE for the

covariances of Zt. The nonhomogeneous term also satisfies a linear delay ODE so

that we may discuss the analytical solutions of these equations, which appears in

Sections 3.1.4 and 3.1.5. These types of differential equations can be solved using

a natural step-by-step approach that reduces the delay ODE into a sequence of

nonhomogeneous ODEs with no delay where the nonhomogeneous term involves the

delay term in the equation.

In Section 3.2, we derive the relevant formulas and probabilities associated to
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genetic evolution of E. Coli. In Sections 3.2.1-3.2.3, we present formulas and proba-

bilities associated to deterministic growth, independent Poisson mutations, and ran-

dom selection. This immediately yields the one-step transition probability, given in

Section 3.2.4, which describes the probability of transitioning from one histogram to

another during a daily cycle. Since we will state a large deviations principle for ran-

dom histogram trajectories associated to the Markov chain, this probability will be

important in the large deviations analysis. Section 3.2.5 ends the chapter by deriving

the mean trajectory of genetic evolution of E. Coli. This trajectory will represent

the most likely evolutionary track that the system will take when cell populations

become very large.

We move on to Chapter 4 where we discuss large deviations theory and back-

ground that will be applicable to the models that we have described. In Section 4.1,

we present the formal large deviations problem stated in terms of empirical distri-

butions, which was the main focus of study for the classical Cramer-Chernoff large

deviations study. Large deviations can be thought of as a study of the tails of dis-

tributions. This often reveals quantitative information on rare events. We present

the classical Cramer-Chernoff theorem in Section 4.2. The central items that re-

veal asymptotic decay rates of probabilities is the Cramer transform and Cramer set

functional. We define these explicitly. We end the section by providing an intuitive

interpretation of Cramer transforms in terms of the Cramer-Chernoff theorem. We

also discuss the connection of the Cramer transform to the Laplace transform of a

probability µ.

In Section 4.3, we discuss the general large deviations principles and framework
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for Gaussian measures and processes, which will be relevant to Gaussian diffusions

with delay. The Cramer transform in this case, which is for centered Gaussian

processes, reveals the importance of the covariance since it is defined in terms of

the covariance operator. In fact, we compare the Cramer transform associated to

Gaussian processes as an energy functional. Indeed, when we consider the classical

Gaussian process known as Brownian motion, the Cramer transform associated to

Brownian paths is given as the kinetic energy formula.

In Section 4.4, we present the large deviations principles for one-step transition

probabilities and random histogram trajectories associated to E. Coli evolution. We

show a complete derivation of the one-step cost function in Section 4.4.1. This

calculation makes use of Taylor expansions in terms of the mutation rates, which are

assumed to be small. Once the one-step cost is derived, we immediately get the cost

function of an evolutionary trajectory written as a sum of one-step costs. This leads

to a large deviations principle for random histogram trajectories, which is stated in

Section 4.4.2.

Establishing large deviations principles allows one to consider applications of said

principles. We accomplish this in Chapter 5 with Gaussian diffusions with delay and

genetic evolution of E. Coli populations. In both cases, we seek to find the most

likely path which links an initial point to a desired target point. In Section 5.1,

we accomplish this for Gaussian diffusions with delay by minimizing the Cramer

transform for Gaussian processes. This minimizing path is explicit in terms of the

mean of the process Xt, covariance of the centered process Zt, and the target point.

In Section 5.2, we numerically minimize the cost function. Most likely evolutionary
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trajectories in this setting are shown to be completely determined by their final two

points.

In Chapter 6, we discuss implementation of the results from Chapter 5. Sec-

tion 6.1 focuses on simulating the relevant delay ODEs for Gaussian diffusions with

delay. With the step-by-step method described previously, we can essentially sim-

ulate these equations using classical numerical ODE schemes. We then discuss the

numerical minimization of the Cramer transform and calculation of exit paths from

neighborhoods of stable stationary states.

In Section 6.2, we design methods to generate most likely evolutionary trajecto-

ries linking and initial histogram to a desired target histogram. We use a reverse

shooting algorithm which generates trajectories recursively in reverse time. We then

discuss numerical challenges associated to this approach in Section 6.2.3. The re-

verse shooting method will depend heavily on the penultimate histogram; therefore,

many computational issues arise relating to algorithm efficiency. We present three

conjectures which can be used efficiently generate optimal trajectories. The chapter

concludes with analysis of these conjectures using the case of three genotypes. In

this setting, we can let every histogram be a possible penultimate point so that we

can analyze which points may yield optimal paths.

With the algorithms now explicitly described, we calculate most likely trajecto-

ries for the corepressive toggle switch and E. Coli populations with four genotypes

in Chapter 7. For the corepressive toggle switch, we calculate optimal escape trajec-

tories from a neighborhood of a stable state. For E. Coli populations, we calculate

three most likely trajectories linking a fixed initial state to desired target states near

9



the boundaries. We then provide brief analyses and predictions for higher dimensions

(more genotypes). The dissertation then concludes with Chapter 8 which contains a

summary and plans for future work.

10



Chapter 2

Biochemical and Biological

Background and Models

The interplay between genetic regulatory networks and genetic evolution provide

many interesting applications of large deviations principles in order to study the

persistence of cellular populations over time. Charles Darwin’s theory of evolution

through natural selection states that organisms adjust to environmental challenges

through favorable mutations. These favorable mutations, which occur in DNA and

genes, then spread to the entire population over several generations. This creates a

population in which the fittest organisms survive, essentially exterminating weaker

organisms and creating an improved, evolved population. Genetic regulatory net-

works are responsible for translating these beneficial mutations to create a stronger

organism. In this section, we will briefly discuss background material relating to the

dynamics of gene networks and genetic evolution along with important rare events
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that manifest in these settings. We will then present a biochemical model used to

describe the concentration of two protein species and a stochastic model used to

describe evolution of E. Coli cells.

2.1 Excitable systems from biochemistry

Translation of a cell’s genetic configuration (genotype) to observable characteristics

(phenotype) is a key function of gene regulatory networks. Gene regulatory networks

control gene expression in order to provide cells with a way to battle environmental

challenges in order to prolong its existence. These dynamics are naturally affected by

many factors which can create delay in protein production, noise, et cetera. There-

fore, creating accurate models for gene networks becomes key in mathematical biol-

ogy. We begin by explaining the importance of noise, delay, and metastability for

the dynamics of genetic regulatory circuits. Such circuits may be described by delay

SDEs [8,20] and represent a significant class of systems to which our large deviations

framework for Gaussian diffusions with delay can be applied.

Cellular noise and transcriptional delay shape the dynamics of genetic regulatory

circuits. Stochasticity within cellular processes arises from a variety of sources. Se-

quences of chemical reactions at low molecule numbers produce an intrinsic form of

noise. Multiple other types of variability affect dynamics across spatial and tempo-

ral scales. Examples include fluctuations in environmental conditions, metabolic pro-

cesses, energy availability, et cetera. Noise functions constructively in both microbial
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and eukaryotic cells and on multiple timescales. It enables probabilistic differenti-

ation strategies for cell populations, such as stochastic state-switching in bistable

circuits and transient cellular differentiation in excitable circuits (e.g. [14, 16,38]).

Certain circuit architectures such as toggle switches and excitable circuits enable

noise-induced rare events. These architectures allow cellular populations to proba-

bilistically switch states in response to environmental fluctuations [16].

Bistability is a central characteristic of biological switches. It is essential in

the determination of cell fate in multicellular organisms [24], the regulation of cell

cycle oscillations during mitosis [21], and the maintenance of epigenetic traits in

microbes [35]. Metastable states can be created by positive feedback loops. Once a

trajectory enters a metastable state, it will typically remain there for a considerable

amount of time before noise induces a transition [16, 25]. This phenomenon has

been studied in many contexts, including the lysis/lysogeny switch of bacteriophage

λ [1, 40], bacterial persistence [4], and synthetically constructed positive feedback

loops [18,34].

Many biological systems exhibit excitability [15, 33, 38]. Excitable systems com-

monly feature a single metastable state bordered by a sizable, active region of phase

space. When stochastic fluctuations cause a trajectory to exit the basin of attraction

of this metastable state, the trajectory will make a large excursion before returning

to the basin. Transient differentiation into a genetically competent state in Bacillus

subtilis, for example, is enabled by an excitable circuit architecture. Positive feed-

back controls the threshold for competent event initiation, while a slower negative

feedback loop controls the duration of competence events [9, 29, 30, 37, 38]. Rare

13



events in such excitable systems manifest as bursts of activity.

2.1.1 General linear noise approximations (LNAs)

We explain how Gaussian diffusions driven by delay SDEs such as (1.1) arise from lin-

ear noise approximations of nonlinear delay SDEs in a neighborhood of a metastable

state, which we apply to the co-repressive toggle switch to obtain our local model in

which our large deviations results will apply. Brett and Galla [8] introduced linear

noise approximations for chemical Langevin equations modeling biochemical reaction

networks.

Consider the delay SDE

dxt = f(x(t), x(t− τ)) dt+
1√
N
g(x(t), x(t− τ)) dWt. (2.1)

Here f : Rd × Rd → Rd, g : Rd × Rd → Rd×n, Wt denotes standard n-dimensional

Brownian motion, andN > 0 denotes system size (characteristic number of molecules

in a biochemical system). Notice that we allow both the drift and the diffusion to

depend on the past. Suppose x∞(t) solves the deterministic limit of (2.1); that is,

x∞(t) solves

dxt = f(x(t), x(t− τ)) dt. (2.2)

As we have indicated in our introduction, around a stable point z of the limit ODE

as N tends to infinity, one can approximate such a system by a Gaussian diffusion

with delay and small diffusion matrix 1√
N

Σ. Define ξ(t) by

x(t) = x∞(t) + ξ(t).
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Substituting this ansatz into (2.1) and performing Taylor expansions of f and g based

at the deterministic trajectory yields the linear noise approximation

dξt = [D1f(x∞(t), x∞(t− τ))ξ(t) +D2f(x∞(t), x∞(t− τ))ξ(t− τ)] dt

+
1√
N
g(x∞(t), x∞(t− τ)) dWt.

(2.3)

Here D1 and D2 denote differentiation with respect to the first and second sets of

d arguments, respectively. If x∞(t) happens to be a stable fixed point of (2.2), say

x∞(t) ≡ z, then (2.3) becomes

dξt = [D1f(z, z)ξ(t) +D2f(z, z)ξ(t− τ)] dt+
1√
N
g(z, z) dWt.

This is (1.1) with a = 0, B = D1f(z, z), C = D2f(z, z), Σ = g(z, z), and ε = 1√
N
.

2.2 Corepressive Toggle Switch

The genetic toggle switch we study consists of two protein species, each of which

represses the production of the other. We model the switch using the chemical

Langevin equation

dx =

(
β

1 + y(t− τ)2/k
− γx

)
dt+

1√
N

(
β

1 + y(t− τ)2/k
+ γx

)1
2

dW1 (2.4a)

dy =

(
β

1 + x(t− τ)2/k
− γy

)
dt+

1√
N

(
β

1 + x(t− τ)2/k
+ γy

)1
2

dW2, (2.4b)

where x and y denote the concentrations of the two protein species, β denotes max-

imal protein production rate, k is the protein level at which production is cut in

half, γ is the dilution rate, N denotes system size, and W1 and W2 are independent
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standard Brownian motions. Notice that (2.4) is a symmetric system. In the deter-

ministic limit as N →∞, the co-repressive toggle switch is described by the reaction

rate equations

dx =

(
β

1 + y(t− τ)2/k
− γx

)
dt (2.5a)

dy =

(
β

1 + x(t− τ)2/k
− γy

)
dt. (2.5b)

System (2.5) has two stable stationary states, (xlow, yhigh) and (xhigh, ylow), as well as

a saddle stationary state (xs, ys). See [20, Figure 7] or [39, Figure 3A, inset] for a

phase portrait of (2.5).

In the stochastic (N <∞) regime, a typical trajectory of the co-repressive toggle

switch will spend most of its time near the metastable states, occasionally hopping

from one to the other [39, Figure 3A]. Such rare events raise interesting questions.

For large N , is the co-repressive toggle switch well-approximated by a two-state

Markov chain on long timescales? If so, what are the transition rates? To determine

these rates, one would need to compute both a quasipotential and a formula of

Eyring-Kramers type.

2.2.1 Approximation by Gaussian Diffusions with delays

We study an approximation of (2.4) by Gaussian diffusions with delay that is valid in

a neighborhood of (xlow, yhigh) =: (v, w). We note that we chose the stable stationary

state (xlow, yhigh) without loss of generality as we easily would get symmetric results
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had we chosen the stable state (xhigh, ylow) = (w, v). Writing

x(t) = v + ξ1(t), y(t) = w + ξ2(t),

the Gaussian diffusion with delay is given by

dξ1(t) =

(
−γξ1(t)− 2βw

k[1 + w2/k]2
ξ2(t− τ)

)
dt+

1√
N

(
β

1 + w2/k
+ γv

)1/2

dW1(t),

dξ2(t) =

(
−γξ2(t)− 2βv

k[1 + v2/k]2
ξ1(t− τ)

)
dt+

1√
N

(
β

1 + v2/k
+ γw

)1/2

dW2(t).

(2.6)

The system (2.6) represents a local approximation of the co-repressive toggle switch

near the stable state (v, w).

2.3 Genetic Evolution of Bacterial Populations

Because of the prominence of mutations and cell fitness in adaptive evolution of bac-

terial and viral populations, many genetic evolution experiments are driven towards

mutation rate and selective advantage estimations. Once these parameters are suf-

ficiently understood, one can use realistic models in order to better understand the

genetic evolution of cell populations. A comprehensive study of these parameters

has been carried out by Zhang, et. al. [41] for E. Coli populations. We briefly de-

scribe the experiments used to study the genetic evolution of E. Coli. Then, we fully

describe the class of Markov chains used to model random bacterial evolutions.
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2.3.1 Genetic evolution experiments for E. Coli bacteria

E. Coli bacteria colonize mammal or human digestive tracks, where each E. Coli cell

splits into 2 cells roughly 20 to 40 minutes after its birth depending on cell genotype

and nutrients availability. Cell divisions may be randomly affected by gene mutations

with very small occurrence rates in the 10−8 to 10−6 range. These mutations may

occur at any time over a cell’s lifespan and often improve a cell’s selective advantage;

that is, mutations are usually unidirectional and irreversible. Mutations with strong

selective advantage (linked to faster rates of exponential growth) seem to only affect

a small set of well-identified genes sites. When nutrients are exhausted, exponential

growth stops and cells enter into a stasis regime. A few times per day in the host

digestive system, E. Coli colonies are also submitted to abrupt intensive population

reduction to a roughly stable large size N . The evolution of these large cell pop-

ulations thus involves a sequence of cycles where exponential growth and random

mutation alternate with random selection.

Laboratory experiments on E. Coli evolution [11, 12, 22, 26, 27] emulate these

cycles. Fresh cell colonies of fixed size N are extracted daily (by fixed-rate dilution

or otherwise) from previous day colonies and then injected into test wells filled with

glucose solutions containing always the same amount of nutrients. After a roughly

fixed time τ such as 8 to 12 hours, each such new colony grows to a large fairly

stable saturation size Nsat >> N determined by the initial amount of nutrients. The

population is then diluted at roughly fixed rate N/Nsat the next day to generate

new colonies of size N . These daily random selections have a strong bottleneck

effect [22, 36, 41] on the emergence and persistence of new genotypes since very few
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new mutants born during a daily cycle are transferred to the next day’s population.

For the E. Coli evolution experiments in [12], one has N ∼ 50, 000, 8 hours ≤

τ ≤ 10 hours, Nsat ∼ 107, and the daily growth factors Fj range from 200 to 400.

Several mutation rates are equal to 0 since “regressive” mutations where Fj < Fk

are often impossible. The non-zero mutation rates range from 10−8 to 10−6. For the

E. Coli experiments in [22], the situation is quite similar, but the stable population

size N ∼ 108 is much larger. In actual experiments, useful biological inferences can

be derived from “short” genotype descriptions involving only a few well identified

genes, typically less than 5 key genes, so that the number g of observable genotypes

remains moderate with g ≤ 32. Over a thousand daily cycles, each initial colony of

pure “ancestor” genotype will generate at most 6 to 8 successive genotype fixations

so that for experiments spanning 3 years, useful models can already be built with as

few as g = 8 genotypes.

2.3.2 Stochastic models for bacterial evolution experiments

To model the main features of random bacterial evolutions, the following class of

Markov chains has often been used [22, 36, 41] and will be called locked box models

here. The finite set of distinct genotypes is denoted Γ = {1, 2, . . . , g}. Cells of

genotype j (called j-cells here) have rate of exponential growth fj > 0, called the

fitness of genotype j.

Genetic evolution is modeled as a sequence of cycles, called here “daily” cycles as

is the case for many experimental contexts. The nth cycle starts with a population
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popn of fixed large size N and involves three successive steps to generate popn+1:

(1) Deterministic growth with no mutations: The size of each j-cell colony

in popn is multiplied by the growth factor Fj = exp(τfj) where τ is a fixed growth

duration parameter.

(2) Independent random mutations: For any two distinct genotypes (j, k), a

random number Rj,k of j-cells mutate into k-cells. Let sizn(j) be the j-cells colony

size after growth step 1. The random variable Rj,k has a Poisson distribution with

mean sizn(j)Mj,k where the mutation rates Mj,k are fixed and very small.

(3) Random Selection: After step 2, the population has reached a saturation size

Nsat much larger than N , and one extracts a random sample of fixed size N , which

constitutes popn+1.

The stochastic transition popn → popn+1 is then a Markov chain on a state space

of finite but very large size gN . In laboratory evolution experiments, observable data

systematically come from the populations popn of fixed size N with a specific focus

on successive genotype fixations. The key model parameters are the number g of

genotypes, the fixed size N of all daily initial populations popn, the multiplicative

growth factors Fj = eτfj , and the (g × g) matrix M of mutation rates Mj,k.
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Chapter 3

Probabilistic and Statistical

Calculations

The linear delay SDE we call a Gaussian diffusion with delay can be viewed as a small

random perturbation of a deterministic system. The underlying deterministic system

in this case is precisely the mean trajectory. When the noise level (randomness)

approaches 0, the system converges to the mean trajectory. For stochastic evolution

of E. Coli populations, the population size N becomes the main parameter that

controls the randomness of the system so that when N approaches ∞, the system

approaches the deterministic mean trajectory. The large deviations principles that

we discuss in Section 4 essentially show that the probabilities of the occurrences of

events other than the mean converge exponentially quickly to 0 when the noise level

approaches 0 or population size approaches∞. In the case of Gaussian diffusions with

delay, this exponential decay rate involves the mean of the process Xt verifying (1.1),
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which we will show is a Gaussian process, and the covariance of a centered process Zt

defined by Xt = m(t)+εZt, which is also a Gaussian diffusion with delay. While this

is not the case for stochastic evolution of E. Coli, the mean trajectory is of interest

since this is the underlying deterministic system. The mean trajectory will also

be utilized in the method used to generate most likely trajectories in Section 5.2.

In addition, since random histogram trajectories H(0, T ) ≡ H = [H0H1 . . . HT ]

describing the evolution of E. Coli populations up to day T are composed of daily

transitions Hn → Hn+1, the one-step transition probability becomes paramount in

establishing and applying large deviations principles to H. Thus, we will calculate

the mean trajectory and one-step transition probability explicitly. In the case of

Gaussian diffusions with delay, the mean and covariance under consideration are

described by delay ODEs which we solve analytically and numerically.

3.1 Mean and Covariance of Gaussian Diffusions with

Delay

Recall that a Gaussian diffusion with delay is defined by the linear delay SDE given

by (1.1). Notice that we have not yet established that a process verifying this system

is Gaussian. Thus, we first show that (1.1) defines a Gaussian process by first

discretizing and then taking an L2-limit.

Proposition 3.1.1. The delay SDE (1.1) has a unique strong solution Xt, which is

a Gaussian process.
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Proof of Proposition 3.1.1. The existence of a unique strong solution Xt is classical

(see e.g. [31]). To see that Xt is Gaussian, we consider Euler-Maruyama discretiza-

tions [23]. For positive integers N , let ∆ = τ/N denote time step size. The Euler-

Maruyama approximate solution Y (∆)
t to (1.1) is defined first at nonnegative integer

multiples of ∆ by

Y
(∆)

(k+1)∆ = Y
(∆)
k∆ + (a+BY

(∆)
k∆ + CY

(∆)
k∆−τ )∆ + εΣ(W(k+1)∆ −Wk∆)

and then on [0, T ] by interpolation. Much is known about the convergence of EM

schemes for delay SDEs (see e.g. [3, 32]). In particular, we have

lim
∆→0

E
[

sup
06t6T

|Y (∆)
t −Xt|2

]
= 0

by Theorem 2.1 of [32]. Since Y (∆)
t is Gaussian by construction, this L2-convergence

implies that Xt is Gaussian as well.

Since the process Xt is Gaussian, it is completely determined by its mean and

covariance. First, we write a delay ODE that is verified by the mean of Xt.

3.1.1 Delay ODE for the mean of Xt

Writing (1.1) in integral form, we have

Xt = X0 +

∫ t

0

(a+BXz + CXz−τ ) dz + εΣWt. (3.1)

Taking the expectation of (3.1) and applying Fubini gives

m(t) = m(0) +

∫ t

0

(a+Bm(z) + Cm(z − τ)) dz,
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or, in differential form, a delay ODE for m(t):
m′(t) = a+Bm(t) + Cm(t− τ)

m(t) = γ(t) for t ∈ [−τ, 0].

(3.2)

We note that our eventual goal will be to apply large deviations principles to the

Gaussian process Xt (see Section 4.3.2). These principles assume that the process

Xt is centered, which is not true in general. Thus, we need to define a process that

is a centered version of Xt so that we can apply these principles.

3.1.2 The centered Gaussian process Zt

Given a Gaussian diffusion with delay Xt, the process Zt defined by Xt = m(t) +

εZt is a centered Gaussian diffusion with delay. Since Xt verifies (1.1) and m(t)

verifies (3.2), elementary algebra shows that Zt verifies the delay SDE
dZt = (BZt + CZt−τ ) dt+ Σ dWt,

Zt = 0 for t ∈ [−τ, 0]

(3.3)

Note that this delay ODE does not depend on ε. This is a crucial point further

on because our key large deviations estimates will be stated in path space for the

centered Gaussian process εZt . In Section 5.1, our large deviations computations

will essentially involve the deterministic mean path of Xt and the covariance function

ρ(s, t) of the process Zt. The importance of the mean and covariance in our large

deviations computations is not surprising since these statistics characterize Gaussian

processes.
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3.1.3 Delay ODEs for the covariances of Zt

We now find delay ODEs for the covariance of Zt. Denote A∗ the matrix transpose

of A, and let

ρ(s, t) = E[ZsZ
∗
t ]

be the covariance matrix of Zs and Zt. Since the history of Zt anterior to t = 0 is

deterministic, ρ(s, t) = 0 when either s or t are in [−τ, 0]. Fix t ∈ [0, T ], and let s

vary. We have

E[ZsZ
∗
t ] =

∫ s

0

(BE[ZuZ
∗
t ] + CE[Zu−τZ

∗
t ]) du+ ΣE[WsZ

∗
t ].

We thus obtain

ρ(s, t) =

∫ s

0

(Bρ(u, t) + Cρ(u− τ, t)) du+ ΣE[WsZ
∗
t ]. (3.4)

Let G(s, t) = E[WsZ
∗
t ]. Differentiating ρ(s, t) with respect to s gives

∂ρ

∂s
(s, t) = Bρ(s, t) + Cρ(s− τ, t) + Σ

∂G

∂s
(s, t), (3.5)

which is a first-order delay ODE in s for each fixed t. To close (3.5), we compute a

differential equation for ∂G
∂s

(s, t). Proceeding as just done for (3.4), one checks that

the function G(s, t) satisfies the ODE

∂G

∂t
(s, t) =


G(s, t)B∗ +G(s, t− τ)C∗ + Σ∗ (t ≤ s);

G(s, t)B∗ +G(s, t− τ)C∗ (t > s),

(3.6)

where G(s, t) = 0 for t ∈ [−τ, 0]. Let H(x) denote the Heaviside function

H(x) =


0 x < 0

1 x ≥ 0

.
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We can rewrite (3.6) as

∂G

∂t
(s, t) = G(s, t)B∗ +G(s, t− τ)C∗ + Σ∗H(s− t). (3.7)

Note that the partial derivative of the Heaviside distribution H(s − t) is classically

given by
∂H

∂s
(s− t) = δ(s− t),

where the distribution x→ δ(x) is the Dirac point mass concentrated at x = 0. By

definition of G(s, t) and by (3.7), the function G(s, t) is continuous for all s and t

and differentiable in s and t for s 6= t. We will denote, for s 6= t,

F (s, t) :=
∂G

∂s
(s, t) (3.8)

so that F verifies the initial condition F (s, t) = 0 for s 6= t and t ∈ [−τ, 0].

Differentiating (3.7) in s for s 6= t and switching the order of partial derivatives

yields a linear delay ODE in t > 0 for F (s, t), namely

∂F

∂t
(s, t) = F (s, t)B∗ + F (s, t− τ)C∗ + Σ∗δ(s− t) (3.9)

with initial condition F (s, t) = 0 for all t ∈ [−τ, 0].

Once F (s, t) is determined, the covariance ρ(s, t) for each fixed t ∈ [0, T ] will be

computed by solving the delay ODE

∂ρ

∂s
(s, t) = Bρ(s, t) + Cρ(s− τ, t) + ΣF (s, t). (3.10)

We now describe how to successively solve the delay ODEs driving m(t), F (s, t), and

ρ(s, t).
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3.1.4 Analytical solution of the delay ODE verified by the

mean

First-order delay ODEs can be analytically solved by a natural stepwise approach,

sometimes called “method of steps,” a terminology which we will avoid since it is has

a different meaning in classical numerical analysis. The basic idea is to convert each

one of our delay ODE into a finite sequence of nonhomogeneous ODEs in which the

delay terms successively become known terms. Consider first the delay ODE (3.2)

for m(t) with t ∈ [−τ, T ]. The delay term Cm(t− τ) is unknown for t ∈ (τ, T ] but is

known for t ∈ [0, τ ]. So we can solve the delay ODE (analytically or numerically) on

the interval [0, τ ] as a linear non-homogeneous first-order ODE. Then, for t ∈ [τ, 2τ ],

the delay ODE turns again into a linear non-homogeneous first-order ODE where

the delay term has actually just been computed. One can thus successively solve

the delay ODE on intervals [kτ, (k + 1)τ ] to get a full step-by-step solution on all of

[0, T ].

We first describe the explicit solution of the mean m(t) on [−τ, T ]. For x ∈ R,

denote bxc as the greatest integer less than or equal to x. Partition the interval

[−τ, T ] into closed subintervals of the form [(k − 1)τ, kτ ] where k = 0, 1, 2, . . . , bT
τ
c

with final partition interval
[
bT
τ
cτ, T

]
. Let mk(t) denote the solution to the DDE

on the interval [(k − 1)τ, kτ ] and mbT
τ
c+1(t) denote the solution of m(t) on the final

partition interval. When k = 0, we have m0(t) = γ(t). Now, when k = 1, the intial
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condition gives the following ODE for m1(t), the solution of m(t) on [0, τ ]:
m′1(t) = a+Bm1(t) + Cγ(t− τ)

m1(0) = γ(0).

We can write the solution m1(t) as

m1(t) = etB
∫ t

0

e−uB (a+ Cγ(u− τ)) du+ etBγ(0).

Callmk(t) the solutionm(t) on the interval Jk = [(k−1)τ, kτ ] for k = 0, 1, 2, . . . , bT
τ
c.

Given mk−1(t) for t in Jk−1, we can similarly compute mk(t) by

mk(t) = e(t−(k−1)τ)B

∫ t

(k−1)τ

e−uB (a+ Cmk−1(u− τ)) du+ e(t−(k−1)τ)Bmk−1((k − 1)τ).

Finally, piecing together all the mk(t) yields the full solution m(t) on all of [−τ, T ].

Note that many characteristics of the initial segment γ , such as continuity, differen-

tiability, discontinuities, etc., will essentially propagate through to the solution m(t)

at each step. More precisely, if γ is of class Cq on [−τ, 0] for some integer q ≥ 0, then

m(t) will be of class q+ 1 for all t except possibly at integer multiples of τ. Since we

assume here that γ is Lipschitz continuous, m(t) will be differentiable except possibly

at integer multiples of τ .

3.1.5 Analytical solutions of the delay ODEs verified by F (s, t)

and ρ(s, t)

We can extend the preceding method to the ODE in s verified by F (s, t) for each

fixed s and then to the ODE in t verified by ρ(s, t). We first focus on F (s, t). Fix
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s ∈ [0, T ]. Due to the delay ODE (3.9), the distribution φs defined on R+ by

φs(t) = F (s, t) + Σ∗H(s− t)

clearly verifies the delay ODE

∂φs
∂t

(t)− φs(t)B∗ − φs(t− τ)C∗ = −Σ∗H(s− t)B∗ − Σ∗H(s− t+ τ)C∗ (3.11)

with initial condition

φs(t) = Σ∗H(s− t) for all t ∈ [−τ, 0].

Note that for each fixed s > 0 this initial condition is a bounded and continuous

function of t ∈ [−τ, 0]. For each fixed s, the right hand side of equation (3.11) is the

function θs defined for t ≥ 0 by

θs(t) = −Σ∗H(s− t)B∗ − Σ∗H(s− t+ τ)C∗

which is uniformly bounded in t, and is continuous in t except for the two points t = s

and t = s+ τ . As was done above for m(t), one can perform the iterative analysis of

the delay ODE (3.11) on successive time intervals Jk = [(k−1)τ, kτ ]. Since both the

initial condition and the right-hand side θs are known, the kth step of this iterative

construction amounts to solving a first order linear ODE with constant coefficients

and known right-hand side. So this construction is essentially stepwise explicit and

proves by recurrence on k that the distribution φs(t) is actually a bounded function

of t which is differentiable except maybe at the points t = kτ and t = s+ kτ .

For each s ≥ 0, once the full solution φs has been constructed for t ∈ [−τ, T ] as

just outlined, we immediately obtain F (s, t) = φs(t)− Σ∗H(s− t).
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At this stage F (s, t) is theoretically known for all s ≥ 0 and t ∈ [−τ, T ] and can

be plugged into the delay ODE in s verified by ρ(s, t) for each fixed t, with initial

conditions ρ(s, t) = 0 for (s, t) ∈ [−τ, 0]× [−τ, 0]. For each fixed t ∈ [0, T ], this delay

ODE for s → ρ(s, t) can again be solved iteratively on the successive time intervals

Jk.

The preceding approaches can easily be numerically implemented to derive ex-

plicit solution to the three types of delay ODEs involved. Each reduction to a suc-

cession of roughly T/τ linear ODEs enables the use of classical numerical schemes to

compute m(t) and ρ(s, t). We have used the approach of [5], which implements the

step-wise analysis presented above, along with standard numerical ODE methods.

This numerical implementation is described explicitly in Section 6.1.1.

The key role played below by m(t) and ρ(s, t) is that these two functions es-

sentially determine the rate functional of large deviations theory for the Gaussian

diffusion with delay Xt. The general rate functional for Gaussian processes is given

in Section 4.3.2. The rate functional for transition pathways linking an initial state

to a desired target state is given in Section 5.1.1. These formulas determine the

exponential decay rates of the probabilities associated to the Gaussian diffusion with

delay Xt.

3.2 Genetic Evolution Probabilities and Statistics

In the case of Gaussian diffusions with delay, previously established large deviations

principles for Gaussian processes [2] can provide probabilistic estimates in terms of
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the mean and covariance and without the direct use of the probability associated to

the Gaussian process. For stochastic evolution of E. Coli, we will need to establish a

large deviations principle for probabilities associated to random histogram trajecto-

ries. The key probability will be the one-step transition probability which describes

the probability of transitioning to a histogram H on some day n+ 1 given that his-

togram on day n is G. Recall that a population of E. Coli cells at the beginning of

day n undergoes deterministic growth, independent Poisson mutations, and random

selection in order to generate a population on day n+ 1. Therefore, we first calculate

the formulas and probabilities involved in each of these three steps. Then, we will

give an explicit formula for the one-step transition probability. Finally, we end the

section by giving the mean of the random histogram trajectory H, which is given

recursively by the conditional expectation.

3.2.1 Deterministic Growth

For any histogram H = (H(1), H(2), . . . , H(g)), we assume that the genotypes are

arranged in ascending order of fitness so that if i < j, then Fi < Fj. In particular,

genotype 1 is the ancestor and genotype g is the fittest. During deterministic growth

and before mutation, popn becomes a population Pn. The number of cells with geno-

type j grows from NHn(j) to sizn(j) := NHn(j)Fj so that the size of the population

Pn is N〈F,Hn〉 where 〈·, ·〉 is the standard inner product on Rg. The frequency of

cells with genotype j in the population Pn is given by Gn(j) = FjHn(j)/〈F,Hn〉.

Let S ⊂ Rg denote the simplex of histograms. Hence, the deterministic growth
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stage transforms the histogram Hn to the histogram Gn = Φ(Hn) via the determin-

istic function Φ : S → S defined on the entirety of the compact, convex space of

histograms S by

Φj(H) =
FjH(j)

〈F,H〉
.

3.2.2 Random Mutations

After changing the time unit, we can assume that the fixed duration of free growth

periods is τ = 1. Even though mutations can occur randomly at any time throughout

the day, we assume that all mutations occur simultaneously at the end of each growth

period, which has minimal impact for large values of N (see e.g. [41]). These random

independent Poisson mutations are described by the (g×g) matrix of mutation rates,

written as Mj,k = mQj,k where m is the mutation rate ranging between 10−8 and

10−6. The entry Mj,k represents the mutation rate of E. Coli cells from genotype j

to genotype k.

Let Xj,k denote the number of mutants of genotype j changing into genotype k

at time step n where all the Xj,k are independent and Xj,j = 0. Since the Xj,k are

assumed to be Poisson, we have

P (Xj,k = Rj,k) = exp(−sizn(j)Mj,k)
(sizn(j)Mj,k)

Rj,k

Rj,k!
, j 6= k

E[Xj,k] = sizn(j)Mj,k, j 6= k.

After growth of popn to a population Pn, these mutations represent a random pertur-

bation of the deterministic population Pn to a new (random) intermediary population
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Pmut
n where the number of individuals of genotype j is given by

sizn(j)−
g∑

k=1

Xj,k +

g∑
k=1

Xk,j.

For the cells of genotype j, let the number of emigrants and immigrants be denoted

as

On(j) =

g∑
k=1

Xj,k, In(j) =

g∑
k=1

Xk,j,

respectively. Since the Xj,k are independent Poisson random variables for all indices

j 6= k, the emigrants On(j) and immigrants In(j) are Poisson distributions with

means given by

E[On(j)] = sizn(j)

(∑
k 6=j

Mj,k

)
, E[In(j)] =

∑
k 6=j

sizn(k)Mk,j,

respectively. The intermediary population Pmut
n after the mutation step has g groups

of sizes Un(j) for 1 ≤ j ≤ g where

Un(j) = sizn(j)−On(j) + In(j).

Clearly, the total number of cells in Pmut
n is equal to the number of cells after growth,

which is N〈F,Hn〉. Therefore, if Gn = Φ(Hn) is the histogram after deterministic

growth and Gmut
n is the random histogram after mutation, we have that

Gmut
n =

Un
N〈F,Hn〉

. (3.12)

3.2.3 Random Selection

After deterministic growth and random mutation of a population popn, the popula-

tion popn+1 is generated by extracting a random sample of size N from the interme-

diary population Pmut
n . This intermediate population is described precisely by the
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histogram Gmut
n given in (3.12).

Let Vn(j) be the number of j-cells present in popn+1 at time n+ 1 after random

selection. We then have
∑

j Vn(j) = N, and the new population histogram becomes

Hn+1 = Vn/N . Since the intermediate population before selection is described by

(3.12), the random vector Vn has a multinomial distribution µ(N) with g occurrences

which are given by the coordinates of the histogram (3.12). More precisely, µ(N) is

given by the formula

µ(N) := P (Hn+1 = G |Gmut
n = p) = P (Vn = V |Gmut

n = p) =
N !∏g

i=1 V (i)!

g∏
i=1

p
V (i)
i .

(3.13)

We note that the choice of notation µ(N) is for simplicity in the calculations of the

one-step cost function in Section 4.4.1 which involves direct analysis of 1
N

log µ(N) for

large N . However, this probability clearly depends on the mutation step preceding

random selection as well as the population size N .

3.2.4 One-Step Transition Probability

In order to generate the new population popn+1, we have one deterministic step

(growth) and two probabilistic steps (mutation and random selection). The concate-

nated probability of this sequence is given by the transition probability

Θ(H,G) = P (Hn+1 = G |Hn = H) =
∑
Rj,k 6=0

∏
j,k|j 6=k

P (Xj,k = Rj,k |Hn = H)µ(N).

(3.14)
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Notice that
∑

kXj,k represents the number of cells mutating from genotype j to

any other genotype i 6= j. Since sizn(j) is the number of cells of genotype j after

growth, we must have that Xj,k ≥ 0 and
∑

kXj,k ≤ sizn(j), which is dependent on

the histogram Hn. Thus, the conditioning in (3.14) apriori is necessary. However, we

will show that P (Xj,k = Rj,k |Hn = H) ≈ P (Xj,k = Rj,k). To this end, let

Q(R,H,N) =
∏

j,k|j 6=k

P (Xj,k = Rj,k|Hn = H).

We have that

Q(R,H,N) =
∏

j,k|j 6=k

P (Xj,k = Rj,k|Hn = H,Xj,k ≤ sizn(j))

=
∏

j,k|j 6=k

P (Xj,k = Rj,k|Hn = H,Xj,k ≤ NFjHn(j))

=
∏

j,k|j 6=k

P (Xj,k = Rj,k|Xj,k ≤ NFjHj).

Now,

P (Xj,k = Rj,k|Xj,k ≤ NFjHj) =
P (Xj,k = Rj,k, Xj,k ≤ NFjHj)

P (Xj,k ≤ NFjHj)

=
P (Xj,k = Rj,k, Xj,k ≤ NFjHj)

1− P (Xj,k > NFjHj)
.

Recall that Xj,k are assumed to be Poisson with mean E[Xj,k] = sizn(j)Mj,k =

NFjHjMj,k. In our stochastic model, mutation rates are assumed to be at most

order 10−6, which implies that E[Xj,k] ≈ 10−6NFjHj. We will show that

P (Xj,k ≤ NFjHj) = 1− P (Xj,k > NFjHj) ≈ 1

using the following lemma.
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Lemma 3.2.1. If X is a Poisson random variable with mean λ, then for a > 0,

P (X > aλ) < eλ(et−1−at)

for all t > 0.

Proof. For a > 0, we know that

P (X > aλ) = P (etX > eatλ) (3.15)

for all t > 0. Since etX is a positive random variable, Markov’s inequality yields for

any b > 0

P (etX ≥ b) ≤ E[etX ]

b
.

Take b = eatλ. Since X is Poisson and E[etX ] is the moment-generating function for

X, using (3.15) gives

P (X > aλ) = P (etX > eatλ)

<
E[etX ]

eatλ

=
eλ(et−1)

eatλ

= eλ(et−1−at).

Using Lemma 3.2.1 to analyze P (Xj,k > NFjHj), assuming Xj,k 6= 0, let λ =

Mj,kNFjHj and a = 1/Mj,k ' 106. We have

P (Xj,k > NFjHj) < e
Mj,kNFjHj

(
et−1− 1

Mj,k
t

)

' e10−6NFjHj(e
t−1−106t).
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The function et − 1− 106t attains its minimum at t = log 106 so that

P (Xj,k > NFjHj) < e10−6NFjHj(106−1−106 log 106)

= eNFjHj(1−10−6−6 log 10).

If Hj = 0, then Xj,k = 0 and P (Xj,k > NFjHj) = 0. If Hj 6= 0, then Hj ≥ 1/N ,

implying that NFjHj is of order Fj. For E. Coli experiments, growth factors are

assumed to be at least 200. Therefore,

P (Xj,k > NFjHj) < e200(1−10−6−6 log 10) ≈ 0.

Finally, we have P (Xj,k ≤ NFjHj) ≈ 1 so that

Q(R,H,N) =
∏

j,k|j 6=k

P (Xj,k = Rj,k).

Letting Q(R,H,N) :=
∏

j,k P (Xj,k = Rj,k), we now have our one-step transition

probability Θ(H,G) as

Θ(H,G) =
∑
Rj,k 6=0

Q(R,H,N)µ(N), (3.16)

Q(R,H,N) =
∏

j,k|j 6=k

exp(−sizn(j)Mj,k)
(sizn(j)Mj,k)

Rj,k

Rj,k!
,

where µ(N) is given by (3.13). This formula will be useful in Section 4.4.1 when

completing a large deviations calculation for one-step probabilities.

3.2.5 Mean of Genetic Evolution of E. Coli

Consider the Markov chain Hn of histograms associated above to the successive cell

populations popn of fixed size N . Stochastic genotype evolution is driven by the
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growth factors F1 < F2 < · · · < Fg, ordered by increasing fitness, and by the g × g

matrix M = (Mj,k) of mutation rates. Let Mj, . and M. ,k be the jth row sum and the

kth column sum for M .

The genotype frequencies reached after any daily growth starting with a popu-

lation histogram H ∈ S are given by q(j) = FjH(j)/ < F,H > where the brackets

< ·, · > denote the scalar product in Rg. For any fixed population size N , the mean

behavior, which constitutes our underlying deterministic system, of the chain Hn is

analyzed in the next theorem.

Theorem 3.2.2. For any H in S, define the histogram Ψ(H) by

Ψj(H) = E[Hn+1(j) | Hn = H] = (1−Mj, .)q(j) +
∑
k

q(k)Mk,j.

For any initial population histogram H0 = Y0, the successive mean vectors Yn = E[Hn]

of the histograms Markov chain Hn are given iteratively by Yn+1 = Ψ(Yn). Then, as

n → ∞, if the nonzero mutation matrix Mj,k = mQj,k is such that Mg, . = 0 (the

fittest genotype can not mutate into a weaker genotype), then the mean histogram

(Yn) converges at exponential speed to the deterministic histogram for which the fittest

genotype g is fully dominant, i.e has frequency 100%. Otherwise, the mean histogram

(Yn) converges at exponential speed to the deterministic histogram in which the fittest

genotype is highly dominant, i.e. has frequency of order 1−m.

Proof. Let Xj,k be the Poisson random variable which denotes the number of mu-

tants of genotype j changing into genotype k at time step n where all the Xj,k are

independent and Xj,j = 0. Notice that since the population at the next time step

n + 1 involves random selection, the expected histogram Hn+1 given that Hn = H
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will be given by the expected histogram after growth and mutation. The random

histogram after deterministic growth and mutation during day n, denoted as MHn,

is given by the formula

MHn(j) =
NFjHn(j)−

∑g
k=1Xj,k +

∑g
k=1 Xk,j

N〈F,Hn〉

for each genotype j = 1, . . . , g. Since E[Xj,k | Hn = H] = NFjH(j)Mj,k, direct

calculation of the conditional expectation yields

E[Hn+1(j) | Hn = H] = E[MHn(j) | Hn = H]

=
1

N〈F,H〉

(
NFjH(j)−NFjH(j)

g∑
k=1

Mj,k +

g∑
k=1

NFkH(k)Mk,j

)

= (1−Mj, .)q(j) +

g∑
k=1

q(k)Mk,j.

Denote the above conditional expectation for genotype j as Ψj(H). For a fixed

initial population histogram H0, the expected histogram of the Markov chain Hn on

day n is given by Ψn(H0) where Ψn represents the n-fold composition of the vector-

valued function Ψ. We analyze inductively the behavior of the mean Ψn
g (H0) for the

fittest genotype on day n for all positive integer values of n. On day 1, the expected

concentration of cells of genotype j is given by

Ψ1
j(H0) = (1−Mj, .)

FjH0(j)

〈F,H0〉
+

g∑
k=1

FkH0(k)

〈F,H0〉
Mk,j.

Notice that the order of Ψ1
j(H0) is roughly given by (1 − Mj, .)Fj/Fg + Ml,jFl/Fg

where l is the largest index such thatMl,j 6= 0. On day 2, the expected concentration

of cells of genotype j is given by

Ψ2
j(H0) = (1−Mj, .)

FjΨ
1
j(H0)

〈F,Ψ1(H0)〉
+

g∑
k=1

FkΨ
1
k(H0)

〈F,Ψ1(H0)〉
Mk,j.
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A similar calculation shows that the order of Ψ2
j(H0) is roughly given by (1 −

Mj, .)(Fj/Fg)
2 + Ml,j(Fl/Fg)

2. Proceeding inductively, we have that Ψn
j (H0) has or-

der (1 −Mj, .)(Fj/Fg)
n + Ml,j(Fl/Fg)

n. In particular, for the strongest genotype g,

we have that the order of Ψn
g (H0) is (1 −Mg, .) + Mi,g(Fi/Fg)

n where i < g is the

largest index such that Mi,g 6= 0. We conclude that as n→∞, if Mg, . 6= 0, the mean

histogram Ψn(H0) converges at exponential speed to a fixed histogram in which the

fittest genotype has frequency of order 1−m. Otherwise, the mean converges to the

histogram in which the fittest genotype is fully dominant.

In the mean trajectory, dominance of the strongest genotype in a population

will occur exponentially quickly given an initial state. Consequently, the appearance

of other genotypes over long time scales and large populations become rare events

with probabilities vanishing exponentially fast. A large deviations principle roughly

gives the exponential decay rate of the probabilities P (H ∈ A) for generic sets of

trajectories. Since the Markov chain trajectory H = [H0H1 . . . HT ] is formed by

a finite sequence of one-step transitions Hn → Hn+1 for n < T , a large deviations

principle forH first requires a detailed analysis of the exponential behavior of the one-

step transition probabilities P (Hn+1 = G |Hn = H), which is given in Section 4.4.1.
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Chapter 4

Large Deviations Theory and

Background

Large deviations is largely thought of as a study of rare events. Many natural systems

are influenced by small random perturbations or large population sizes which have

some underlying deterministic system. When a small noise parameter approaches

0 or a population size approaches ∞, the probability that the system takes a large

excursion away from the deterministic system decays exponentially fast. Large devi-

ations theory reveals this exponential decay rate in terms of an explicit rate function.

To make this discussion more rigorous, we will formally describe the large deviations

problem. Then, we will discuss the first landmark theorem in large deviations known

as the Cramer-Chernoff Theorem. Finally, we will discuss large deviations results

relevant to Gaussian diffusions with delay and stochastic evolution of bacterial pop-

ulations.
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4.1 Formal Large Deviations Problem

To describe the large deviations problem generally, let Xn be a sequence of indepen-

dent random vectors taking values in a vector space E and having the same probabil-

ity distribution µ. For n ∈ N, denote the empirical means by X̄n = (X1+· · ·+Xn)/n.

For any set A ⊂ E, we study the exponential decay rate of the probabilities P (X̄n ∈

A) as n→∞.

For E = Rk and when
∫
E
|x| dµ(x) < ∞, the law of large numbers implies

that if A contains a neighborhood of the theoretical mean m =
∫
E
x dµ(x), then

limn→∞ P (X̄n ∈ A) = 1. Denoting the closure of the set A as Ā, if m 6∈ Ā, then

limn→∞ P (X̄n ∈ A) = 0. Therefore, when m 6∈ Ā, the occurrence of the event

(X̄n ∈ A) becomes a rare event as n → ∞ where the rate of decay is of particu-

lar interest. Thus, if we fix a large n in this situation, the occurrence of the event

(X̄n ∈ A) represents a large deviation with respect to the law of large numbers.

Cramer and Chernoff [10,13] study the case when E = R. They focus on computing

limn→∞
1
n

logP (X̄n ∈ A) when A is a half-line which gives an explicit exponential

decay rate in terms of the crucial Cramer transform, also called a rate function.

These so-called “rate functions” become paramount in obtaining explicit decay rates

which is obtained via a “large deviations principle,” which we formally define below.

Definition 4.1.1 (Rate function and large deviations principle). Let E be a vector

space endowed with its Borel σ-algebra B(E). Let (Xn)∞n=1 be a sequence of indepen-

dent and identically distributed (i.i.d) random vectors taking values in E such that

X̄n is measurable for all n ∈ N. A function λ : E → R is called a rate function if
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• 0 ≤ λ(x) ≤ ∞ for all x ∈ E,

• λ is lower semi-continuous on E,

• the level sets {x ∈ E : λ(x) ≤ c} are compact sets in E.

The sequence (Xn) is said to obey a large deviations principle with rate function λ if

• For every closed set K ⊂ E

lim sup
n→∞

1

n
logP (X̄n ∈ K) ≤ − inf

x∈K
λ(x), (4.1)

• For every open set G ⊂ E

lim inf
n→∞

1

n
logP (X̄n ∈ G) ≥ − inf

x∈G
λ(x). (4.2)

If condition (4.1) holds only for compact sets, the sequence (Xn) obeys a weak form

of the large deviations principle.

For A ∈ B(E), denote the interior of A as A◦. In the large deviations principle

above, notice that conditions (4.1) and (4.2) hold for Ā and A◦, respectively. For a

fixed Borel set A, it is natural to determine when the limit superior and limit inferior

are equal so that the full limit exists. If A is a Borel set such that infx∈A◦ λ(x) =

infx∈Ā λ(x), which is necessarily the case when the closure of A◦ is equal to Ā, we

have

lim
n→∞

1

n
logP (X̄n ∈ A) = − inf

x∈A
λ(x).
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Notation 4.1.2. In the large deviations principle, minimization of the rate function

over a set in question becomes key in quantifying probabilistic estimates. Conse-

quently, for a Borel set A ∈ B(E), we denote Λ(A) := infx∈A λ(x) and call Λ(A) the

large deviations rate functional or Cramer set functional.

In general, the vector space E and its topology influence the feasibility of this

asymptotic study. For instance, given a generic sequence of i.i.d. random vectors

Xn, the sum X1 + · · · + Xn is not necessarily measurable with respect to the Borel

σ-algebra B(E) so that the inequalities given by (4.1) and (4.2) would not make

sense. This problem has been addressed rigorously in Chapters 2 and 3 in [2] where

more details can be found. For now, we will focus on the case when E = R where

the above problem is not relevant.

4.2 Classical Cramer-Chernoff Theorem

We begin by defining what will be the rate function for the large deviations principle

on R.

Definition 4.2.1. Let µ be a probability on R with Laplace transform µ̂ : R→ (0,∞]

defined by µ̂(t) := E[etx] =
∫
R e

tx dµ(x). Define the Cramer transform λ : R→ [0,∞]

of the probability µ by

λ(x) = sup
t∈R

[tx− log µ̂(t)]. (4.3)

Notice the Cramer transform λ is necessarily convex and lower semi-continuous

since it is the pointwise supremum of a family of continuous linear functions. In
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fact, we will see shortly that the Cramer transform will be the rate function used

to establish a large deviations principle. Furthermore, we can view the function

λ(x) and µ̂(t) as dual functions in the Legendre duality framework between convex

lower semi-continuous functions. The connection between µ̂(t) and λ(x) is given in

Proposition 4.2.6. Notice that we have not excluded the possibility that λ(x) or µ̂(t)

is infinite.

Before stating the Cramer-Chernoff Theorem, we will focus briefly on computing

the Cramer transform in a few examples and providing some interpretation of the

large deviations principle in connection with the Cramer transform.

4.2.1 Computing Cramer Transforms

When µ̂(t) is finite for all t ∈ R, the mean m and variance σ2 of µ are both finite.

Then, computation of λ(x) for each fixed x ∈ R involves maximizing the function

tx− log µ̂(t) as a function of t, as we will demonstrate below using some well-known

distributions. Subsequently, one can verify that the Cramer transform λ(x) is differ-

entiable in a neighborhood of the mean m where λ′(m) = 0 and λ′′(m) = 1/σ2. This

implies that λ(x) reaches a minimum at x = m with minimum value λ(m) = 0. An

explicit form of the Cramer transform can be obtained in a few classical examples,

which we illustrate below.

Example 4.2.2 (Gaussian distributions). When µ is Gaussian with mean m and

variance σ2, we have its density given by dµ(x) = 1√
2πσ2

exp −(x−m)2

2σ2 dt. This implies
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that log µ̂(t) = tm+ 1
2
σ2t2. Therefore, we have that

λ(x) = sup
t∈R

[
tx− tm− 1

2
σ2t2

]
.

The maximizer of this function is given by t = (x −m)/σ2. Plugging this value in

for t gives the explicit formula of the Cramer transform

λ(x) =
(x−m)2

2σ2
for x ∈ R,

which is an infinitely differentiable quadratic function of x.

Example 4.2.3 (Binomial Distributions). Suppose µ = pδu + (1− p)δv where u < v

and 0 < p < 1. For all x ∈ (u, v), we have dµ(x) = p dδx−u + (1 − p) dδv−x so that

the Laplace transform µ̂(t) is given by evaluation of the exponential at x = u and

x = v. More precisely, we have that

µ̂(t) = petu + (1− p)etv = etu(p+ (1− p)et(v−u)).

The Cramer transform then takes the form

λ(x) = sup
t∈R

[
t(x− u)− log (p+ (1− p)et(v−u))

]
.

The maximizer of this function is given by t = 1
v−u log p(x−u)

(1−p)(v−x)
. Plugging this value

in for t gives the explicit Cramer transform for all x ∈ (u, v) as

λ(x) =
x− u
v − u

log
x− u
1− p

+
v − x
v − u

log
v − x
p
− log (v − u).

Notice that the maximizer in t is undefined when x = u or x = v, which follows from

the fact that tu− log µ̂(t) and tv− log µ̂(t) are strictly monotonic functions of t. We
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analyze the Cramer transform for these boundary cases. Notice that

λ(u) = sup
t∈R

[
− log (p+ (1− p)et(v−u))

]
λ(v) = sup

t∈R

[
− log (pet(u−v) + 1− p)

]
.

Because of monotonicity, the supremum in these two cases will be the value we obtain

as we let t→∞ or t→ −∞. Notice that since v − u > 0, we have that

lim
t→∞
− log (p+ (1− p)et(v−u)) = −∞

lim
t→−∞

− log (p+ (1− p)et(v−u)) = − log p.

Therefore, we must have that λ(u) = − log p. An analogous argument shows that

since u − v > 0, we must have that λ(v) = − log (1− p). Thus, the full Cramer

transform for the Binomial distribution is given as

λ(x) =



x−u
v−u log x−u

1−p + v−x
v−u log v−x

p
− log (v − u), u < x < v

− log p, x = u

− log (1− p), x = v

∞, otherwise,

which is continuous on [u, v] and differentiable on (u, v).

Example 4.2.4 (Exponential Densities). When µ has an exponential density given

by dµ(t) = 1[0,∞)(t)e
−tdt. The Laplace transform is given by

µ̂(t) =

∫ ∞
−∞

etx dµ(x) =

∫ ∞
0

e(t−1)xdx.

Notice that this integral is infinite for all t ≥ 1 so that a maximum cannot be obtained

for these values of t. Therefore, suppose that t < 1. We then have that µ̂(t) = −1
t−1
.
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This implies that

λ(x) = sup
t∈(−∞,1)

[tx+ log (1− t)].

The maximum of this function occurs at t = 1− 1/x so that the Cramer transform

is given by

λ(x) =


x− 1− log x, x > 0

∞, x ≤ 0,

which is continuously differentiable on (0,∞).

4.2.2 Probabilistic Interpretation of Cramer Transforms and

the Cramer-Chernoff Theorem

The classic early results of Cramer and Chernoff show that for i.i.d. random variables

Xn ∈ L1(R), the tails of the distribution of the sample mean X̄n tend to zero at

exponential speed as n → ∞ with a rate completely determined by the Cramer

transform λ of the common distribution µ. Suppose that we have a large deviations

principle for a sequence of random variables Xn ∈ L1(R) with common distribution

µ. Suppose further that A ∈ B(E) such that Λ(A◦) = Λ(Ā) so that

lim
n→∞

1

n
logP (X̄n ∈ A) = −Λ(A).

Let x ∈ A be an arbitrary point. The large deviations principle states then that

observing X̄n in a small neighborhood of x in A should be of order e−nλ(x) for large

n. While this statement is not literally true, it still roughly summarizes the intuitive

interpretation of the large deviations principle and its connection to the Cramer
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transform. For large n, the probabilities of observing X̄n in the vicinity of a point

x ∈ A such that λ(x) > 0 will vanish much more quickly when λ(x) is large than

when λ(x) is small. Thus, this provides an intuitive reason why the exponential decay

rates of the probabilities P (X̄n ∈ A) are completely determined by λ(x∗) = Λ(A)

where x∗ ∈ A is the minimizer of λ(x). Furthermore, this intuitively shows that if

the event (X̄n ∈ A) is to occur, then X̄n is “most likely” going to be very close to

the minimizer x∗. To make this precise, we now state the Cramer-Chernoff theorem

without proof (see [2]).

Theorem 4.2.5 (Cramer-Chernoff). Let Xn be a sequence of independent real-valued

random variables with the same probability distribution µ, and let X̄n = (X1 + · · ·+

Xn)/n. Let λ be the Cramer transform of µ. We then have for all a ∈ R the lower

bounds

−λ(a) ≤ lim inf
n→∞

1

n
logP (X̄n ≤ a)

−λ(a) ≤ lim inf
n→∞

1

n
logP (X̄n ≥ a)

Now suppose that for each n ∈ N that Xn ∈ L1(R), and denote the mean as m =∫
R x dµ(x). We then have the upper bounds

1

n
logP (X̄n ≤ a) ≤ −λ(a)

1

n
logP (X̄n ≥ a) ≤ −λ(a).
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Finally, we have the following large deviations limits:

lim
n→∞

1

n
logP (X̄n ≤ a) =


−λ(a), a ≤ m

0, a > m

,

lim
n→∞

1

n
logP (X̄n ≥ a) =


0, a < m

−λ(a) a ≥ m

.

With the Cramer transform being the key function in the Cramer-Chernoff the-

orem above, analysis of λ(x) becomes helpful when explicitly utilizing this large

deviations result. The following theorem links the behavior of λ(x) as |x| → ∞ to

the finiteness of the Laplace transform µ̂(t).

Proposition 4.2.6. Let µ be a probability on R with
∫
R|x| dµ(x) <∞. The Cramer

transform λ of µ has the following properties:

• µ̂(t) =∞ for all t 6= 0 if and only if λ(x) = 0 for all x ∈ R,

• µ̂(t) <∞ for some t 6= 0 if and only if lim|x|→∞ λ(x) is infinite

• µ̂(t) <∞ for all t if and only if lim|x|→∞
λ(x)
x

is infinite.

Large deviations principles like the one just stated often rely on regularity prop-

erties of the Cramer transform. Thus, for probabilities on R, the following theorem

clarifies the variations of λ on the support of µ. Let [u, v] be the closed convex hull

of support of µ, which may be bounded or unbounded.

Proposition 4.2.7. Let µ be a probability on R with
∫
R|x| dµ(x) < ∞ and m =∫

R x dµ(x).
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• The Cramer transform λ(x) is finite, convex, and continuous for u < x < v

and λ(x) =∞ for x < u or x > v. When v is finite, λ(x) is left continuous at

x = v. When u is finite, λ(x) is right continuous at x = u.

• The function λ decreases for u < x ≤ m, reaches its minimum λ(m) = 0 at m,

and increases for m ≤ x < v.

• The integral T (s) =
∫
R e

sλ(x) dµ(x) < ∞ for all s < 1. However, T (1) can be

infinite for a large class of probabilities µ.

Naturally, the Cramer-Chernoff theorems were extended to random variables tak-

ing values in E = Rk. As stated before, establishing analogous results in infinite-

dimensional spaces is a bit more troublesome. However, this can be done for a

large class of separable locally convex topological vector spaces, namely separable

Frechet spaces, which is the content of Chapters 2 - 4 in [2]. The approach here

was strongly influenced by the results of Donsker-Varadhan and is similar to the

results of Bahadur-Zabell. In these chapters, the general Cramer transform (rate

function) and Cramer set functional (large deviations rate functional) are defined,

and a large deviations principle is established. The situation that will be of use when

applying large deviations principles to Gaussian diffusions with delay will be when

E is a separable Hilbert space, namely the space of vector-valued functions in L2.

We will describe the large deviations framework in this setting, which is the content

of Chapter 6 in [2].
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4.3 Large Deviations for Gaussian Measures and Pro-

cesses

We present, without proof, a brief overview of large deviations theory of Gaussian

measures and processes (refer to Chapter 6 in [2] for proofs of theorems). We will

then apply these principles to Gaussian diffusions with delay. The following notations

and definitions will be used throughout this section.

• H is any separable Hilbert space, with scalar product denoted 〈t, x〉 := t(x) for

t, x ∈ H.

• µ is any probability on the Borel σ-algebra B(H).

• For t ∈ H, the image probability t(µ) is defined on R by [t(µ)](A) := µ(t−1(A))

for all Borel subsets A of R.

• µ is called centered iff t(µ) is centered for all t ∈ H.

• µ is called Gaussian iff for all t ∈ H, the image probability t(µ) is a Gaussian

distribution on R.

Large deviations concepts demand all t(µ) to have at least finite first-order mo-

ment. But most applicable results require all t(µ) to have some finite exponential

moments since they depend on the Laplace tranform µ̂(t) of µ, defined as follows for

t ∈ H,

µ̂(t) =

∫
H

e〈t,x〉 dµ(x).
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For a full treatment of large deviations concepts for probabilities on general infi-

nite dimensional Frechet vector spaces, refer to Chapters 2 and 3 of [2]. Here we only

consider Borel probabilities µ on separable Hilbert spaces H. Later on below, H will

be an L2-space of process paths and µ will be Gaussian. Probabilities of rare events

under µ can be estimated via a key non-negative functional defined for x ∈ H: the

Cramer transform λ(x) of µ. The following definition of λ(x) is actually Theorem

3.2.1 in [2].

Definition 4.3.1. The Cramer transform λ of µ, also called the large deviations

rate functional of µ, is defined for x ∈ H by

λ(x) = sup
t∈H

[〈t, x〉 − log µ̂(t)] .

Note that 0 ≤ λ(x) ≤ +∞. The Cramer set functional Λ(A) is then defined for all

A ⊆ H by

Λ(A) = inf
x∈A

λ(x).

The set functional Λ(A) quantifies the probabilities of rare events by the following

key large deviations inequalities initially formalized by S. Varadhan.

Theorem 4.3.2. Let µ be a probability measure on a separable Hilbert space H.

Let Z be an H-valued random variable with probability distribution µ. Let Λ be the

Cramer set functional of µ. For every Borel subset A of H one has

−Λ(A◦) ≤ lim inf
ε→0

ε2 logP(εZ ∈ A) ≤ lim sup
ε→0

ε2 logP(εZ ∈ A) ≤ −Λ(Ā). (4.4)

where A◦ and Ā are resp. the interior and the closure of A.
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Whenever Λ(A◦) = Λ(Ā), which is necessarily the case when Ā is the closure of

A◦, then the limits in (4.4) exist and

−Λ(A) = lim
ε→0

ε2 logP(εZ ∈ A).

In particular for small ε, one has the rough estimate by

logP(εZ ∈ A) ≈ −Λ(A)

ε2
.

In our applications below, Z is the random path of a centered Gaussian diffusion

with delay so that the probability distribution ν of Z will be a centered Gaussian

probability on the Hilbert space H = L2[0, T ]. So we now focus on Gaussian proba-

bilities on Hilbert spaces.

4.3.1 Gaussian probabilities on Hilbert spaces

Let H be a separable Hilbert space, and let ν be a centered Gaussian probability

on the Borel subsets of H. With no loss of generality, we assume that the only

closed vector subspace F of H such that ν(F ) = 1 is H itself. The covariance kernel

Cov(s, t) of ν is defined for all s, t ∈ H by

Cov(s, t) =

∫
H

〈s, x〉〈t, x〉dν(x) = 〈s,Γt〉 = 〈Γs, t〉,

where the linear operator Γ : H → H is known to be a bounded, positive, self-adjoint

operator with finite trace. The positive operator
√

Γ then exists and is unique. The

following theorem gives a fairly concrete form for λ(x). This result can be applied in
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path space to centered Gaussian processes, once the covariance operator Γ has been

computed.

Theorem 4.3.3. Let ν be a centered Gaussian probability on a separable Hilbert

space H. Let Γ : H → H be the self-adjoint covariance operator of ν. Let U be the

orthogonal complement in H of the null space ker Γ = ker
√

Γ. The restriction S of
√

Γ to U is injective and maps U onto
√

Γ(H). Then the Cramer transform λ of ν

is given by

λ(x) =


1
2
‖S−1x‖2

x ∈
√

Γ(H)

∞ otherwise
.

4.3.2 Application to Gaussian processes

Let Zs : Ω→ R with s ∈ [0, T ] be a centered Gaussian stochastic process with almost

surely continuous trajectories and continuous covariance function

ρ(s, t) =

∫
Ω

Zs(ω)Zt(ω) dP(ω).

Call C([0, T ]) the Banach space of continuous functions on [0, T ] endowed with its

Borel σ-algebra. One can trivially construct a version of Zs with surely continuous

trajectories. This defines a C([0, T ])-valued random path Z, where Z(ω) is the path

s→ Zs(ω) with 0 ≤ s ≤ T . The probability distribution ν of the random path Z is

then a centered Gaussian probability on the Borel sets of C([0, T ]). We now state the

main large deviations result used below, which is essentially an application of The-

orem 4.3.3 to the separable Hilbert space L2[0, T ] and appears as Proposition 6.3.7

in [2].
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Proposition 4.3.4. Consider a centered continuous Gaussian process Zs : Ω → R

defined for s in [0, T ] with continuous covariance function ρ(s, t). The linear operator

R : L2[0, T ]→ L2[0, T ] defined by

Rf(s) =

∫ T

0

ρ(s, u)f(u) du

takes values in C([0, T ]). Moreover, R is self-adjoint, positive, compact, and has

finite trace. Let U = (ker(R))⊥ ⊂ L2([0, T ]) and let S be the restriction of
√
R to

U . Then S : U → L2[0, T ] is injective and maps U onto
√
R(L2[0, T ]). On the path

space C[0, T ], the probability distribution ν induced by the process Zt has Cramer

transform λ defined for f ∈ C[0, T ] by

λ(f) =


1
2
‖S−1f‖2

L2[0,T ] , if f ∈
√
R(L2[0, T ]);

∞, otherwise.

Note that by duality, R also acts on the space of all bounded Radon measures π

on [0, T ], via the natural formula

Rπ(s) =

∫ T

0

ρ(s, u) dπ(u).

Since the integral operator R is positive and self-adjoint, the square-root operator
√
R exists and is also an integral operator of the form

√
Rf(s) =

∫ T

0

k(s, u)f(u) du

where k(s, u) is uniquely defined by the relation
∫ T

0
k(s, u)k(u, v) du = ρ(s, v) for all

s, v ∈ [0, T ].

The value λ(f) of the Cramer transform can be viewed as the “energy” of the

path f . In particular, for a small multiple εWt of the Brownian motion Wt, the
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Cramer transform is indeed the kinetic energy λ(f) = 1
2
‖f ′‖2

L2[0,T ] (Proposition 6.3.8

in [2]). Further on, we will apply Proposition 4.3.4 to the centered Gaussian process

εZt = Xt−mt associated to the Gaussian diffusion with delay Xt. Indeed, since the

mean trajectory mt is deterministic, probability estimates for the random paths of

Zt immediately translate into probability estimates for the random paths of Xt.

4.4 Large Deviations for Bacterial Populations

For Gaussian diffusions with delay, previous results unveiled an explicit form of

the Cramer transform (cost function) which we were able to exploit directly. For

stochastic models of bacterial populations described in Section 2.3.2, our main goal

is to derive an explicit form for the energy or cost function λ(w, T ) for a histogram

trajectory w of length T . Minimization of this cost function over a set of paths

A will be directly linked to the behavior of − 1
N

logP (H ∈ A) as the population

size N → ∞. However, in order to understand the asymptotic behavior of this

probability, we must first understand the asymptotic behavior of the probabilities

associated to daily transitions given by (3.16). In this section, we first complete a

large deviations analysis of these one-step transition probabilities which will yield a

formula for the one-step cost function C(H,G). This will explicitly define the cost

function λ(w, T ), which is a sum of one-step costs. Next, we will use this explicit cost

function to establish a large deviations principle for the random histogram trajectory

H. Finally, we apply this large deviations principle to state a well-known result for

sets of paths that follow closely to an optimal path in A.
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4.4.1 Large deviations for one-step transition probabilities

Just as the cost function λ(w, T ) will be directly linked to exponential decay rates

of probabilities associated to H, the one-step cost function C(H,G), which gives

the “cost” of transitioning from a histogram H to a histogram G during a daily

cycle, is directly linked by C(H,G) = − limN→∞
1
N

logP (Hn+1 = G |Hn = H).

We derived an explicit form for the one-step transition probability given by (3.16),

which involves two probabilistic steps: independent Poisson mutations and random

selection. Thus, a large deviations analysis of the one-step transition involves a large

deviations analysis of multinomial sampling and independent Poisson mutations.

Large deviations approximation for multinomial sampling

Let U(i) denote the number of cells of genotype i present in the population before

random selection by multinomial sampling. Let V (i) denote the number of cells of

genotype i chosen after random selection. We then have that
∑g

i=1 U(i) = N〈F,H〉 =

Nsat and
∑g

i=1 V (i) = N. Since the computation of 1
N

log(µ(N)) will involve loga-

rithms of factorials, we will make use of Stirling’s formula log(N !) ' N logN − N .

This approximation is only valid for N ≥ 50, so we need to introduce boundary

cases. Thus, let pi = U(i)/Nsat, and recall that G(i) = V (i)/N. We then have

that the boundary cases will consist of genotypes i such that 0 ≤ G(i) ≤ ε where

ε = 50/N. We now compute 1
N

log(µ(N)) under various boundary cases. Note that

since we need
∑g

i=1G(i) = 1, it is not feasible to have the case where G(i) ≤ ε for all

genotypes i unless we allowed a significantly large number of genotypes (N = 50, 000
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would require at least 1000 genotypes).

Case 1: Assume that G(i) ≥ ε; that is, V (i) ≥ 50 for all genotypes i. We then have

that

µ(N) =
N !∏g

i=1 V (i)!

g∏
i=1

p
V (i)
i . (4.5)

Applying the logarithm to both sides, dividing by N , and applying Stirling’s formula

yields

1

N
log µ(N) =

1

N
log(N !)− 1

N

g∑
i=1

log(V (i)!) +

g∑
i=1

V (i)

N
log pi

' 1

N
(N logN −N)− 1

N

g∑
i=1

(V (i) log V (i)− V (i)) +

g∑
i=1

V (i)

N
log pi

= logN − 1 +
1

N

g∑
i=1

V (i)− 1

N

g∑
i=1

V (i) log V (i) +

g∑
i=1

V (i)

N
log pi

= logN − 1 +

g∑
i=1

G(i)− 1

N

g∑
i=1

V (i) log V (i) +

g∑
i=1

V (i)

N
log pi

=

g∑
i=1

V (i)

N
logN −

g∑
i=1

V (i)

N
log V(i) +

g∑
i=1

V (i)

N
log pi

= −
g∑
i=1

G(i) logG(i) +

g∑
i=1

G(i) log pi

=

g∑
i=1

G(i) log
pi
G(i)

(4.6)

The formula in (4.6) is related to the well-known Kullback-Leibler divergence, de-

noted here as KLD(G, p). Therefore, we have that for large population sizes N ,

− 1

N
log µ(N) ' KLD(G, p).
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where

KLD(G, p) =


∞ there is a j ∈ Γ such that G(j) > 0 and pj = 0∑g

i=1G(i) log G(i)
pi

otherwise
.

(4.7)

with the convention that 0 log 0 = 0.

Case 2: Suppose there is exactly 1 genotype that is in the boundary. Without loss of

generality, suppose G(1) ≤ ε and G(i) ≥ ε for all other genotypes. This is equivalent

to V (1) ≤ 50 and V (i) ≥ 50 for all other genotypes. Proceeding just as in Case 1,

we calculate 1
N

log µ(N). Applying Stirling’s approximation to all factorials except

V1! yields

1

N
log µ(N) ' logN − 1− 1

N
log(V (1)!)−

g∑
i=2

1

N
(V (i) log V (i)− V (i)) +

g∑
i=1

V (i)

N
log pi

= − 1

N
log(V (1)!) +G(1)(logN − 1) +

g∑
i=2

G(i) log
1

G(i)
+

g∑
i=1

G(i) log pi

= − 1

N
log(V (1)!) +

V (1)

N
[logN − 1 + log p1] +

g∑
i=2

G(i) log
pi
G(i)

(4.8)

In the above expression, let

s(N, V (1), p1) =
1

N
log(V (1)!) +

V (1)

N
[1− log(p1N)].

Suppose U(1) ≥ 1. Since p1 = U(1)/Nsat, we have that p1N = U(1)N/Nsat =

F1U(1). This gives us that

s(N, V (1), p1) =
1

N
log(V (1)!) +

V (1)

N
[1− logU(1)− logF1].

Therefore, s(N, V (1), p1) → 0 as N → ∞. If it is the case that U(1) = 0, then we

have that V (1) = 0 so that s(N, V (1), p1) = 0. Using this analysis of s(N, V (1), p1)
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in (4.8) gives us that

− 1

N
log µ(N) '

g∑
i=2

G(i) log
G(i)

pi
. (4.9)

Case 3: For the histogram G, let BG = {i ∈ Γ |G(i) ≤ ε}. The support of the

histogram is then JG = Γ−BG and nonempty. Suppose the set BG contains at least

2 elements. We can use a similar argument that was made for Case 2 to yield

− 1

N
log µ(N) '

∑
i∈JG

G(i) log
G(i)

pi
. (4.10)

Combining this analysis yields the one-step transition cost associated to random

selection, which is given by (4.10). However, pi is not written explicitly in terms of

the mutation matrix rj,k. To this end, we can expand the terms in pi to get

pi =
U(i)

Nsat

=
NFiH(i) +N

∑
k(−rj,k + rk,j)

N〈F,H〉
=
FiH(i) +

∑
k(−rj,k + rk,j)

〈F,H〉
.

Therefore, we finally have the one-step cost approximation associated to random

selection given by

KLD(r,H,G) =
∑
i∈JG

G(i) log
G(i)

pi
(4.11)

pi =
FiH(i) +

∑
k(−rj,k + rk,j)

〈F,H〉
.

Large deviations approximation for one-step randommutations

Recall the probability expression for random Poisson mutations is given by

Q(r,H,N) =
∏

j,k|j 6=k

exp(−NFjH(j)Mj,k)
(NFjH(j)Mj,k)

Nrj,k

Nrj,k!
(4.12)
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Using this expression, we will calculate the one-step cost approximation associated to

random mutations by calculating 1
N

logQ(r,H,N), which will use Stirling’s formula

again to approximate factorials. We then have

1

N
logQ(r,H,N) =

∑
j,k|j 6=k

(−FjH(j)Mj,k + rj,k logN)

+
∑
j,k|j 6=k

(
rj,k log(FjH(j)Mj,k)−

1

N
log((Nrj,k)!)

)
'
∑
j,k|j 6=k

(−FjH(j)Mj,k + rj,k logN)

+
∑
j,k|j 6=k

(rj,k log(FjH(j)Mj,k))) + logN
∑
j,k|j 6=k

rj,k

− 1

N

∑
j,k|j 6=k

(
Nrj,k log(Nrj,k)−Nrj,k +

1

2
log(Nrj,k) +

1

2
log 2π

)
.

Simplifying the above expression, for large population sizes N , we have

− 1

N
logQ(r,H,N) '

∑
j,k|j 6=k

(FjH(j)Mj,k − rj,k log(FjH(j)Mj,k) + rj,k log rj,k − rj,k)

Therefore, we have the one-step cost approximation associated to random mutations

given as

L(r,H) :=
∑
j,k|j 6=k

(
FjH(j)Mj,k + rj,k log

rj,k
FjH(j)Mj,k

− rj,k
)

(4.13)

62



One-step cost of daily transitions

Combining our computations of the one-steps costs associated to random mutations

and selection, we have

P (Hn+1 = G |Hn = H) '
∑
rj,k 6=0

exp(−N(L(r,H) +KLD(r,H,G))) (4.14)

Notice that this probability is written as a sum of exponentials over nonzero entries

rj,k. Therefore, when evaluating the asymptotic behavior of the one-step probabilities

for fixed histograms H and G, the exponential decay rate of P (Hn+1 = G |Hn = H)

is given by RF (H, r∗, G) where r∗ is the minimizer of the function RF (H, r,G) :=

L(r,H)+KLD(r,H,G) over all possible mutation matrices [rj,k]. This is precisely the

content of the following key theorem, which gives the one-step cost function C(H,G)

in terms of the optimal intermediary mutation matrix linking the histogram H to G.

Theorem 4.4.1. Let ftr(S) ⊂ S×S be the set of all feasible transitions, and fix any

pair of histograms H and G in S. Let MUT = MUT (H,G) be the compact convex

set of all (g × g) matrices r with coefficients 0 ≤ ri,j ≤ 1 verifying ri,j = 0 whenever

Mi,j = 0, and such that

p(j) =
1

< F,H >
(FjH(j)− rj, . + r. ,j) > 0 for all j = 1, . . . , s

where ri,. and r.,j are the resp. sums of the ith row and jth column of the matrix r.

On the set MUT , define the function RF (H, r,G) by

RF (H, r,G) =
∑
j,k

[ rj,k log(rj,k/FjH(j)Mj,k)− rj,k + FjH(j)Mj,k ]

+
∑
j

G(j) log(G(j)/p(j))
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where
∑

j,k is restricted to the j, k such that Mj,k > 0 and the
∑

j excludes all the

j such that H(j) = G(j) = 0. Then RF (H, r,G) is a convex function of r on the

compact convex set MUT .

When (H,G) is in ftr(S), the value of C(H,G) is finite, and given by the variational

formula

C(H,G) = min
r∈MUT

RF (H, r,G)

When (H,G) is not in ftr(S), we have C(H,G) = +∞.

An explicit derivation of C(H,G) then involves a minimization of RF (H, r,G).

We want to avoid the cases in which C(H,G) = ∞, which introduces natural con-

straints on RF (H, r,G) so that we only consider transitionsH → G that are possible.

Constraint 1: For feasibility of daily emergence of mutants of type j, we must have

that the number of j-cells after growth is at least the number of emmigrants of type

j; that is, NFjH(j) ≥
∑

kNrj,k. This yields the constraint

FjH(j)−
∑
k

rj,k ≥ 0. (4.15)

Constaint 2: In order to have a finite cost during daily selection, if G(j) 6= 0, we

must satisfy NFjH(j) >
∑

kNrj,k −
∑

kNrk,j, which yields the constraint

FjH(j)−
∑
k

rj,k +
∑
k

rk,j > 0. (4.16)

This constraint states that if we choose at least 1 j-cell during random selection, we

must have at least 1 j-cell present before selection and after the growth and mutation

steps.
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Constraint 3: If H(j) = 0 or H → G is not a supported transition,

rj,k = 0. (4.17)

The function RF (H, r,G) represents the cost of transitioning from the histogram

H to the histogram G via the intermediary normalized mutation matrix r. The one-

step cost function C(H,G) is then the cost of transitioning from the histogram H

to the histogram G via the optimal intermediary mutation step, which yields the

most-likely mutation step resulting in this transition. Calculation of the one-step

cost function immediately yields the trajectory cost function λ(w, T ) of a histogram

trajectory w of length T. Consequently, fast numerical computation of C(H,G) is

necessary when generating optimal trajectories linking two distinct histograms. For

interior histograms, we have an explicit formula for C(H,G) using Taylor expansions.

Theorem 4.4.2. Consider any two interior histograms H and G in So, and let

q(j) = FjH(j)/ < F,H >. When the sum of all mutation rates Mj,k := mQj,k is

small, the one-step transition cost C(H,G) has an explicit Taylor expansion of any

finite order with respect to the mutation rates Mj,k. The first order expansion of

C(H,G) is given by

C(H,G) ∼
∑
j

G(j) log(G(j)/q(j)) +m
∑
j,k

Qj,kFjH(j)[ 1− Ej,k ]

where

Ej,k = exp(G(k)/FkH(k)−G(j)/FjH(j))

and this expression provides a very accurate explicit evaluation of C(H,G) for mu-

tation rates m ≤ 10−6.
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Proof. Let Γ = {1, 2, . . . , g} and H and G be interior histograms. Notice that

RF (H, r,G) is a convex differentiable function of r. We write this minimization

as C(H,G) = minr RF (H, r,G) subject to the constraints given by (4.15)–(4.17).

To calculate C(H,G), we will assume that none of the inequality constraints are

saturated. Then, we will solve the system

∂

∂ri,n
RF (H, r,G) = 0 for all (i, n) ∈ Γ× Γ with i 6= n.

The only constraint required then is (4.15) for each j ∈ Γ. Taking the derivative of

RF (H, r,G) for all (i, n) ∈ Γ× Γ with i 6= n gives

∂

∂ri,n
RF (H, r,G) = log

ri,n
FiH(i)Mi,n

−
∑
j∈Γ

G(j)

pj

∂pj
∂ri,n

. (4.18)

where we have

∂pj
∂ri,n

=



0 i 6= j and n 6= j

−1
〈F,H〉 i = j and n 6= j

1
〈F,H〉 i 6= j and n = j

0 i = n

(4.19)

Using (4.19) in (4.18) and setting the system equal to 0 gives the following solution:

log
ri,n

FiH(i)Mi,n

=
−G(i)/pi +G(n)/pn

〈F,H〉
(4.20)

Set Aj = pj〈F,H〉. We then have

Aj < FjH(j) +
∑
k

rk,j < FjH(j) +
∑
k 6=j

FkH(k) = 〈F,H〉.
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When the mutation rate m→ 0, we have that all entries Mj,k → 0 at rates propor-

tional to m and all rj,k → 0. We then have the limit

lim
m→0

Aj = FjH(j) > 0. (4.21)

Plugging the above into (4.20), we get the first-order result for mutation matrices

Mj,k < 10−6

ri,n = FiH(i)Mi,nEi,n (4.22)

Ei,n = exp

(
− G(i)

FiH(i)
+

G(n)

FnH(n)

)
. (4.23)

The above gives the optimal mutation frequencies for fixed interior histograms H

and G operating under the assumption that the constraints on rj,k are not saturated.

For the constraint (4.15), we want for each j ∈ Γ,

FjH(j)−
∑
k

rj,k > 0.

Using the optimized values of rj,k, the non-saturation condition must verify for all j

∑
k|Mj,k 6=0

Mj,k exp

(
G(k)

FkH(k)

)
< exp

(
G(j)

FjH(j)

)
. (4.24)

In order to complete a first-order computation of the cost function C(H,G), we

need to obtain a first-order approximation of the terms log pj, which utilizes the

optimized values of rj,k. Recall that with the optimized values of rj,k, we have that

pj =
FjH(j)

〈F,H〉
+

1

〈F,H〉
∑
k

(FkH(k)Ek,jMk,j − FjH(j)Ej,kMj,k).

As we can see, pj is comprised of a zero-order term and a term of order m ≤

10−6, which is the mutation rate. We will denote the zero-order term as qj =
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FjH(j)/〈F,H〉. We can then write pj as

pj = qj +
∑
k

(qkEk,jMk,j − qjEj,kMj,k)

= qj

(
1−

∑
k

Ej,kMj,k +
1

pj

∑
k

pkEk,jMk,j

)
.

We can then write a first-order approximation for log pj as

log pj = log qj + vj (4.25)

vj = −
∑
k

Ej,kMj,k +
1

FjH(j)

∑
k

FkH(k)Ek,jMk,j (4.26)

where vj is of order m ≤ 10−6 and
∑

j qjvj = 0.

Finally, we use the first-order approximations of log pj and the mutation frequen-

cies rj,k in order to get a first-order approximation for the cost function C(H,G).

We proceed by decomposing RF (H, r,G) as follows:

RF (H, r,G) = RF1 +RF2

RF1 =
∑
j,k

(
FjH(j)Mj,k − rj,k + rj,k log

rj,k
FjH(j)Mj,k

)
RF2 =

∑
j

G(j) log
G(j)

pj

First, we compute RF1 using the optimal values of rj,k. This yields

RF1 =
∑
j,k

(
FjH(j)Mj,k − rj,k + rj,k log

rj,k
FjH(j)Mj,k

)
=
∑
j,k

FjH(j)Mj,k

(
1− rj,k

FjH(j)Mj,k

+
rj,k

FjH(j)Mj,k

log
rj,k

FjH(j)Mj,k

)
=
∑
j,k

FjH(j)Mj,k (1− Ej,k + Ej,k logEj,k) (4.27)
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Notice that the coefficients of Mj,k in RF1 are always nonnegative.

Finally, we calculate RF2. In this case, we use the optimized values of rj,k along

with the first-order approximation of log pj. This yields

−
∑
j

G(j) log pj = −
∑
j

G(j) log qj +
∑
j

(
G(j)

∑
k

Ej,kMj,k

)

−
∑
j

(
G(j)

FjH(j)

∑
k

FkH(k)Ek,jMk,j

)
.

Plugging this into RF2 gives us

RF2 = log〈F,H〉+
∑
j

G(j) log
G(j)

FjH(j)
(4.28)

+
∑
j

(
G(j)

∑
k

Ej,kMj,k

)
−
∑
j

(
G(j)

FjH(j)

∑
k

FkH(k)Ek,jMk,j

)
.

This gives a first-order approximation of C(H,G) given by (4.27) and (4.28),

which can be simplified further. Write C(H,G) = C0(H,G) + Z(H,G) where

C0(H,G) = log〈F,H〉+
∑
j

log
G(j)

FjH(j)

Z(H,G) =
∑
j,k

(
G(j)Ej,kMj,k −

(
G(j)FkH(k)

FjH(j)

)
Ek,jMk,j

)
+
∑
j,k

(FjH(j)Mj,k(1− Ej,k + Ej,k logEj,k))
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We can write the terms Z(H,G) =
∑

j,kMj,kZj,k where

Zj,k = FjH(j)(1− Ej,k + Ej,k logEj,k) +G(j)Ej,k −
G(k)FjH(j)

FkH(k)
Ej,k

= FjH(j)− FjH(j)Ej,k + FjH(j)Ej,k logEj,k +G(j)Ej,k −
G(k)FjH(j)

FkH(k)
Ej,k

= FjH(j)− FjH(j)Ej,k + FjH(j)Ej,k

(
−G(j)

FjH(j)
+

G(k)

FkH(k)

)
+G(j)Ej,k −

G(k)FjH(j)

FkH(k)
Ej,k

= FjH(j)(1− Ej,k).

Therefore, the formula for the cost function C(H,G) when H and G are interior

histograms is given by

C(H,G) = log〈F,H〉+
∑
j

G(j) log
G(j)

FjH(j)
+
∑
j,k

FjH(j)Mj,k(1− Ej,k) (4.29)

Mj,k = mQj,k

Ej,k = exp

(
−G(j)

FjH(j)
+

G(k)

FkH(k)

)
This formula is valid as long as the constraints on rj,k are indeed not saturated. The

nonsaturation inequality is given by

∑
k

Mj,k exp

(
G(k)

FkH(k)

)
< exp

(
G(j)

FjH(j)

)
for all j. (4.30)

This type of approximation will need more complicated but achievable extensions

to compute C(H,G) when H and G are boundary histograms with some frequen-

cies H(j) and/or G(k) equal to zero. Since we will focus on interior histograms,
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we will only consider the above formula. Since we used Stirling’s formula and im-

posed constraints on RF (H, r,G), the histograms H and G must satisfy the following

nonsaturation and boundary conditions, respectively:

∑
k

mQj,k exp

(
G(k)

FkH(k)

)
< exp

(
G(j)

FjH(j)

)
for all j, (4.31)

H(j), G(j) ≥ 50/N for all j ∈ Γ. (4.32)

4.4.2 Large deviations for random histogram trajectories

Now that we have an explicit form for the one-step cost function, we can state a

large deviations result for the random histogram trajectories. Let Ω(T ) = S1+T be

the set of all histograms sequences w = [w0 . . . wT ] of finite length T , and define the

path space Ω as the union of all the Ω(T ) for T ∈ N. The set Ω(T ) is a compact

metric space for the usual Euclidean distance in (Rg)T . The interior and the closure

of any subset A ⊂ Ω(T ) are denoted by Ao and Ā, respectively. For any histogram

trajectory w ∈ Ω, we will define the cost function λ(w, T ) ≥ 0 by the additive

formula

λ(w, T ) = C(w0, w1) + C(w1, w2) + . . .+ C(wT−1, wT ) (4.33)

which is a lower-semicontinuous function on each path space Ω(T ). Now that we

have an explicit formula for the one-step cost function given by (4.29), we can now

establish a large deviations principle and perform the key minimizations that appear

in the following two key theorems.

Theorem 4.4.3. For any set of paths A ⊂ Ω(T ), define the rate functional Λ(A) ≥ 0
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by the formula

Λ(A) = inf
w∈A

λ(w, T ).

Then the random trajectory of population histograms H = [H0H1 . . . HT ] verifies the

large deviations limit

Λ(Ao) ≤ lim inf
N→∞

1

N
log[ P (H ∈ A) ] ≤ lim sup

N→∞

1

N
log[ P (H ∈ A) ] ≤ −Λ(Ā).

In particular, whenever Λ(Ao) = Λ(Ā), one has

lim
N→∞

1

N
log[ P (H ∈ A) ] = −Λ(A).

The relation Λ(Ao) = Λ(A) = Λ(Ā) is always true when A has “thin boundary”, i.e.

when A and Ao have the same closure Ā, which is certainly the case when A is an

open set.

Intuitively, this says that for large classes of subsets A of the path space Ω and

for N large, we have P (H ∈ A) is roughly equivalent to exp(−NΛ(A)). Hence for

Λ(A) > 0 and large N, the events H ∈ A are rare events. The calculation of Λ(A),

which gives the exponential decay rate of these probabilities, is linked to the cost

function λ(w, T ) of a trajectory w. However, once the unique cost-minimizing path is

obtained, we get the following useful tube result well-documented in many situations

(see [2]).

Theorem 4.4.4. Within the space Ω(T ) of histogram trajectories, consider any

closed subset A having thin boundary such that Λ(A) > 0. Assume that there is

a unique cost minimizing path w∗ in A such that

λ(w∗, T ) = Λ(A) = inf
w∈A

λ(w, T ).
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Let U ⊂ Ω(T ) be any fixed tube of arbitrary small radius around this optimizing path

w∗, and let H be the random histogram trajectory [H0 . . . HT ]. Then, the conditional

probabilities P (H ∈ U | H ∈ A) must tend to 1 as population size N →∞.

For large N in the above theorem, the rare event (H ∈ A) can essentially be

realized only by histograms trajectories H which are quite close to the cost mini-

mizing trajectory w∗ in A. This is the basic mathematical reason why for a large

population size N , specific rare evolutionary events A can only be realized by popu-

lation evolutions following a narrowly defined path in the fitness landscape, namely

the cost minimizing path w∗ just defined. Furthermore, the preceding two theorems

allow one to answer an important question in many general settings: what is the

most likely transition pathway linking a fixed initial point to a desired target point?

We address this question in Section 5.2.2.
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Chapter 5

Applications of Large Deviations

Principles

In Chapter 4, we reviewed and established some large deviations principles in a

number of settings. However, once one establishes a large deviations principle that

is applicable to a specific stochastic system, what types of rare events would one

investigate? For these rare events, how would one go about finding the element that

minimizes the Cramer transform so that estimates can be made on the probabilities

of these rare events? The rare events on which we focus are transition pathways

linking a fixed initial point to a desired target state. Implicit in this transition

path problem is the time it takes to reach the target state. Therefore, applying the

large deviations principles we established involves minimizing the Cramer transform

(cost function) over all possible pathways where the initial and terminal points are

fixed and all possible times in which the system can reach the target. This double
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minimization problem yields a function of the initial and target points and is related

to the quasi-potential in the theory of large deviations of SDEs developed by Friedlin

and Wentzell [17], which is central to applying large deviations principles on long

timescales. Furthermore, the minimizing path gives the most likely transition and

time the system takes in order to reach the target state.

In this chapter, we will accomplish this double minimization for Gaussian diffu-

sions with delay, which yields a fully explicit formula for the minimizing path and

rate functional. For populations of E. Coli, we will state a theorem that mirrors

the Friedlin-Wentzell large deviations framework for SDEs which will allow us to

calculate most likely evolutionary trajectories linking an initial histogram to a target

histogram. We then perform this minimization using interior histograms.

5.1 Gaussian Diffusions with Delay

Recall that a Gaussian diffusion with delay Xt is a stochastic process that verifies the

linear delay SDE defined by (1.1). We showed that this process is indeed a Gaussian

process (Proposition 3.1.1). Once we center this process, we can apply Theorem 4.3.2

and Proposition 4.3.4 by minimizing the Cramer transform over a set of paths. Since

we are interested in finding most likely transition pathways f ∈ C([0, T ],Rd) such

that f(0) = p ∈ Rd and f(T ) = q ∈ Rd, the set of paths will be all possible paths with

these constraints. Furthermore, the Cramer transform in this setting is a quadratic

form so that we can use Lagrange multipliers. In this section, we will perform this

minimization, which will involve the process Zt, which is a centered version of Xt.
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Then, we will provide a probabilistic interpretation using a small tube around the

minimizing path.

5.1.1 Large deviation rate functional for Gaussian diffusions

with delay

Recall that Xt = m(t) + εZt denotes Gaussian diffusion with delay under study.

In this section we minimize the Cramer transform associated with Zt. For points

p, q ∈ Rd and time T > 0, define

Path(p, q;T ) =
{
f ∈ C([0, T ],Rd) : f(0) = p, f(T ) = q

}
.

Random paths of Xt lie in Path(p, q;T ). To study Zt, we must shift this space of

paths by the mean m(t). Define

C0([0, T ],Rd) =
{
f ∈ C([0, T ],Rd) : f(0) = 0

}
,

Path(0, q −m(T );T ) =
{
f ∈ C0([0, T ],Rd) : f(T ) = q −m(T )

}
.

We now minimize the Cramer transform λ associated with Zt over Path(0, q −

m(T );T ). The Cramer transform is linked to the covariance operator R of Zt by

λ(f) =
1

2
〈R−1f, f〉L2[0,T ]

for paths f ∈
√
R(L2[0, T ]). Since Path(0, q − m(T );T ) is determined by linear

constraints on f , we minimize the quadratic form λ(f) for f ∈ Path(0, q−m(T );T )

using Lagrange multiplier theory [28].
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For f ∈ C0([0, T ],Rd), define the Lagrangian

Lf,µ :=
1

2
〈R−1f, f〉+ µ · (f(T )− (q −m(T ))),

where · is the usual dot product in Rd and µ ∈ Rd is the Lagrange multiplier vector.

Setting the derivative DLf,µ(ϕ) for ϕ ∈ C0([0, T ],Rd) equal to zero, we have

DLf,µ(ϕ) = lim
∆→0

Lf+∆ϕ,µ − Lf,µ
∆

= 〈R−1f, ϕ〉+ µ · ϕ(T ) = 0,

yielding the condition

〈R−1f, ϕ〉 = −µ · ϕ(T ) = −µ · δT (ϕ).

Here δT denotes the Dirac mass at time T . The minimizing path g is therefore given

by

g = R(−µ · δT ). (5.1)

The right side of (5.1) may be expressed in terms of the covariance function ρ of Zt:

R(−µ · δT )(s) = −
∫ T

0

ρ(s, u)µ dδT (u) = −ρ(s, T )µ. (5.2)

Since g(T ) = q −m(T ), (5.2) implies

q −m(T ) = −ρ(T, T )µ,

so the Lagrange multiplier is given by

−µ = ρ(T, T )−1(q −m(T )).

The trajectory that minimizes the Cramer transform therefore takes the form

gT (s) = ρ(s, T )[ρ(T, T )−1(q −m(T ))] (0 6 s 6 T ),
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and has Cramer transform

λ(gT ) =
1

2
[ρ(T, T )−1(q −m(T ))] · [q −m(T )]. (5.3)

Notice that gT =
√
R(ĝ), where

ĝ(s) = k(s, T )[ρ(T, T )−1(q −m(T ))]

and k is the kernel defined by

(
√
Rf)(s) =

∫ T

0

k(s, u)f(u) du.

For the Gaussian diffusion with delay Xt = m(t)+εZt, the most likely path hT (s)

realizing X0 = p and XT = q is hence given by

hT (s) = m(s) + gT (s) = m(s) + ρ(s, T )[ρ(T, T )−1(q −m(T ))] (0 6 s 6 T )

(5.4)

and has energy

λ(hT ) =
1

2
[ρ(T, T )−1(q −m(T ))] · [q −m(T )]. (5.5)

Minimizing λ(hT ) over T produces the most likely time T of transition from

X0 = p to XT = q, the most likely transition path, and the associated energy. Now,

if we directly apply Theorem 4.3.2 to the set Path(p, q;T ), we would only get the

large deviations bounds given by (4.4) because Path(p, q;T ) has empty interior in

C([0, T ];Rd). However, if we place a small tube around the minimizing trajectory,

we will be in the more useful case where the large deviations limit exists. Below we

interpret most likely path in a precise probabilistic sense using this small tube.
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5.1.2 Probabilistic interpretation

For any path from p to q over time interval [0, T ] in Rd, the large deviations princi-

ple in Theorem 4.3.2 yields quantitative information about the probability that the

process Xt remains within a small tube of the given path over [0, T ]. To apply The-

orem 4.3.2, we first shift the given tube by subtracting the mean m(t) of Xt so that

we may work with the centered process εZt. Once the large deviations principle has

been applied to εZt, we then add m(t) to recover information about Xt. Crucially,

both the Cramer transform associated with Zt and the path that minimizes it are

independent of ε. The application of Theorem 4.3.2 proceeds as follows.

First assume q 6= m(T ). For any path f ∈ Path(0, q−m(T );T ) and small radius

r > 0, define the tube

Tube(f, r) =

{
ϕ ∈ C0([0, T ],Rd) : sup

06t6T
|ϕ(t)− f(t)| 6 r

}
.

Since Tube(f, r) is the closure of its interior in C0([0, T ],Rd), Theorem 4.3.2 gives

lim
ε→0

ε2 log(P(εZT ∈ Tube(f, r))) = −Λ(Tube(f, r)),

where ZT denotes the set of paths generated by Zt over [0, T ]. In particular, for the

path gT that minimizes the Cramer transform, we have

lim
ε→0

ε2 log(P(εZT ∈ Tube(gT , r))) = −Λ(Tube(gT , r)) = −λ(gT ).

In this sense, Tube(gT , r) is the most likely route of passage for εZt, and shifting

Tube(gT , r) by m(t) yields the most likely route of passage from p to q over [0, T ] for

Xt.
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Note that q = m(T ) is a special case. Here, Xt will remain within a small tube

around m(t) with probability converging to one as ε → 0. That is, the most likely

transition path from p to q over [0, T ] is simply the path of the mean in this case.

To effectively compute the most likely transition path from p to q for Xt, we have

implemented a numerical scheme in three steps:

• Solve several ODEs with delay to compute the mean path m(t) of Xt and the

covariance function ρ(s, t) of Zt.

• For fixed T, p, q, compute the most likely transition path h = hT from X0 = p

to XT = q, and its energy λ(hT ), as given by (5.4) and (5.5).

• Compute the optimal transition time Topt by minimizing λ(hT ) over all times

T > 0.

We explicitly describe these three steps in Section 6.1.1 and Section 6.1.2.

5.2 Genetic Evolution of E. Coli Populations

With the preceding tools, we will be able to answer a natural and important question

in the context of bacterial population evolution, namely how can one reconstitute

the most likely evolutionary path starting with a known initial histogram H and

reaching a known terminal histogram G after an unknown number T of daily cycles.

As we did in the case of Gaussian diffusions with delay, this can be accomplished by

minimizing the Cramer transform (cost function) over all evolutionary paths with
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initial and terminal histograms fixed. Recall that for a histogram trajectory w of

length T , the cost function λ(w, T ) is given explicitly as a sum of one-step costs.

For any two interior histograms, the one-step cost is given Theorem 4.4.2. In this

section, we will state a tube result for these optimal paths similar to the tube result

in the Gaussian case. Then, we numerically compute an expression for the cost-

minimizing trajectory using Lagrange multipliers and first-order Taylor expansions.

In doing so, we will show that cost-minimizing paths are completely determined by

their last two points.

5.2.1 Most likely evolution from initial to terminal histograms

The following tube theorem is essentially an application of Theorem 4.4.4 with the

set A being all paths of length T where the initial and terminal histograms are fixed.

Theorem 5.2.1. Fix any two population histograms H and G. Let A(H,G, T ) be

the set of all paths w ∈ Ω(T ) verifying w0 = H , wT = G , and wn 6= G for all

n < T . Assume that there is a unique path w∗ of finite length linking H to G at

minimal cost, and let T ∗ be the length of w∗. Hence w∗ ∈ A(H,G, T ∗) and verifies

λ(w∗, T ∗) = inf
T

inf
w∈A(H,G,T )

λ(w, T )

For any δ > 0 and T , and any path w ∈ Ω(T ), let U(w, δ) be the tube of radius δ

centered at w, and let QT (w) be the conditional probability

QT (w) = P{H ∈ U(w, δ) | H ∈ A(H,G, T )}

Let Q+ be the maximum of QT (w) over all T and all paths w ∈ Ω(T ). For any small

enough but fixed δ > 0, the difference between Q+ and QT ∗(w∗) then tends to 0 as
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the population size N → ∞. In other words, for N large enough , the most likely

random evolutionary path [H0H1 . . . ] linking H to G has T ∗ steps and is arbitrarily

close to the path w∗ linking H to G at minimal cost.

By the above theorem, we have that for large populations N , if an evolutionary

path from H to G is to occur over some length of time, there is a high probability

that this path will be very close to the optimal path w∗ and will have the same

length as w∗. Thus, we now focus on computing this most likely path w∗.

5.2.2 Numerical computation of cost minimizing histograms

trajectories

The numerical computation of cost-minimizing histogram trajectories linking two

given histograms is essential for concrete applications of Theorem 5.2.1 to potential

bacterial evolution scenarios. To solve this challenging computational problem, we

develop a fast numerical formula for generating minimizing trajectories in reverse

time. Using the formula for λ(w, T ) given by (4.33) and the one-step cost function

given in Theorem 4.4.2, the basic idea is to minimize a two-step cost function using

Lagrange multipliers for the case when the mutation rate m = 0. Using this “zero-

order” solution, we then use Lagrange multipliers and Taylor expansions in m to

obtain a numerical solution to the full minimization problem for small mutation

rates m ≤ 10−6. Once this solution is found, we can develop algorithms to generate

most likely trajectories in reverse time for a fixed initial histogram H and target

histogram G. In this section, we note that any statement involving the order of a
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term or solution refers to the mutation rate m.

Recall that the cost associated to an evolutionary trajectory w = [w0w1 . . . wT ]

up to day T is given by the function

λ(w, T ) =
T−1∑
j=0

C(wj, wj+1). (5.6)

Calculation of the Cramer set functional Λ(A) for a set of paths A requires a min-

imization of λ(w, T ) over all paths w ∈ A. If w∗ = [w∗0 w
∗
1 . . . ] is the minimizing

path in A, it is not necessarily true that C(w∗j , w
∗
j+1) is a minimizer of C(x, y) over

all histograms x ∈ S◦ for a fixed histogram y ∈ S◦. However, we do have that the

geodesic segment [w∗j w
∗
j+1w

∗
j+2] of w∗ is a minimizer of the function C(x, y)+C(y, z)

over all histograms y ∈ S◦ for fixed histograms x, z ∈ S◦.

With the above motivation, given a geodesic segment [x y z] where x, z ∈ S◦ are

fixed interior histograms, we compute

min
y∈S◦

C(x, y) + C(y, z) subject to
g∑
j=1

y(j) = 1. (5.7)

We use Lagrange multipliers to complete the minimization. Let L ∈ R be the

Lagrange multiplier associated to the constraint above. We then solve the system of

g equations

∂

∂y(j)
C(x, y) +

∂

∂y(j)
C(y, z) + L = 0. (5.8)
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Calculating the partial derivatives yields

∂

∂y(j)
C(x, y) = 1 + log

y(j)

Fjx(j)
+m

∑
k

(
Qj,kEj,k −

Fkx(k)

Fjx(j)
Qk,jEk,j

)
(5.9)

∂

∂y(j)
C(y, z) =

Fj
〈F, y〉

− z(j)

y(j)
+mFj

∑
k

Qj,k (5.10)

−
(
Fj +

z(j)

y(j)

)
m
∑
k

Qj,kÊj,k −
z(j)

Fjy(j)2
m
∑
k

Fky(k)Qk,jÊk,j

Ej,k = exp

(
− y(j)

Fjx(j)
+

y(k)

Fkx(k)

)
Êj,k = exp

(
− z(j)

Fjy(j)
+

z(k)

Fky(k)

)
In both partial derivatives given by (5.9) and (5.10), we have terms of zero order

and terms of order at most m = 10−6. Since the mutation rate is small, we will solve

the system using a first-order approximation by first solving the case when there are

no mutations (m = 0) and then more generally for small m using the zero-order

solution. Again, these approximations are valid since m is small by the implicit

function theorem.

We first assume that m = 0. This implies that

∂

∂y(j)
C(x, y) = 1 + log

y(j)

Fjx(j)

∂

∂y(j)
C(y, z) =

Fj
〈F, y〉

− z(j)

y(j)
.

Therefore, the system (5.8) implies

1 + log
y(j)

Fjx(j)
+

Fj
〈F, y〉

− z(j)

y(j)
+ L = 0.
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Notice that this equation can be explicitly solved for x(j). This gives us

x(j) = exp(L)Kj

Kj =
y(j)

Fj
exp

(
Fj
〈F, y〉

− z(j)

y(j)

)
Now, x is a histogram, so

∑g
j=1 x(j) = 1. This yields

1 = exp(L)

g∑
j=1

Kj.

Therefore, the Lagrange multiplier must satisfy

exp(L) =
1∑g

j=1 Kj

.

Hence, the histogram x must satify the equation

x(j) =
Kj∑g
l=1Kl

(5.11)

Kj =
y(j)

Fj
exp

(
Fj
〈F, y〉

− z(j)

y(j)

)
.

For each j, we call the solution given by (5.11) the zero-order solution.

More generally, let the mutation rate m be at most order 10−6. The system (5.8)

is now implicit and highly nonlinear so that an explicit solution in terms of xj is

not possible. Let x(0)(j) denote the zero-order solution given by (5.11). Write the

first-order approximation of the solution x(j) as x(j) = x(0)(j)(1 +Wj) where Wj is

a linear combination of all the terms of order Mj,k in the system (5.8). In this case,

the condition
∑g

j=1 x(j) = 1 implies that
∑g

j=1 x
(0)(j)Wj = 0. Let L̂ be a small,

first-order modification of the Lagrange multiplier L. We want to solve the system

log
Fjx(j)

y(j)
= L+ L̂+Bj +Hj
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where

Bj =
Fj
〈F, y〉

− z(j)

y(j)

Hj = Fj
∑
k

mQj,k −
(
Fj +

z(j)

y(j)

)∑
k

Êj,kmQj,k −
z(j)

Fjy(j)2

∑
k

FkykmQk,jÊk,j.

Using a first-order approximation, we then have that

log
Fjx(j)

y(j)
= log

Fjx
(0)(j)

y(j)
+Wj

= L+Bj +Wj.

This is equivalent to Wj + L̂+Hj. Let H = (H1, H2, . . . , Hg) be the vector of terms

Hj. Our imposed condition transforms to

0 =

g∑
j=1

x(0)(j)Wj = L̂+

g∑
j=1

x(0)(j)Hj

so that L̂ = −〈x(0), H〉 andWj = Hj−〈x(0), H〉. Finally, the first-order approximation

of the histogram x is given by

x(j) = (1− 〈x(0), H〉)x(0)(j) + x(0)(j)Hj (5.12)

Hj = Fjm
∑
k

Qj,k −
(
Fj +

z(j)

y(j)

)
m
∑
k

Êj,kQj,k −
z(j)

Fjy(j)2
m
∑
k

FkykQk,jÊk,j

Êj,k = exp

(
− z(j)

Fjy(j)
+

z(k)

Fky(k)

)
.

The above calculations have shown a condition that all cost-minimizing paths must

satisfy, which we informally present in the following theorem.

Theorem 5.2.2. If w ∈ Ω(T ) is the cost minimizing path such that w0 and wT

are fixed, then the histograms in the geodesic segment [wn−2wn−1wn] must verify
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the recurrence relation given by (5.12) for all 2 ≤ n ≤ T. Consequently, the cost

minimizing histogram paths w where wk ∈ S◦ for 1 ≤ k ≤ T − 1 are completely

determined by the last two points wT−1 and wT .

We now have an explicit formula to generate most likely evolutionary trajectories.

In addition, we have a condition in which all most likely paths must obey. Notice

that this condition is dependent on the last two points. With a desired fixed target,

we can then generate optimal trajectories by essentially varying the penultimate

point and choosing the trajectory of least cost. The numerical implementation of

this method, called reverse shooting, is fully described in Section 6.2.
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Chapter 6

Numerical Methods for Most Likely

Trajectories

In Chapter 5, we presented explicit calculations and formulas in minimizing the

Cramer transform for Gaussian diffusions with delay and stochastic evolution of

bacterial populations. For Gaussian diffusions with delay, the optimal path, given

by (5.4), is written explicilty as a function of the mean m(t) of Xt and the covari-

ance ρ(s, t) of Zt. Consequently, the Cramer transform is also a function of these two

statistical meaures. The mean and covariance verify the delay ODEs given by (3.2)

and (3.5), respectively. The delay ODE for the covariance contains a nonhomoge-

neous term which verifies the delay ODE (3.9). Therefore, computing most likely

transition pathways for Gaussian diffusions with delay reduces to solving three de-

lay ODEs. For bacterial populations of E. Coli, we have a condition that all most

likely trajectories must satisfy for fixed terminal and penultimate histograms, which
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is given by (5.12). This condition is highly dependent on the penultimate point.

In this chapter, we will describe the numerical solution of the three relevant delay

ODEs for Gaussian diffusions with delay. We then explain how we numerically min-

imize the resulting Cramer transform. Then, we will describe the reverse shooting

method used to generate most likely evolutionary trajectories linking an initial his-

togram to a desired target histogram. In doing so, we will show how we can choose

sensible penultimate points that result in generating “good” trajectories by providing

numerical evidence.

6.1 Most likely transitions for Gaussian diffusions

with delay

With the most likely transition pathway being expressed a function of the mean

and covariance, we need only to numerically simulate these delay ODEs. Recall

that in Section 3.1.4 and Section 3.1.5, the analytical solution of the mean m(t) and

covariance ρ(s, t) can be found using a step-by-step method. In this method, we

reduced the delay ODEs to a sequence of nonhomogeneous ODEs iteratively solved

on intervals of length τ where the delay terms are known. Consequently, we can use

standard numerical ODE techniques to simulate these equations. We describe the

technique in detail below. Then, we will explain how we can numerically minimize

the Cramer transform once these delay ODEs are solved numerically.
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6.1.1 Numerical solution of three delay ODEs

Each delay ODE of interest here is iteratively solved on the time intervals Jk = [(k−

1)τ, kτ ] for k = 1, 2, . . . (1+[T/τ ]). For each k, this amounts to solving numerically a

linear ODE with known right-hand side. For this, we use a backward Euler scheme,

which is known to be stable for equations of this form [5, 19]. To compute m(t), we

discretize [0, T ] into subintervals of equal length ∆t = τ/N . Backward Euler is given

by

m(t)−m(t−∆t) = [a+Bm(t) + Cm(t− τ)]∆t.

which yields the recursive equation

m(t) = (I −∆tB)−1m(t−∆t) + ∆t(I −∆tB)−1[a+ Cm(t− τ)].

The initial history of the mean is used to numerically compute the solution m(t) =

m1(t) on the initial interval J1. To numerically generate the solution m(t) = mk(t)

on Jk, we proceed by iteration on k, using the discretized expressions just stated

above. This yields a full numerical approximation of m(t) on [0, T ]. We apply a

completely similar strategy to compute for each s the function t→ φs(t) as defined

by (3.11). However both s and t will be constrained to belong to the finite grid

Grid(N) = {jτ/N : j = 1, . . . ,M and M = N(1 + bT/τc)} .

After the computation of φs(t), we generate the F (s, t) values for s and t in Grid(N)

by the explicit formula F (s, t) = φs(t) − ΣH(s − t) where H(s − t) is a Heaviside

function.
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We then proceed to compute ρ(s, t) for s and t in Grid(N). For each fixed t

in Grid(N), the Backward Euler discretization of the delay ODE verified by the

function s→ ρ(s, t) yields the recursive relation

ρ(s, t) = (I −∆sB)−1ρ(s−∆s, t) + ∆s(I −∆sB)−1[Cρ(s− τ, t) + ΣF (s, t)] (6.1)

where ∆s = τ/N. The initial values ρ(s, t) = 0 for s ∈ [−τ, 0] and the recursive

relation (6.1) enable the computation of ρ(s, t) for s ∈ J1. Keeping t fixed, one then

uses (6.1) as above and the values of ρ(·, t) on Jk to compute the values of ρ(·, t) on

Jk+1. Repeating this operation for each t in Grid(N) finally provides ρ(s, t) for s and

t in Grid(N).

6.1.2 Numerical minimization of the Cramer transform for

Gaussian diffusions with delay

Fix T > 0. For the Gaussian diffusion with delay Xt, the most likely transition path

h from X0 = p to XT = q and its energy λh(T ) have been explicitly expressed in

terms of the functions m(t) and ρ(s, t) (see (5.4) and (5.5)). Plugging into these

two formulas the values of m(t) and ρ(s, t) numerically computed for s and t in

Grid(N) immediately provides numerical approximations of h(s) for s in Grid(N)

and of λh(T ) for a fixed terminal time T .

To compute the most likely time at which Xt will reach q, whenever this rare

event is realized, we have to minimize u(T ) = λh(T ) in T . So we select a large

terminal time Tlarge, and we numerically minimize the function u(T ) on the interval

[0, Tlarge]. If on that time interval u(T ) exhibits an actual minimum at Topt, this gives
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us an approximate most likely transition time Topt. Otherwise, we set Topt =∞.

6.1.3 Exit path from nominally stable stationary states

As ε → 0, the limit dynamics of Xt is a deterministic dynamic system xt driven by

an obvious first-order ODE with delay. Let p be a stable stationary state of xt, and

let V be a small neighborhood of p. Determining for small ε the most likely path

followed by Xt to exit from V when X0 = p is a problem of practical interest in

many contexts. Our numerical computation of the most likely transition path from

X0 = p to XT = q with q on the boundary of V will enable us to numerically solve

these types of exit problems. We illustrate this approach with the detailed study of

a specific dynamical system from biochemistry, which is given in Section 2.2.

6.2 Most likely evolutionary trajectories for E. Coli

populations

In light of Theorem 5.2.1, we are interested in getting probabilistic estimates for

the set A(H,G, T ), which is the set of all paths w such that w0 = H,wT = G, and

wn 6= G for all n < T. We can construct paths iteratively in reverse by starting

at the desired target histogram G. The histogram of the preceding day, called the

penultimate point, is arbitrary. For each choice of penultimate point, the remainder

of the trajectory is uniquely generated by (5.12).
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Two issues immediately arise in this setup however. First, for choice of penulti-

mate point y, we seldom have that the solution (5.12) will generate a reverse tra-

jectory that reaches the initial histogram exactly. Second, the choice of penultimate

point y is arbitrary as there is currently no way to find the penultimate point result-

ing in the minimizing trajectory. This creates many problems in creating efficient

algorithms because solving the minimization problem is related to solving Hamilton-

Jacobi equations, which is computationally heavy even in a moderately-sized number

of dimensions.

Theoretically, one could discretize the space of histograms S and simply let every

point in S be a penultimate point. For each penultimate point, a reverse trajectory

is formed and a cost is associated to it. These trajectories may or may not reach

the initial histogram. For the completed trajectories, we can associate a cost to it.

For the incomplete trajectories, one could design a method to essentially “complete”

these trajectories and then obtain the costs of these new trajectories. Finally, the

trajectory of least cost would be chosen.

Unfortunately, even though this method is computationally viable in the case

g = 3, it becomes incredibly inefficient for g ≥ 4. Therefore, we seek to design efficient

reverse shooting methods which only a small subset of S is considered as possible

penultimate points and incomplete trajectories are “completed” in a reasonable way.

We do so in two explicit steps: find the first-stage rate minimizing trajectory and

then find the multi-stage rate-minimizing trajectory. Once we explain the general

method, we use the case when g = 3 to determine which penultimate points are

reasonable to consider when generating reverse trajectories.
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6.2.1 First-stage rate-minimizing trajectory

We form an initial minimizing trajectory by implementing the following steps.

Discretize space of histograms. We begin by generating a discretized state space

of histograms HIST for a chosen discretization d where for any two distinct his-

tograms H,G ∈ HIST , we have that for all genotypes j = 1, 2, . . . , g

|H(j)−G(j)| = njd

for some positive integer nj.

Form mean trajectory and starting zone. For the fixed initial histogram H,

we construct the unique mean trajectory interatively using Theorem 3.2.2. Call this

trajectory mtr, which terminates at some time L. The cost associated to this tra-

jectory is 0. For each point mtrk on the trajectory mtr with k = 0, 1, . . . , L, let Vk

be a small neighborhood of mtrk. We define the starting zone Winit = ∪kVk.

Choose set of penultimate points. Possible penultimate points will be chosen

from a subset PEN ⊂ HIST. When calculating optimal trajectories leading to fix-

ation of a certain genotype, the region of interest in HIST is generally classified by

the sets of histograms which have the required genotype frequency greater than some

threshold, which we denote FTH. In realistic applications, FTH is generally taken

to be 0.95 or 0.9. In our numerical examples, we take FTH = 0.95.

Iteratively reconstruct reverse trajectories and calculate costs. For each

histogram hn−1 ∈ PEN , we reconstruct the geodesic segment [hn hn−1 hn−2] us-

ing (5.12) to find hn−2 where hn = G, the desired target histogram. We can then

continue iteratively in reverse until a genotype reaches the boundary. Recall that
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the approximation of the one step cost function relied on Stirling’s formula, which

is only valid if h(j) ≥ ε for all genotypes j. Furthermore, the minimization over

mutation frequencies in order to obtain the one step cost assumed nonsaturation of

the constraints. Therefore, the iterative procedure must stop if there is a time k such

that hk(j) < ε for some genotype j or the nonsaturation condition (4.31) fails. This

boundary tolerance is given by ε = 50/N.We denote the set of trajectories formed by

the penultimate points in PEN by TRPEN . Therefore, the number of trajectories in

TRPEN is equal to the number of penultimate points in PEN. For every trajectory

tr ∈ TRPEN , a cost λ(tr) given by (5.6) is attached to it.

Separate complete trajectories from incomplete trajectories. We want to

isolate trajectories that reach the initial histogram. It is possible no trajectories in

TRPEN accomplish this. Therefore, let TRcomp be the set of complete trajectories,

which we categorize as the set of trajectories that begin in the starting zone Winit.

The remaining trajectories are classified as incomplete and collected in the set TRinc.

Complete the incomplete trajectories. For each incomplete trajectory, we form

a complete trajectory by concatenating a segment of the complete trajectory with

the mean trajectory, which is done for each tr ∈ TRinc as follows:

1. For every point trk on the incomplete trajectory which approximately reaches

the boundary at time l, compute the one-step cost C(mtrj, trk) from all points

on the mean trajectory mtr to the fixed point trk, and find the point of least

one-step cost. This represents the optimal jump from the mean trajectory to

the point trk for each k = 0, 1, . . . , l. Call this point mjk for jk = 0, 1, . . . , l.

2. Now, we find the minimum one-step cost of the costs in step (1). That is, we
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find

mink=1,...,lC(trk,mtrjk).

This gives an optimal point to jump from the mean to the incomplete trajectory

tr, call it trK . The cost of this jump is given as C(trK ,mtrjK ).

3. A new complete trajectory is formed by concatenating the partial trajectory

[mtr0, . . . ,mtrjK ] with the partial trajectory [trK , . . . , trl]. Therefore, this tra-

jectory takes the form

trcomp = [mtr0, . . . ,mtrjK , trK , . . . , trl].

The cost of this trajectory is given by

λ(trcomp) = C(mtrjK , trK) +
l−1∑
j=K

C(trj, trj+1).

These new complete trajectories are added to the set of completed trajectories TRcomp

since they now start at the initial histogram H. We save the set of all incomplete

trajectories TRinc to be used in the next stage.

Find minimal cost trajectory and discard costly trajectories. In the set

TRcomp, we find the trajectory of least cost at this stage, call it λopt. Any trajectory

in the set TRinc or TRcomp whose associated cost exceeds λopt is discarded. If the set

of incomplete trajectories TRinc is empty after discarding the costly trajectories, we

are done and have obtained an optimal trajectory starting at the histogram H and

ending at the target histogram G. Otherwise, we move on to find a multi-stage rate

minimizing trajectory.

96



6.2.2 Multi-stage Rate Minimizing Trajectory

At this stage, we have a first-stage rate minimizing trajectory in TRcomp with some

cost λopt.We now need to sift through the remaining trajectories in TRinc to generate

multi-stage rate minimizing trajectories. For each incomplete trajectory tr ∈ TRinc

written as tr = [trk, trk+1, . . . , G] where trk is a histogram close to the boundary

where the boundary tolerance is given by ε = 50/N , we treat trk at the new target

point, call it Htar. We then form a new set of penultimate points PENnew ⊂ HIST

in order to generate new reverse trajectories stemming from Htar. We then repeat

the method from the previous section to get a new set of complete and incomplete

trajectories. If there is a new complete trajectory trnew whose cost λnew < λopt, this

becomes the new temporary optimal trajectory, and we replace λopt with the optimal

cost λnew. We continue this process until there are no more incomplete trajectories.

The final optimal evolutionary trajectory is called the multi-stage rate minimizing

trajectory.

In summary, generating optimal evolutionary trajectories linking an intial his-

togram H to a target histogram G can be done using the following steps:

1. Select a desired initial histogram H, target histogram G, and discretization

level d. Generate the state space HIST using d.

2. Generate the mean trajectory mtr starting at H using Theorem 3.2.2, and

select the starting zoneWinit by placing small neighborhoods around each point

on mtr.
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3. Choose a set of penultimate points PEN ⊂ HIST. Generate the set of re-

verse trajectories TRPEN using the penultimate points in PEN. For each

tr ∈ TRPEN , calculate the corresponding cost λ(tr).

4. Trajectories that reach the starting zone Winit at some reverse iteration is

placed in the set of completed trajectories TRcomp. The remaining trajectories

are incomplete and gathered in the set TRinc.

5. For each tr ∈ TRinc, form a complete trajectory by concatenating the mean

mtr with a segment of tr at the optimal jump point from mtr to tr. Add these

complete trajectories to TRcomp. Keep the original incomplete trajectories in

TRinc.

6. From the set TRcomp, find the trajectory of least cost, say λopt.. This gives

a first-stage rate minimizing trajectory. Delete any complete or incomplete

trajectory whose cost exceeds λopt.

7. Each reverse trajectory in TRinc was terminated at a histogram that ap-

proached the boundary. These points TAR become new target points. For

each new target Gnew ∈ TAR, repeat steps (3)-(6).

8. If a new complete trajectory emerges with cost lower than λopt, this trajectory

becomes the new rate-minimizing trajectory with updated optimal cost λopt.

9. Repeat until all trajectories are complete or all incomplete trajectories have

cost higher than λopt. This give a multi-stage rate-minimizing trajectory from

H to G with optimal cost λopt.
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6.2.3 Numerical Challenges

In the reverse shooting method, the discretization level d and choice of penultimate

points PEN become key factors in finding rate-minimizing trajectories efficiently.

In particular, the size of HIST using a discretization d is of order (1/d)g−1. For

example, if we have 3 genotypes (g = 3) and use a discretization d = 0.002, the

state space HIST contains 125, 751 histograms. In the case of three genotypes, it is

possible to let PEN be the entire set of HIST while excluding those histograms near

the boundary. In fact, numerical simulations have shown that the multi-stage step

is not necessary when g = 3; that is, all rate-minimizing trajectories are first-stage

rate-minimizing trajectories. However, this method quickly becomes infeasible when

we move to four genotypes (g = 4). For instance, if d = 0.005, the state space HIST

has 1, 373, 701 histograms. Therefore, letting PEN be nearly the entirety of HIST

is inefficient and causes major memory issues.

With these difficulties in mind, we can first improve the computational scheme

by implementing a multi-scale method in obtaining an optimal trajectory. To do so,

one would choose a coarse discretization in order to zones of promising penultimate

points that may yield optimal trajectories. Near these penultimate points, one could

then choose a finer discretization near these penultimate points in order to compute

an overall optimal trajectory. Our conjectures that we have stated further aid in

identifying these promising zones.

We can also improve computation times in the multi-stage method by picking

“smart” penultimate points. We will work in the case of g = 3 to illustrate this since
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letting PEN be all histograms away from the boundary is computationally feasible.

When comparing one-steps costs from the penultimate point to the target to the

actual cost of the rate-minimizing trajectory, many one-step costs are already too

costly to possibly yield an optimal trajectory. This greatly reduces the number of

penultimate points that may actually create optimal trajectories. We can link the

choice of penultimate points to the norm of the gradient ‖∇yC(y,G)‖ with respect to

the penultimate point y for a fixed target G. The cost derivatives are given by (5.9)

and (5.10). Penultimate points that result in costly trajectories tend to be points in

which this norm is relatively large. We will use numerical simulations to illustrate

these claims.

We can further improve computational efficiency by using discretization levels of

adaptive size for any given target G. This can again be linked to the norm of the

gradient ‖∇yC(y,G)‖ with respect to the penultimate point y. As one would expect,

a finer discretization used in the multi-stage approach will reduce the optimal cost

λopt. However, after a certain level, this reduction stabilizes. Therefore, choosing a

very fine discretization will increase computation times greatly while not providing

a substantially more accurate estimate of λopt. We then establish a method to gen-

erate a set of penultimate points roughly centered at the penultimate point which

minimizes ‖∇yC(y,G)‖ , which can be found independent of the discretization level.

Finally, we can improve the computational scheme by first creating an initial com-

plete trajectory trinit with associated cost λinit before generating reverse trajectories

for each penultimate point in PEN. The computation of one complete trajectory with

associated cost is computationally cheap. We can then use this complete trajectory
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and associated cost to delete penultimate points whose one-step costs are larger than

λinit. One could create this trajectory by simply picking any single penultimate point.

However, there is a way to choose a penultimate point independent of the discretiza-

tion d which is a point which roughly minimizes ‖∇yC(y,G)‖ . This trajectory may

not result in a globally optimal trajectory, but it does provide a sensible initial tra-

jectory to help further reduce the number of penultimate points to consider. We

can also use this penultimate point to generate the set PEN of sensible possible

penultimate points.

We can summarize these claims in the following three conjectures. Recall that

we are assuming all histograms are interior histograms.

Conjecture 6.2.1. For any given target G, the best discretization for the choice of

penultimate point will be of adaptive size; namely, the discretization cell centered

around a penultimate point y should be of size c/g(y,G) where

g(y,G) = ‖∇yC(y,G)‖

C(y,G) = one-step cost from y to G

c = fixed proportionality constant

Conjecture 6.2.2. WhenN is very large (108), m is very small (10−8), and G is close

to the boundary (G(j) ≈ 100/N for at least one genotype j), the function g(y, Z)

will tend to large values when the penultimate point y is close to the boundary.

Consequently, in asymptotic situations with N → ∞ and m → 0, a trajectory that

bounces back from the boundary will have a large cost and cannot be optimal.
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Conjecture 6.2.3. To generate an initial trajectory trint independent of discretiza-

tion d for a fixed target histogram G = (G1, . . . , Gg), one can choose penultimate

point y to be the solution to the linear system



(
1− 1

G1

)
F1 F2 F3 . . . Fg

F1

(
1− 1

G2

)
F2 F3 . . . Fg

...
...

...
...

...

F1 F2 . . .
(

1− 1
Gg−1

)
Fg−1 Fg

1 1 1 . . . 1





y1

y2

y3

...

yg−1

yg


=



0

0

0

...

0

1


. (6.2)

The solution y∗ is a histogram which approximately minimizes the function g(y,G)

so that g(y∗, G) is roughly of order m. Furthermore, the solution y∗ of this system

can then be used in 6.2.1 to create a set of penultimate points in the following way:

A point y is considered a possible penultimate point if c · g(y,G) ≤ g(y∗, G) where c

is a fixed proportionality constant with 0 < c < 1.

In order to provide evidence for these claims, we look at the length of the optimal

and mean trajectories, cost of the optimal trajectories, and gradient norms of the

penultimate points resulting in optimal trajectories. In addition, we look for any

optimal trajectories that bounce off the boundary or reach the initial zone directly

by the reverse recursive formula. We provide evidence for these conjectures along

with the above attributes of the optimal trajectories in Section 6.3.

For Conjectures 6.2.1 and 6.2.3, we calculated numerous examples using different

target histograms and initial histograms and analyze these trajectories along with

the function g(y,G) and the one-step cost C(y,G). We found that no trajectories
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bounced off the boundary and that optimal trajectories were generated from penul-

timate points that were close the the minimum of g(y,G). We also compared our

method to the exhaustive method which uses all points as possible penultimate points

in order to show the significant save in computation time. Finally, using these ex-

amples and partitioning our space of histograms into quantiles based on the function

1/g(y,G), we were able to find a reasonable interval of proportionality constants to

use in Conjecture 6.2.3. We used a quantile percentage of 0.025 and generated most

likely trajectories for various initial histograms. We found that we can actually use

smaller proportionality constants to generate a set of penultimate points since only

a small subset of the quantile sets could reasonably generate optimal trajectories.

The proportionality constant can be chosen (by the user) so that 0.00001 ≤ c ≤ 0.01

depending on the initial histogram since g(y∗, G) is roughly of order m.

For Conjecture 6.2.2, we used our method to generate most likely trajectories for

1030 targets using three separate parameter sets. In all three simulations, we found

that no trajectories bounced off the boundary. Furthermore, even though we used

a large amount of targets, the trajectories for each parameter set were generated in

approximately an hour. To further solidify this conjecture, we perform an analysis

of the function g(y,G) when both the target and penultimate points are near the

boundary, which showed that the gradient norm is large.

At the end of Section 6.3, we finally use our three conjectures to generate most

likely trajectories for four genotypes using three examples. We found that the method

was very efficient even though we increased the dimension of the problem. Further-

more, none of these trajectories bounced off the boundary and penultimate points
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that generated optimal trajectories were close the the approximate minimum of

g(y,G). We end the section by providing a very informal analysis and prediction

for the case when g = 8.

6.3 Analysis Using Three Genotypes

In this section, we will take numerous examples using three genotypes in order to

test our conjectures. We will first analyze the set of penultimate points. Then, we

will explain how to obtain a sensible initial trajectory using a penultimate point that

roughly minimizes the function g(y,G). Next, we will demonstrate an accelerated

method in obtaining most likely trajectories using various targets and initial points.

We will then combine our analysis to give evidence that trajectories that bounce off

the boundary are not optimal. We end the section by directly simulating the system.

6.3.1 Choosing the set PEN

To illustrate how to choose good penultimate points, we will take a specific example.

The parameters for our system are given as follows:
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N = 106 M = mQ

F1 = 200 d = 0.002

F2 = 2001.08 FTH = 0.95

F3 = 2001.12 ε = 50/N = 5× 10−5

m = 10−6 H = (1− 100/N, 50/N, 50/N)

Q =


0 1/2 1/2

1/2 0 1/2

1/2 1/2 0

 G = (0.1, 0.45, 0.45), (0.05, 0.9, 0.05)

Recall that the gradient of the one-step cost C(y, z) with respect to y for a fixed z

is given by

∂

∂yn
C(y, z) =

Fn
〈F, y〉

− zn
yn

+ Fn
∑
k

Mn,k

−
(
Fn +

zn
yn

)∑
k

Mn,kÊn,k −
zn
Fny2

n

∑
k

FkykMk,nÊk,n

Ên,k = exp

(
− zn
Fnyn

+
zk
Fkyk

)
.

We investigate 1/g(y,G) for the targets G given above where g(y,G) is the norm of

the gradient with respect to y. We accomplish this by reordering the values 1/g(y,G)

into quantiles and investigate the penultimate points in each quantile set. We can

then compare the penultimate points making up the quantile sets to the penultimate

point that resulted in the optimal trajectory. This will help to greatly reduce the

penultimate points we consider when generating optimal trajectories. This will also
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give evidence to why choosing penultimate points near the boundary will yield costly

trajectories.

For these targets, we will calculate quantile values and corresponding quantile

sets using the percentage p = 1/40 = 0.025. Denote the quantile values qj with

1 ≤ j ≤ 39 and by convention q0 = 0 and q40 = 1. Rearrange the values 1/g(y,G)

into bins of the form Quantk where

Quantk = {x : qk < 1/g(y, Z) < qk+1}

for 0 ≤ k ≤ 39. Notice that Quant0 corresponds to penultimate points in which

1/g(y,G) is small, meaning that g(y,G) is large. Similarly, Quant39 corresponds to

penultimate points in which 1/g(y,G) is large, meaning that g(y,G) is small. Since

we would like to compare the one-step cost to the function 1/g(y,G), we want to

keep track of the values on the function on these sets. Thus, define the sets Ck and

Gradk where

Ck = {C(y,G) : y ∈ Quantk}

Gradk = {1/g(y,G) : y ∈ Quantk} .

Using this reordering, we will focus on the sets Quant0 and Quant39.

Target Point G = (0.1, 0.45, 0.45)

Recall that when finding the optimal trajectory, we first create an initial trajectory

using as penultimate point the solution to 6.2. In this case, the trajectory using this

point yielded the optimal trajectory, which is shown in Figure 6.5. In fact, the one-

step cost C(y,G) for all penultimate points was already more costly than this initial
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(a) (b)

Figure 6.1: The cost surface C(y,G) and gradient norm surface g(y,G) for the target
G = (0.1, 0.45, 0.45).

trajectory. Figures 6.1-6.4 investigate the behavior of the one step cost C(y,G) and

g(y,G) in order to see which penultimate points yield possible optimal trajectories.

In Figure 6.1, we have the two full surfaces of the one-step cost C(y,G) and

g(y,G) as a function of the penultimate point y for this fixed target. The global

minimum of C(y,G) is 1.22×10−16, and the global minimum of g(y,G) is 4.27×10−6.

These values both occur at the penultimate point (0.158, 0.465, 0.377), which is the

solution to the system (6.2). In (6.1a) and (6.1b), notice the large increase in these

surfaces near the boundary, in particular, the boundary points near the target G.

These penultimate points are already becoming too costly to yield a possible optimal

trajectory.

In Figure 6.2, we have the surfaces of C(y,G) and g(y,G) on the uppermost

quantile Quant39. Even on the set Quant39 where the norm is relatively small, we

see large increases in the one-step cost and function g(y,G) as we move away from

the point where the norm is approximately minimized.
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Figure 6.2: The surfaces C(y,G) and g(y,G) on the uppermost quantile Quant39.
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Figure 6.3: The two quantile sets Quant0 and Quant1 given as the blue points. The
red dotted line is the boundary.

In Figure 6.3, we have the quantile sets in which the gradient is large. Noticed that

these sets are comprised of points near the boundary. This shows that penultimate

points near the boundary are too costly to yield optimal trajectories.

In Figure 6.4, we let every point away from the boundary in the discretized

space HIST be possible penultimate points. We then generated a trajectory for

each point and calculated its corresponding cost. The figure shows that penultimate
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Figure 6.4: The trajectory cost surface as a function of the penultimate point.

points relatively close to the target and away from the boundary yield trajectories

with low costs. These represent trajectories that have the best chance at yielding

optimal trajectories.

In Figure 6.5, the optimal trajectory has cost 2.17 × 10−7 whose penultimate

point is given by the solution to the system (6.2). Notice that the magenta set is

roughly a disc centered at optimal penultimate point with radius 0.0998. This gives

some motivation to why we consider penultimate points near the solution to the

system (6.2). These points have relatively small gradient norms and one-step costs.

Target Point G = (0.05, 0.9, 0.05)

In this case the optimal trajectory was formed from a penultimate point in the dis-

cretized space HIST , not the solution to (6.2). This initial trajectory did reduce the

number of possible penultimate points from approximately 125, 000 to approximately

3300. However, the optimal penultimate point was close to the solution of (6.2) and

also fell in the uppermost quantile Quant39. Figures 6.6-6.9 show that even though
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Figure 6.5: The optimal trajectory for the target point G = (0.1, 0.45, 0.45). The blue
trajectory is the optimal trajectory. The black trajectory is the mean. The magenta
set is the set of penultimate points in Quant39. The red dotted line represents the
boundary.

G is close to a corner, the optimal trajectory did not bounce off the boundary, and

the gradient norm of the points close to the boundary was large.

In Figure 6.6, we have the two full surfaces of the one-step cost C(y,G) and g(y,G)

as a function of the penultimate point y for this fixed target. The global minimum

of C(y,G) is approximately 0, and the global maximum of g(y,G) is 1.5 × 10−5.

These values both occur at the penultimate point (0.0751, 0.8851, 0.0398), which is

the solution to the system (6.2). In this case, notice the target G is relatively close

to a corner. Notice the increases in these surfaces as we move away from the target,

especially close to the boundary. Since the target is relatively close to a corner, it

is not yet evident if boundary points near the target can be considered as possible

penultimate points. This will be studied further using quantiles.

In Figure 6.7, we see that even on Quant39, the cost and gradient norms begin

increasing very quickly near the boundary. This again suggests that even though the
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Figure 6.6: The cost surface C(y,G) and gradient norm surface g(y,G) for the target
G = (0.05, 0.9, 0.05).

target is relatively close to the boundary, boundary points to not seem to be relevant

when obtaining optimal trajectories.

In Figure 6.8, we see that even though G is a point close to a corner, points that

are near the boundary still result in large gradient norms. This further suggests that

these penultimate points will not result in optimal trajectories.

In Figure 6.9, the cost surface was generated exactly the same as the surface

in Figure 6.4. We again see that the penultimate points yielding possible optimal

trajectories fall close to the target point.

In Figure 6.10, the optimal trajectory has cost 0.014 whose penultimate point

is given by (0.082, 0.878, 0.04), which is not a solution to (6.2) but still is a point

in the set Quant39. The initial trajectory using as penultimate point the solution

to (6.2) has associated cost 0.0649. Even though this point (0.0751, 0.8851, 0.0398) is

an approximate minimum of g(y,G), it did not yield the optimal trajectory because
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Figure 6.7: The surfaces C(y,G) and g(y,G) on the uppermost quantile Quant39.

the “aim” was slightly off. This trajectory reached the boundary too quickly so that

jumping from the mean to this partial trajectory became too costly. Our method

essentially adjusted the “aim” of this reverse trajectory so that the optimal path

used a penultimate point that was a slight adjustment to (0.0751, 0.8851, 0.0398) so

that the jump from the mean to this partial trajectory is less costly. This gives

more motivation to why we consider penultimate points near the solution to the

system (6.2). These points have relatively small gradient norms and one-step costs.

Penultimate Point Resulting From Conjecture 6.2.3

From the previous two examples, we saw that the optimal trajectory resulted from

a penultimate point in which the gradient g(y,G) was relatively small. Therefore, it

makes sense to seek the penultimate point which results in an approximate minimum

of g(y,G) for a fixed target G. Notice that the derivative of C(y,G) with respect to
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Figure 6.8: The surfaces C(y,G) and 1/g(y,G) on the lowest quantiles Quantk for
k = 0, 1, 2, 3.

Figure 6.9: The trajectory cost surface as a function of the penultimate point.

y has terms of zero order and terms of order m. Thus, we write,

∂

∂yn
C(y,G) =

Fn
〈F, y〉

− Gn

yn
+mZ

where Z is all terms of order m. Therefore, finding the minimizing penultimate point

of g(y,G) is roughly approximated by solving the system of equation

Fn
〈F, y〉

− Gn

yn
= 0
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Figure 6.10: The optimal trajectory for the target point G = (0.05, 0.9, 0.05). The
blue trajectory is the optimal trajectory. The black trajectory is the mean. The ma-
genta set is the set of penultimate points in Quant39. The red dotted line represents
the boundary.

for all genotypes n subject to the condition that
∑

n yn = 1. This system is equivalent

to

∑
k 6=n

Fkyk +

(
1− 1

Gn

)
Fnyn = 0. (6.3)

With the condition
∑

n yn = 1, we can solve the system (6.3) for all genotypes

n = 1, 2, . . . , g − 1, which immediately gives the system in Conjecture 6.2.3 given

by (6.2).

Let y∗ be the solution to (6.2). This implies that g(y∗, G) is roughly of order

m for targets away from the boundary, which will be small. Therefore, for interior

histograms, the point y∗ is a good approximation of the minimizer of the gradient

g(y,G). Furthermore, this point can be generated independent of the discretization of

the space HIST so that an intial completed trajectory can be computed immediately

given that the mean trajectory has been computed. We note that we do not claim

that this point will generate the optimal trajectory, especially if the target point
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is near the boundary. However, from numerical experiments, the penultimate point

resulting in the optimal trajectory will be close to the penultimate point y∗, as we saw

in the two examples presented. Therefore, we can use this point in Conjecture 6.2.1

in order to generate a set of possible penultimate points without generating the entire

state space HIST .

Notice that in our two examples we presented, the most likely trajectory was

either generated directly from the penultimate point y∗ or fell very close to y∗. In

addition, most of the penultimate points in the uppermost quantile Quant39, the

set of points in which the gradient norm is small, will not generate optimal paths.

This suggests that we could have chosen a smaller quantile percentage. However,

one main reason for this may have been that many reverse trajectories are aiming

back towards the initial histogram. If we change the initial histogram, we may have

to adjust the number of penultimate points chosen. We investigate this further in

Section 6.3.2.

Comparing exhaustive method with acceleration method

For the target (0.1, 0.45, 0.45), the optimal trajectory was generated directly from the

penultimate point obtained fom the system given by (6.2). Therefore, the exhaustive

method and acceleration method will work equally well here. However, in the case of

the target (0.05, 0.9, 0.05), the exhaustive method yielded an optimal trajectory with

26 steps and a cost of 0.014. The penultimate point that yields this optimal trajectory

is (0.082, 0.878, 0.04). This trajectory also took about an hour to generate since there
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were many incomplete trajectories to filter through. Using the acceleration method

yielded an optimal trajectory with 26 steps and a cost of 8.716 × 10−4. The penul-

timate point yielding the optimal trajectory here is (0.0771274, 0.883092, 0.039871),

which we wrote out with many decimals to show the precision. The optimal trajec-

tory took 2 seconds to obtain. A penultimate point of this form is unattainable with

a direct exhaustive method. We were able to keep the precision of the approximate

gradient-minimizing point by perturbing this minimizer to generate new points until

the gradient norm threshold is reached. By doing so, the optimal trajectory reached

the starting zone without having to jump to the mean in reverse time. Any method

that requires a very fine discretization to reach this precision would be computation-

ally heavy. This is the main advantage of our method. We will now compute many

optimal paths with various initial histograms to showcase the method.

6.3.2 Examples using acceleration technique

When using the acceleration technique, we first find the approximate minimizer of the

norm of the gradient, which is given by Conjecture 6.2. The minimizer will give a very

small gradient norm (usually of order m ≈ 10−6 for targets away from boundary).

In order to test good proportionality constants, we will consider penultimate points

whose gradient norm is at most 2. This will generate a lot of penultimate points.

We can then analyze the gradient norm of the penultimate point that results in the

optimal trajectory. We can then use these results to suggest good threshold values

for the gradient norm used in generating the set of penultimate points. We will

choose many initial and target points to test and summarize the results in a table.
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Note that the optimal trajectories in each case were generated in less than a minute,

even with a large gradient norm threshold. The system parameters for all initial

points and target points are given below:

N = 106 M = mQ

F1 = 200 m = 10−6

F2 = 2001.08 d = 0.002

F3 = 2001.12 FTH = 0.95

Q =


0 1/2 1/2

0 0 1

0 0 0

 ε = 50/N = 5× 10−5

Notice that in the above parameter set, the mutations are irreversible, which is

realistically more reasonable than our previous examples.

Initial histogram (1− 2ε, ε, ε)

The histogram in this example is a “typical” histogram when analyzing bacterial

evolution. The initial population will contain cells of only the ancestor genotype.

Experiments with this initial population are then used to derive information about

the system (genotype fixation, fixation times, etc.) Our initial histogram starts with

a small population of genotype 2 and 3 cells so that the initial histogram is not a

boundary histogram. The optimal trajectories for various targets are given in Figures

[6.11a, 6.11b]. Using the acceleration technique resulted in all 6 trajectories reaching

the initial zone Winit without having to jump to the mean. The mean trajectory has
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Figure 6.11: Most likely paths reaching various targets using the initial histogram
(1− 2ε, ε, ε).

22 steps.

Table 6.1 shows the number of time steps in the optimal trajectory, the cost

of the trajectory, the value of the norm of the gradient of the best penultimate

point, and the overall approximate minimum of the norm of the gradient. As we

can see, the value of the norm of the gradient of the best penultimate point was

much smaller than the threshold we set in generating the penultimate set. When

generating reverse trajectories from a target point, these trajectories are wanting to

travel towards the bottom right of the triangle, which represents starting histograms

in which the ancestor genotype is heavily dominant. Therefore, when the initial

histogram is of this type, the gradient norm threshold can be chosen much smaller

than our threshold of 2.
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Targets (0.01, 0.04, 0.95) (0.025, 0.95, 0.025) (0.01, 0.95, 0.04)
Time 23 26 24
Cost 1.68× 10−7 0.002 0.0026

Pen. Grad 1.07× 10−6 0.0641 0.1362
Grad. Min. 1.07× 10−6 4.8× 10−5 2.95× 10−5

Targets (0.01, 0.59, 0.4) (0.3, 0.65, 0.05) (0.45, 0.01, 0.54)
Time 27 16 15
Cost 0.0024 0.0009 3.54× 10−7

Pen. Grad 0.0663 0.0055 2.67× 10−5

Grad. Min. 2.04× 10−6 2.28× 10−5 2.67× 10−5

Table 6.1: Attributes of most likely trajectories for initial histogram (1− 2ε, ε, ε).

Initial histogram (0.6− ε, 0.4− ε, 2ε)

The initial histogram here represents an initial situation in which the weaker geno-

types are heavily dominant. As stated before, since trajectories are wanting to travel

in reverse time towards the bottom right of the triangle, optimal trajectories in this

case are more likely to be trajectories that are concatenated with the mean. Thus, the

optimal transition will involve staying on the mean for a time before jumping away

from the mean at the optimal time. Furthermore, since the initial histogram has a

formidable amount of genotype 2 cells, the mean trajectory will actually first fixate

at genotype 2 and then fixate at genotype 3. Furthermore, a portion of the mean

reaches the boundary in route to fixating at genotype 3 so that some mean points

will not be valid points to use when concatenating trajectories. The trajectories are

shown in Figure [6.12a, 6.12b]. The mean trajectory has 54 steps.

In Table 6.2, notice here that the gradient norm of the best penultimate point is

larger than it was for the previous example. Since the initial histogram is not heavily

dominant in the ancestor genotype, we need a larger set of penultimate points in order
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Figure 6.12: Most likely trajectories for various targets using the initial histogram
(0.6− ε, 0.4− ε, 2ε).

to find an approximate optimal trajectory. However, the loss in computation time is

minimal because a large number of trajectories will “overshoot” the initial histogram,

making these histograms too costly very quickly.

Initial histogram (0.4, 0.3, 0.3)

The initial histogram here represents an initial situation in which the distributions

of each genotype are approximately equal. With the prominence of the dominant

genotype (genotype 3) in the initial histogram, the mean trajectory will fixate quickly

to the dominant genotype. Therefore, optimal trajectories will tend to jump away

from the mean immediately in order to avoid this fixation. The trajectories are

shown in Figure [6.13a, 6.13b]. The mean trajectory has 15 steps.

Table 6.3 shows that the gradient norm of the optimal penultimate point is large in

comparison with the previous examples. Again, this is because the initial histogram is

120



Targets (0.01, 0.04, 0.95) (0.025, 0.95, 0.025) (0.01, 0.95, 0.04)
Time 8 12 12
Cost 0.0077 0.0012 0.0023

Pen. Grad 0.5129 0.1257 0.1102
Grad. Min. 1.07× 10−6 4.8× 10−5 2.95× 10−5

Targets (0.01, 0.59, 0.4) (0.2, 0.01, 0.79) (0.2, 0.79, 0.01)
Time 39 4 6
Cost 0.0086 0.0129 0.0024

Pen. Grad 0.3505 0.3453 0.0593
Grad. Min. 2.04× 10−6 1.05× 10−5 1.21× 10−4

Table 6.2: Attributes of most likely trajectories for the initial histogram (0.6−ε, 0.4−
ε, 2ε).

Targets (0.01, 0.04, 0.95) (0.025, 0.95, 0.025) (0.01, 0.95, 0.04)
Time 13 11 12
Cost 0.0082 0.1894 0.1781

Pen. Grad 0.4408 0.6087 0.4753
Grad. Min. 1.07× 10−6 4.8× 10−5 2.95× 10−5

Targets (0.01, 0.59, 0.4) (0.2, 0.01, 0.79) (0.2, 0.79, 0.01)
Time 7 5 6
Cost 0.0535 0.1246 0.2507

Pen. Grad 0.3091 0.8054 1.0879
Grad. Min. 2.04× 10−6 1.05× 10−5 1.21× 10−4

Table 6.3: Attributes of most likely trajectories using the initial histogram
(0.4, 0.3, 0.3).

far away from the bottom-right of the triangle. Optimal trajectories will then require

costly penultimate jumps in order to avoid traveling towards this area in reverse time.

Again, the computation time loss is minimal because many trajectories “overshoot”

the initial histogram.
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Figure 6.13: Most likely trajectories using the initial histogram (0.4, 0.3, 0.3).

Initial histogram (0.5− ε, 2ε, 0.5− ε)

The initial histogram here represents an initial situation in which the ancestor and

dominant genotypes are prominent. This situation can be thought of as a subsitua-

tion of the case when the initial histogram is (1− 2ε, ε, ε) because in that situation,

the mean trajectory eventually reached a point in which the ancestor and fittest

genotype were highly dominant. With this initial histogram, the mean will fixate

very quickly again to the fittest genotype. The trajectories are shown in Figure

[6.14a, 6.14b]. The mean trajectory has 6 steps.

In Table 6.4, the gradient norm is again relatively large in comparison with the

previous examples. In this case, since the system on average fixates very quickly to

the fittest genotype, it is very costly for optimal trajectories reaching other targets

to break away from this behavior. Thus, penultimate points with relatively large

gradients are required. This corresponds to having the probability of such targets

being reached by the system essentially 0.
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Figure 6.14: Most likely trajectories using the initial histogram (0.5− ε, 2ε, 0.5− ε).

6.3.3 Evidence supporting Conjecture 6.2.2

Recall that Conjecture 6.2.2 claims that for targets that are near the boundary,

penultimate points that are also close to the boundary have large gradient norms so

that for large populations and small mutation rates, trajectories that bounce off the

boundary cannot be optimal. In order to test this claim, we simulated most likely

trajectories for 1030 targets using three different parameter sets where the initial

histogram is fixed at (1 − 2ε, ε, ε). The targets are shown in Figure 6.15. The only

difference among the parameter sets are the growth rate vectors F . The parameters
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Targets (0.01, 0.04, 0.95) (0.025, 0.95, 0.025) (0.01, 0.95, 0.04)
Time 11 13 13
Cost 0.0163 0.0582 0.0516

Pen. Grad 0.3411 0.2096 0.9858
Grad. Min. 1.07× 10−6 4.8× 10−5 2.95× 10−5

Targets (0.01, 0.59, 0.4) (0.3, 0.65, 0.05) (0.1, 0.45, 0.45)
Time 13 6 10
Cost 0.0124 0.007 0.0053

Pen. Grad 0.2323 0.4306 0.0663
Grad. Min. 2.04× 10−6 2.28× 10−5 1.82× 10−6

Table 6.4: Attributes of the most likely trajectories using the initial histogram (0.5−
ε, 2ε, 0.5− ε).

are given below.

N = 106 M = mQ

m = 10−6 d = 0.002

FTH = 0.95 ε = 50/N = 5× 10−5

Q =


0 1/2 1/2

0 0 1

0 0 0


The growth vectors used in each simulation, denoted F (1), F (2), and F (3), respec-

tively, are F (1) = [200; 2001.08; 2001.12] , F (2) = [200; 2001.04; 2001.08] , and F (3) =

[200; 2001.1; 2001.15] .

Each round of simulations took approximately an hour to complete. Using 1030

different targets, this implies our method to find most likely trajectories took approx-

imately 3.5 seconds per target, which again provides further evidence of the efficiency

of our algorithm. Furthermore, there were no most likely trajectories that bounced
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Figure 6.15: The 1030 targets used to test if most likely trajectories bounced off the
boundary.

off the boundary. In order to see why this is the case, we will informally analyze the

gradient norm g(y,G) when the target is close to the boundary.

Let N be sufficiently large, and without loss of generality let G be a fixed target

close to the boundary so that G(n) ≈ 100/N for exactly one genotype n. Recall that

the norm of the gradient of the one step cost function with respect to the penultimate

point is given by

∂

∂yn
C(y,G) =

Fn
〈F, y〉

− Gn

yn
+ Fn

∑
k

mQn,k

−
(
Fn +

Gn

yn

)∑
k

mQn,kÊn,k −
Gn

Fny2
n

∑
k

FkykmQk,nÊk,n

Ên,k = exp

(
− Gn

Fnyn
+

Gk

Fkyk

)
Without loss of generality, suppose that y is a penultimate point that is also close

to the boundary so that y(j) ≈ 100/N for exactly one genotype j. Note that it is

possible that n = j. Notice that ∂
∂yn

C(y,G) has a zero-order term and term of order

m. The term of greatest influence in the terms of order m are the exponential terms
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Ên,j and Êj,n. Notice that the zero-order term inm, by our assumption, is of order N.

The exponential terms are roughly of order exp(N). Even when m is small, a term of

order m exp(N) will greatly influence the norm of the gradient. Therefore, the norm

of the gradient will roughly have order at least N +m exp(N) for penultimate points

near the boundary. Even if it is the case that n = j, we still have that the norm

of the gradient will roughly be of order N . Therefore, for targets and penultimate

points close to the boundary, the gradient norm is large.

The above argument gives reason why bouncing trajectories are not optimal.

When a trajectory approaches the boundary, the gradient norm of the one-step cost is

growing very quickly so that one-step costs will also grow very quickly. Consequently,

these trajectories become too costly too quickly.

6.3.4 Direct simulation of the system

Using the parameters in the previous section with an initial histogram of (1−2ε, ε, ε),

we directly simulate the system to see if we approximately reach any of the six targets

that we used for this initial histogram. We expect the system to fixate at genotype

3 eventually. However, since the optimal trajectory that reached (0.45, 0.01, 0.54)

has such a low cost, we expect to actually observe realizations that come close to

this target. We say that a trajectory approximately reaches a target if there is

a time in which the concentration of every genotype is within 0.01 of the target

(0.45, 0.01, 0.54). We simulate 10, 000 trajectories for 100 days. The relevant trajec-

tories are given in Figure 6.16.
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Figure 6.16: Direct simulation of system along with example trajectories.

In Figure 6.16, from the 10, 000 trajectories simulated, 623 approximately reached

the target (0.45, 0.01, 0.54). The average of these trajectories is given in blue, which

approximately reaches the target on average in 17 days. The cost of the blue trajec-

tory is 5.67× 10−7. The optimal trajectory we calculated for this target had 15 steps

with a cost of 3.54× 10−7. We also see that the mean trajectory from the direct sim-

ulation and the mean trajectory we calculated using the conditional expectation are

close. Furthermore, the mean trajectory from the direct simulation reached fixation

of genotype 3 on day 22, which is precisely the number of steps we had in our mean

trajectory. We note that no other targets (other than the fixation target (0.01, 0.04,

0.95)) were approximately reached, which is expected since the cost we calculated of

such trajectories would give an approximate probability very close to 0.

6.3.5 Concluding analyses

Based on the numerous examples in this section, we have presented a wealth of ev-

idence to support our conjectures. In Conjecture 6.2.1, we see that an increase in
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the gradient norm associated to a penultimate point requires a finer discretization in

order to obtain a sensible optimal trajectory. This became relevant for targets near

the boundary, especially near corner points, as the gradient norm increases as we

move towards the boundary, which is the content of Conjecture 6.2.2. In all of the

optimal trajectories, even for targets away from the boundary, the penultimate point

always involved a relatively small step from the target. Near boundaries and corners,

the steps become smaller, which supports the need for very fine discretizations for

these targets. Though we would need a very fine discretization for these points, we

can adjust for this because having a target located near a corner/boundary reduces

the direction in which we can reverse shoot. Thus, when implementing Conjec-

ture 6.2.3, we can be more restrictive when generating our set of penultimate points.

Finally, our direct simulation example above suggests that the optimal trajectory we

are generating from our scheme is indeed the most likely transition pathway of the

system.
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Chapter 7

Numerical Examples

A common issue when establishing large deviations principles is implementability.

We explicitly applied these principles and developed methods in Chapters 5 and 6 to

generate most likely ways in which systems achieve rare events. In order to demon-

strate these methods, we will now compute escape trajectories from a neighborhood

of a metastable state of the corepressive toggle switch using the approximation given

by (2.6). We will also compute most likely evolutionary trajectories when there are

4 genotypes present.

7.1 Corepressive Toggle Switch

Recall that the corepressive toggle switch is given by the chemical langevin equa-

tion (2.4), a nonlinear system. Here, we focus on the problem of optimal escape
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from neighborhoods of metastable states. We fix a neighborhood of (xlow, yhigh) (Fig-

ure 7.1, black curve) and ask: What is the most likely route of escape from this

neighborhood for (2.4)? In Section 2.2.1, we computed a linear noise approximation

of (2.4) that is valid near (xlow, yhigh), which is given by (2.6). Since this linear noise

approximation is a Gaussian diffusion with delay, the framework of the present paper

applies to it. We use this framework to compute most likely routes of escape for the

linear noise approximation and thereby obtain (approximate) most likely routes of

escape for (2.4).

In Figure 7.1, we show examples of exit paths directly simulated from the chem-

ical langevin equation. We simulated 1000 trajectories over the time interval [0, 5].

We then chose three sample trajectories that exited the disk D and extracted a

segment from each of them. The blue, red, and magenta trajectory segments be-

gin near the metastable state (small black disk) at the coordinates (0.0817, 1.0668),

(0.0673, 1.1233), and (0.1272, 1.0733), respectively, and cover time intervals [2.799, 3.399],

[3.099, 3.599], and [1.699, 2.299]. The history of each simulated trajectory over the

time interval [0, 5] is taken to be fixed at (xlow, yhigh) over the time interval [−τ, 0].

Trajectories have been generated using Euler-Maruyama with time step ∆t = τ/1000 =

0.001. Parameters: β = 0.73, k = 0.05, γ = ln(2), τ = 1, N = 30.

We are now in position to apply the large deviations framework of our paper

to (2.6). Before doing so, we perform a preliminary numerical calculation and com-

ment on the role of trajectory histories.

We numerically compute the stationary points of (2.5). We work with the pa-

rameter set β = 0.73, k = 0.05, γ = ln(2), and τ = 1, a parameter set for which (2.5)
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Figure 7.1: Sample trajectory segments of (2.4) in a neighborhood of the metastable
state (xlow, yhigh).

has two stable stationary states and one saddle stationary state. We find these

states by setting the drift expressions in (2.5) equal to zero along with x(t− τ) = x

and y(t − τ) = y. Approximate solutions can be found numerically using many

well-known iterative methods. The two stable stationary states are approximately

(v, w) ≈ (0.0498, 1.0033) and (1.0033, 0.0498). The stationary saddle is approxi-

mately (0.3306, 0.3306).

Notice that since the Gaussian diffusion (2.6) contains delay, one must specify

a trajectory history over the time interval [−τ, 0] in order to properly initialize the

equation. Trajectory history will influence the evolution of the mean of the Gaus-

sian diffusion with delay and will therefore affect the computation of optimal large

deviations trajectories. In general, this history may be deterministic or random. For

our current study, we work with deterministic histories and take them to be constant

on [−τ, 0]. See Figure 7.2 for examples of the evolution of the mean of the Gaussian

131



diffusion using various histories. Finally, note that although the process ξ(t) is Gaus-

sian, it will not be centered if the history is not identically zero. To be consistent

with the notation of Section 5.1.1, we write the process that locally approximates

the delay chemical Langevin equation as m(t) + εZt, where m(t) = E[ξ(t)], ε = 1√
N
,

and Zt satisfies (2.6) with no small parameter (N = 1) and history zero.

7.1.1 Optimal escape trajectories and exit points - analysis

We now apply our large deviations framework to the Gaussian diffusion that approx-

imates the delay chemical Langevin equation (2.4) near (v, w). We begin with an

analytical view and then follow with numerical simulation.

We find the most likely exit path with constant initial history m(0) that exits the

disk

D =
{

(z1, z2) : (z1 − v)2 + (z2 − w)2 6 R2
}
.

(We choose R = 0.3 for the numerical computations in Section 7.1.2 so that the

neighborhood of (v, w) has size of order one but remains bounded away from the

separatrix.) To find this optimal path, we first find the path of least energy that

exits D at a preselected point q ∈ ∂D and at a preselected time T . We then optimize

over T and q. For fixed exit time T and exit point q ∈ ∂D, the optimal escape path

and associated energy are given by

h(s) = ρ(s, T )
[
ρ(T, T )−1(q −m(T ))

]
+m(s)

λh(T, q) =
1

2

[
ρ(T, T )−1(q −m(T ))

]
· (q −m(T ))
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using (5.4) and (5.5). Here, s ranges over [0, T ] and ρ(s, t) is the covariance matrix

of Zt at times s, t ∈ [0, T ]. Note that we are using the terms “exit time” and “escape

path” loosely since we do not impose the a priori condition that h remain inside D

until it reaches q at time T .

In order to optimize over q and T , we first fix T and optimize λh(T, q) over points

q ∈ ∂D. Notice that λh(T, q) is a classical quadratic form on R2 for fixed T , so we

apply standard minimization techniques to find the minimizer q̂(T ) analytically. The

minimization problem for fixed T is

min
q
λh(T, q) subject to (q1 − v)2 + (q2 − w)2 = R2. (7.1)

Using a Lagrange multiplier µ ∈ R, define the Lagrangian

Lµ(q) := λh(T, q)− µ((q1 − v)2 + (q2 − w)2 −R2).

Calculating the gradient ∇q(Lµ(q)) and setting the gradient equal to zero yields the

equation

ρ(T, T )−1(q −m(T )) = 2µ(q − (v, w)∗). (7.2)

Notice that if m(T ) = (v, w)∗, then (7.2) becomes an eigenvalue problem for

ρ(T, T )−1. In this case, the optimal exit point q̂(T ) is such that q̂(T )− (v, w)∗ is the

eigenvector of ρ(T, T )−1 corresponding to the smallest eigenvalue, and the energy of

the optimal path that exits D at time T is proportional to this smallest eigenvalue.

This observation has two implications. First, if the history of the linear noise

process is taken to be m(t) = (v, w)∗ on [−τ, 0], then we will have m(t) = (v, w)∗
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for all t > 0 as well. In this case, minimizing λh(T, q) over T and q to find the

optimal escape time Topt and the optimal escape point q̂(Topt) amounts to minimizing

the smallest eigenvalue of ρ(T, T )−1 over T . Since (2.6) is essentially an Ornstein-

Uhlenbeck process with delay, we expect the smallest eigenvalue of ρ(T, T )−1 to

decrease monotonically toward a limiting value as T → ∞. See Figure 7.4 for

numerical evidence. There exists no minimizer of λh(T, q) in this case, as we would

have Topt =∞.

Second, regardless of the initial history of the linear noise process,m(T )→ (v, w)∗

as T →∞ for the parameters we have selected. Consequently, (7.2) is approximately

an eigenvalue problem for large values of T , so for such T the optimal exit point q̂(T )

will be such that q̂(T )− (v, w)∗ is close to the eigenvector of ρ(T, T )−1 corresponding

to the smallest eigenvalue.

7.1.2 Numerical results

We compute the optimal path of escape, the optimal exit time Topt, and the optimal

exit point q̂(Topt) ∈ ∂D for the linear noise process (2.6) that approximates the

toggle switch (2.4) in the disk D. Along the way, we discuss interesting related

computations.

Parameter selection. We set β = 0.73, k = 0.05, γ = ln(2), and τ = 1 for the

toggle switch. System size for the linear noise approximation (2.6) is N = 1000. The

history of the linear noise process is taken to be the constant position (0.0453, 1.1323)

over the time interval [−τ, 0]. We choose R = 0.3 for the radius of D so that this
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neighborhood of (v, w) has size of order one but remains bounded away from the

separatrix.

Optimization algorithm. To compute the optimal escape path, exit time, and

exit point, we execute the following algorithm.

• Simulate the mean and covariance equations for a sufficiently large Tlarge using

step sizes ∆t = ∆s = τ/500.

• Discretize the boundary of the disk D using discretization ∆r = 0.006 of

[−R,R].

• For each time tj = (j − 1)∆t ∈ [0, Tlarge] and each point qk on the discretized

boundary of the disk, compute the optimal trajectory that exits at time tj

through qk as well as the energy Ej,k of this trajectory.

• Minimize over the entries of the matrix E in order to find the optimal exit time

and exit point (and hence the overall optimal path of escape).

Mean and covariance. We first compute the mean and covariance of the linear

noise process. Figure 7.2 (blue curves) illustrates the evolution of the mean for our

parameter set. As expected, the mean converges to the stationary state (v, w) (moved

to (0, 0) in Figure 7.2) regardless of the history of the mean. It is important to choose

Tlarge sufficiently large so that the covariance matrix ρ(Tlarge, Tlarge) has stabilized and

the mean is close to the stationary state. Fig. 7.3 and Fig. 7.4 provide evidence that

this stabilization occurs by time T = 20 for our parameter set. In particular, the

variances of the two components of Zt stabilize to the vectory (0.0567, 1.1409) by time
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Figure 7.2: Evolution of the mean of the linear noise process. (7.2a) Blue curve: evo-
lution of the mean using the constant history (0.0453, 1.1323) (or (−0.0046, 0.1289)
in local coordinates). Red and black curves: evolution of the mean using trajectory
segments of (2.4) for histories. (7.2b) Another view of the blue curve from Fig. 7.2a.

20 (Fig. 7.3). Fig. 7.4 illustrates that the smallest eigenvalue of ρ(t, t)−1 stabilizes as

well to 0.874.

Numerical optimization results.

We first examine the behavior of optimal paths and optimal path energies for fixed

exit times. Fig. 7.5a illustrates the behavior of optimal path energy as a function of

exit point over the upper half of ∂D for the fixed exit time T = 10. Note that optimal

path energy is minimized near the top of ∂D. Fig. 7.5c depicts three different optimal

escape paths for fixed escape time T = 20 and three different exit points. Notice

that these trajectories follow the mean for some time before breaking away toward

their respective exits. This behavior should not occur for the optimal exit time Topt

and the optimal exit point q̂(Topt). Energy values associated with the red, magenta,

and blue trajectories are 0.0413, 0.4527, and 0.4661, respectively. Fig. 7.5d (blue
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Figure 7.3: Evolution of the variances of the two components of Zt over time. (7.3a)
The variance of the first component. (7.3b) Linear relationship between variances
of the first and second components.

curve) illustrates the overall optimal escape trajectory. This trajectory exits at time

Topt = 1.482 and exit point q̂(Topt) = (0.0384, 1.3031) with energy 0.0348. Observe

that the overall optimal escape trajectory diverges from the mean immediately.

Fig. 7.6 depicts overall optimal escape trajectories using three different constant

initial histories. Notice that if the initial history is located in the lower half of D,

then the overall optimal escape trajectory exits through the lower half of ∂D. This

happens for the upper half of D as well. This behavior is natural, since moving

‘across’ the stationary state should not be energetically optimal. For the initial

history corresponding to the blue curve in Fig. 7.6, the optimal escape path that

exits through the bottom half of ∂D does so through (0.0162,−0.2996) (in local

coordinates) at exit time ∞ with energy 0.0394. This energy is strictly larger than

that of the blue curve in Fig. 7.6 (0.0348). The energy associated with the red,

magenta, and blue trajectories is 0.0389, 0.0074, and 0.0348, respectively.
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Figure 7.4: The smallest eigenvalue of the covariance matrix ρ(t, t)−1 stabilizes to
approximately 0.874 by time 20.

7.2 E. Coli Populations with 4 Genotypes

Generating the entire state space for higher dimensional problems (g ≥ 4) become

computationally heavy even for moderate discretizations. In fact, for a given dis-

cretization level d and number of genotypes g, the state space of histograms will con-

tain

 1/d+ g − 1

g − 1

 different histograms, which is of order (1/d)g−1. Consequently,

generating one optimal trajectory reaching a fixed target could take many hours to

find. We will show the significant save in computation time with 4 genotypes using

the target histograms (0.02, 0.03, 0.9, 0.05), (0.02, 0.9, 0.03, 0.05), and (0.1, 0.4, 0.45, 0.05).

The system parameters are given below:
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Figure 7.5: Optimal exit data. (7.5a) Energy of the optimal exit path at time
T = 10 as a function of chosen exit point on the upper half of ∂D. The energy is
minimized near the top of D. (7.5b) Energy of the optimal exit path as a function
of exit time T for fixed exit point (0, 0.3) (the top of D in local coordinates). (7.5c)
Three different optimal escape paths for fixed escape time T = 20 and three different
exit points. (7.5d) Overall optimal escape trajectory.
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N = 106 ε = 50/N = 5× 10−5

F1 = 200 F2 = 2001.06

F3 = 2001.08 F4 = 2001.12

M = mQ m = 10−6

Q =



0 1/3 1/3 1/3

0 0 1/2 2/3

0 0 0 1

0 0 0 0


d = 0.002

FTH = 0.95 Initial Histogram = (1− 3ε, ε, ε, ε)

Using these parameters, the number of histograms in the discretized state space is

approximately 21 million, which would take hours to generate assuming one had

sufficient memory to hold this amount of data. The optimal trajectories are shown

in Figures 7.7-7.9. The trajectories, respectively, were generated in approximately
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Figure 7.7: The optimal trajectory reaching the given target and the mean trajectory
with g = 4. The left panel is the projection of these trajectories to the first three
genotypes. The right panel is the projection of these trajectories to the first two
genotypes.

1.5 minutes, 13 minutes, and 6.5 minutes. For all three examples, we generated the

set of possible penultimate points using a gradient threshold of 0.5. By doing so in

each of the three examples, the number of histograms in each of the penultimate sets

make up only 0.01%, 0.01%, and 0.06% of the entire discretized space of histograms,

respectively. Furthermore, the size of these sets did not grow significantly when com-

puting optimal trajectories for g = 3 and g = 4. This is the main factor contributing

to computational efficiency.

In Figure 7.7, the mean trajectory has 22 steps, and the most likely trajectory

reaching (0.02, 0.03, 0.9, 0.05) has 26 steps with a cost of 0.001. The penultimate point

that generates the optimal trajectory is (0.032, 0.033, 0.894, 0.040). This trajectory

reaches the initial zone in reverse time.

In Figure 7.8, the optimal trajectory has 16 steps with a cost of 0.0067. Notice
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Figure 7.8: The optimal trajectory reaching the given target and mean trajectory
with g = 4. The left panel is the projection of these trajectories to the first three
genotypes. The right panel is the projection of the trajectories to the first two
genotypes.

that the optimal trajectory makes a large jump from the mean point (0.9981, 2.45×

10−4, 4.16×10−4, 0.0012) to the point (0.2331, 0.7624, 0.0020, 0.0125) generated from

the reverse trajectory using the penultimate point (0.02574, 0.91031, 0.02523, 0.03872).

In particular, it is less costly to make a large jump than to bounce off the boundary.

In Figure 7.9, the optimal trajectory has 25 steps with a cost of 0.0016. The penul-

timate point that generates the optimal trajectory is (0.14243, 0.406767, 0.41362, 0.03718),

which results in a trajectory that reached the initial zone in reverse time.

7.2.1 Brief analysis and prediction for higher dimensions

As stated in Section 1.1, the future goal is to apply these large deviations techniques

to analyze genotypic data gathered by Dr. Tim Cooper and Dr. Robert Azevedo

in the Biology Lab at the University of Houston which involves at most g = 8
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Figure 7.9: The optimal reaching the given target and mean trajectory with g = 4.
The left panel is the projection of the trajectories to the first three genotypes. The
right panel is the projection of the trajectories to the first two genotypes.

genotypes, which will appear in a later paper. We can however do a rough analysis

on what we can expect based on our examples for 3 and 4 genotypes. Generating

the set of penultimate points for g = 8 would not introduce a significant increase

in computation time since it is related to the norm of the gradient and not directly

to the number of genotypes and the dimension of the space. Generating the sets of

penultimate points for g = 3 was nearly instantaneous, and generating the set for

g = 4 took about 3− 4 seconds. Therefore, generating a sensible set of penultimate

points should be computationally viable for 8 genotypes. However, this may yield

a large amount of penultimate points. In addition, since we may need to use our

multi-stage approach in order to obtain the optimal trajectory, filtering through the

trajectories generated from the penultimate set may require a lengthy computation.

Now, notice that in the cases of g = 3 and g = 4, the length of the mean

trajectory was 22 steps. We expect that the mean using similar initial points in higher
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dimensions will have roughly the same number of steps. The optimal trajectories

became slightly longer when increasing dimension, which may have some relation to

the additon of a genotype in the population. Therefore, we would expect an increase

in dimension to cause an increase in the length of optimal trajectories. However, it

is reasonable to predict that optimal trajectories will not be significantly longer than

the mean trajectory. The large deviations principle we have established states that

as N →∞, the Markov chain trajectory will converge to the mean trajectory. This

mean trajectory fixates at the strongest genotype exponentially quickly. Therefore,

for a rare event to reasonably occur, we would expect it to happen relatively quickly.

Finally, none of the optimal trajectories we generated bounced off the boundary. As

stated in our conjectures, we would then expect that no optimal trajectories would

require bouncing off the boundary. With this rather rough discussion in mind, we

fully expect to be able to implement this method using at most 8 genotypes.
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Chapter 8

Conclusions and Future Work

We have seen that large deviations principles and concepts can be used to derive

quantitative information for a given stochastic model that would be otherwise dif-

ficult to observe directly through experimentation or simulation. Namely, one can

derive most likely ways in which systems can achieve rare events along with estima-

tions on the probabilities that these events can occur. In addition, the area of large

deviations raises many interesting questions and problems in both theory and appli-

cations. On one hand, if one desires to use large deviations techniques on a particular

system, a large deviations principle would need to be established first. This would

involve many classical theoretical concetps. On the other hand, once a principle

is established, implementation and application of this principle requires clever and

efficient algorithms in order to calculate rare events. One hopeful direction of future

work is to apply large deviations techniques to other systems of interest in biology.
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Even though we have successfully applied and implemented large deviations prin-

ciples for the two systems in this dissertation, there are still many interesting prob-

lems to address in future work. For Gaussian diffusions with delay, we calculated

optimal trajectories for a fixed delay. With the importance of delay in biochemical

systems, we would like to better understand the influence of delay on optimal tran-

sitions. We would also like to address the accuracy of the linear noise approximation

we used in locally modeling the corepressive toggle switch. In addition, if better

approximations arise, can we develop a large deviations framework for this better

approximation which roughly mirrors our work in this dissertation?

For genetic evolution of bacterial populations, we implemented the large devia-

tions principles for three and four genotypes. Naturally, we would like to extend this

to more genotypes with the ideal case being g = 8. This is certainly a nontrivial ex-

tension that would raise questions involving computation times and implementation.

This would more than likely require parallel processing.
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