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Abstract

This thesis presents a novel algorithm in 3D computed tomography (CT) dedi-

cated to accurate region of interest (ROI) reconstruction from truncated cone-beam

projections. Here data acquisition involves cone-beam x-ray sources positioned on any

piecewise smooth 3D-curve satisfying the very generic, classical Tuy’s conditions and

uses only x-rays passing through the ROI. Our ROI-reconstruction algorithm imple-

ments an iterative procedure where we systematically alternate intermediary recon-

structions by an exact non-truncated cone-beam inversion operator, with an e↵ective

density regularization method. We validate the accuracy of our ROI-reconstruction

algorithm for a 3D Shepp-Logan phantom, a 3D image of a Mouse, and a 3D image of a

human jaw, for di↵erent cone-beam acquisition curves, including the twin-orthogonal

circles and the spherical spiral curve, by simulating ROI-censored cone-beam data

and our iterative ROI-reconstruction for a family of spherical ROIs of various radii.

The main result is that, provided the density function is su�ciently regular and the

ROI radius is larger than a critical radius, our procedure converges to an ✏-accurate

reconstruction of the density function within the ROI. Our extensive numerical exper-

iments compute the critical radius for various accuracy levels ✏. These results indicate

that our ROI reconstruction is a promising step towards addressing the dose-reduction

problem in CT imaging.

v



Contents

Abstract v

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State-of-the-Art Region-of-Interest Tomography 7

2.1 Wavelets-based ROI-Reconstruction . . . . . . . . . . . . . . . . . . . 8

2.2 Known Sub-region ROI-Reconstruction . . . . . . . . . . . . . . . . . 9

2.3 Sparse ROI-Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Iterative ROI-Reconstruction Algorithms . . . . . . . . . . . . . . . . 11

3 Classical Non-truncated Cone-beam Reconstruction 13

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 A Brief Review of Distributions . . . . . . . . . . . . . . . . . . . . . 16

vi



3.3 Fourier Transform of the Cone-beam Transform as a Distribution . . 20

3.4 Tuy’s Inversion Formula . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Conditions on the Source Curve . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Twin-Circular Curve . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Stability of Cone-beam Reconstruction . . . . . . . . . . . . . . . . . 30

4 The 3D Radon Transform 32

4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 3D Fourier Slice Theorem . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Radon’s 3D Inversion Formula . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Numerical Implementation of the 3D Radon Inversion . . . . . . . . . 38

4.4.1 Two-stage Algorithm . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . 42

5 Practical Inversion Formulas for the Non-truncated Cone-beam Trans-

form 44

5.1 Link between the Cone-beam Transform and the 3D Radon Transform 45

5.2 Grangeat’s Inversion Method . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Cone-beam Inversion by Filtered Backprojection . . . . . . . . . . . . 47

5.3.1 Derivation of an Exact FBP Formula . . . . . . . . . . . . . . 48

5.4 Numerical Feasibility of the Inversion Formulas from Non-truncated

Cone-beam Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Region-of-Interest Reconstruction from Truncated Cone-beam Pro-

jections 56

6.1 ROI Truncated Cone-beam Transform . . . . . . . . . . . . . . . . . 57

vii



6.2 Approximate Inverses of the ROI Truncated Cone-beam Transforms . 59

6.3 Regularization Operator . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.1 Local Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 A New ROI Reconstruction Algorithm . . . . . . . . . . . . . . . . . 62

6.5 Convergence of our ROI Reconstruction Algorithm . . . . . . . . . . 64

6.5.1 Regularization in the Space of Rays . . . . . . . . . . . . . . . 65

7 Regularization Operators 67

7.1 A Short Review of Wavelets . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Wavelets-based Regularization . . . . . . . . . . . . . . . . . . . . . . 69

7.2.1 Selection of Threshold Parameters . . . . . . . . . . . . . . . . 71

8 Numerical Implementation of the Truncated Cone-beam Inverse 72

8.1 Data Acquisition with a Planar Detector . . . . . . . . . . . . . . . . 73

8.2 Grangeat’s Reconstruction from Non-truncated Cone-beam Data . . . 75

8.2.1 Connection between the 3D Radon Transform and the Cone-

beam Transform . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.2.2 Backprojection of the 3D Radon Data . . . . . . . . . . . . . 81

8.2.3 Summary of Grangeat’s Inversion Algorithm from Non-truncated

Cone-beam Data . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . 84

8.3 Cone-beam FBP Algorithm . . . . . . . . . . . . . . . . . . . . . . . 85

8.3.1 Shift-Variant Filtering . . . . . . . . . . . . . . . . . . . . . . 85

8.3.2 Voxel-driven Backprojection of Filtered Cone-beam Projections 89

8.3.3 Summary of the Exact Cone-beam FBP Algorithm . . . . . . 91

viii



8.3.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . 93

8.4 ROI Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . . 93

8.4.1 Summary of our ROI Reconstruction Algorithm . . . . . . . . 94

8.4.2 Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . . 95

9 Numerical Results for ROI Reconstruction with Twin-Circular Ac-

quisition 96

9.1 Reconstruction Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.2 ROI Reconstruction of the Shepp-Logan Phantom . . . . . . . . . . . 99

9.3 ROI Reconstruction of Biological Data . . . . . . . . . . . . . . . . . 104

9.4 Numerical Analysis of the Convergence our ROI Reconstruction Algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.4.1 Critical Radius . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.4.2 Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . . 111

10 Non-truncated Cone-beam Inversion with Acquisition from a Generic

Source Curve 115

10.1 Spherical Spiral Source Curve . . . . . . . . . . . . . . . . . . . . . . 116

10.2 Non-truncated Cone-beam FBP Inversion . . . . . . . . . . . . . . . . 119

10.2.1 Geometry and Data Acquisition . . . . . . . . . . . . . . . . . 119

10.2.2 Weighting Function . . . . . . . . . . . . . . . . . . . . . . . . 120

10.3 Cone-beam FBP with Acquisition from a

Generic Source Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11 Numerical Results for ROI Tomography with Spherical Spiral Ac-

quisition 124

ix



11.1 Reconstruction Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.2 Performance of our ROI-Reconstruction Algorithm . . . . . . . . . . 126

11.3 Numerical Analysis of the Convergence our ROI-Reconstruction Algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

11.3.1 Critical Radius . . . . . . . . . . . . . . . . . . . . . . . . . . 132

11.3.2 Convergence Speed . . . . . . . . . . . . . . . . . . . . . . . . 132

12 Conclusion 135

12.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 138

x



List of Figures

3.1 The cone-beam transform of the density function f integrates f over

the ray r(s, �) originating from the source s and in the direction � 2 S2. 15

3.2 Cone-beam source courves: (a) circle, (b) twin circles in orthogonal

planes, (c) two parallel circles joined by a line segment, (d) circular

helix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 The 3D Radon transform integrates a density function f over a plane

⇧(!, ⇢) orthogonal to ! 2 S2 and having signed distance ⇢ from the

origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Truncated cone-beam transform, the cone-beam rays originating from

s 2 � are only allowed to pass through the spherical region-of-interest

C contained in the support B. . . . . . . . . . . . . . . . . . . . . . . 58

8.1 Cone-beam data acquisition with a planar detector. Each ray �� orig-

inating from source s(�) is associated with a pair of local coordinates

(u, v) on the detector plane. . . . . . . . . . . . . . . . . . . . . . . . 74

8.2 Parametrization of lines in the planar detector. . . . . . . . . . . . . . 78

xi



8.3 The fan-beam of rays on the plane ⇧(!, ⇢) orthogonal to ! 2 S2 and

containing the source s(�) intersects the detector at an oriented line

(#, ⌧). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.1 The mid-planar slices of the 3D Shepp-Logan Phantom and a spherical

region of interest C (boundary shown in red). . . . . . . . . . . . . . 99

9.2 Visual comparison of ROI reconstruction for 3D Shepp-Logan phantom

using Twin-circular acquisition and ROI-truncated projections. ROI

radius = 45 voxels. Middle slices are shown from the xy, yz, and xz

planes. From left to right: direct application of shift-variant cone-beam

FBP; our iterative ROI reconstruction; ground truth. . . . . . . . . . 101

9.3 Visual comparison of ROI reconstruction for 3D Shepp-Logan phantom

using Twin-circular acquisition and ROI-truncated projections. ROI

radius = 45 voxels. Intensity profiles for a fixed row corresponding to

the mid-planar slices are shown. . . . . . . . . . . . . . . . . . . . . . 102

9.4 Relation between the degree of truncation level ⌧ and the relative re-

construction error RLE for ROI reconstruction of the Shepp-Logan

phantom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.5 Planar slices of full body scan of a mouse. . . . . . . . . . . . . . . . 105

9.6 Visual comparison of ROI reconstruction for Mouse Tissue using Twin-

circular acquisition and ROI-truncated projections. ROI radius = 45

voxels. Middle slices are shown from the xy, yz, and xz planes. From

left to right: direct application of shift-variant cone-beam FBP; our

iterative ROI reconstruction; ground truth. . . . . . . . . . . . . . . . 106

xii



9.7 Visual comparison of ROI reconstruction for Mouse Tissue using Twin-

circular acquisition and ROI-truncated projections. ROI radius = 45

voxels. Intensity profiles for a fixed row corresponding to the mid-

planar slices are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.8 Planar slices of full scan of a human jaw. . . . . . . . . . . . . . . . . 108

9.9 Visual comparison of ROI reconstruction for Human Jaw using Twin-

circular acquisition and ROI-truncated projections. ROI radius = 45

voxels. Middle slices are shown from the xy, yz, and xz planes. From

left to right: direct application of shift-variant cone-beam FBP; our

iterative ROI reconstruction; ground truth. . . . . . . . . . . . . . . . 109

9.10 Relative L1 Error (RLE) vs ROI radius for ROI reconstruction of three

images: Shepp-Logan (red), Mouse Tissue (blue), and Human Jaw

(green). The black dashed line represents a fixed ROI reconstruction

accuracy level ✏ = 10%. The radius value corresponding to the inter-

section between the dashed line and an error curve of an image gives

the critical radius ⇢(✏) of ROI reconstruction of that image. . . . . . . 111

9.11 Relative L1 Error (RLE) vs iteration of our algorithm for ROI recon-

struction of three images: Shepp-Logan (red), Mouse Tissue (blue),

and Human Jaw (green). Spherical ROI radius = 45 voxels. . . . . . 113

9.12 Relationship between logarithm of the Relative L1 Error (RLE) and

iterations of our algorithm for ROI reconstruction of three images:

Shepp-Logan (red), Mouse Tissue (blue), and Human Jaw (green).

Spherical ROI radius = 45 voxels. After 4-5 iterations, the logarithm

of the error curves tend to be linear. . . . . . . . . . . . . . . . . . . 114

xiii



10.1 A circular spiral trajectory �, typically used in cone-beam CT. The

spiral � clearly satisfies Tuy’s condition as the spiral radius R = 3,

pitch h = 0.5, vertical height v = 3 and the object radius L = 1. . . . 117

10.2 A non-standard spherical spiral trajectory �. The spiral � clearly

satisfies Tuy’s condition as the spiral radius R = 3, parameter h = 0.5,

vertical height v ⇡ 4.2 and the object radius L = 1. . . . . . . . . . . 118

11.1 Visual comparison of ROI reconstruction for 3D Shepp-Logan phantom

using Spherical Spiral acquisition and ROI-truncated projections. ROI

radius = 75 voxels. Middle slices are shown from the xy, yz, and xz

planes. From left to right: direct application of shift-variant cone-beam

FBP; our iterative ROI reconstruction; ground truth. . . . . . . . . . 127

11.2 Visual comparison of ROI reconstruction for 3D Shepp-Logan phantom

using Spherical Spiral acquisition and ROI-truncated projections. ROI

radius = 75 voxels. Intensity profiles for a fixed row corresponding to

the mid-planar slices are shown. . . . . . . . . . . . . . . . . . . . . . 128

11.3 Visual comparison of ROI reconstruction for Mouse Tissue using Spher-

ical Spiral acquisition and ROI-truncated projections. ROI radius =

75 voxels. Middle slices are shown from the xy, yz, and xz planes.

From left to right: direct application of shift-variant cone-beam FBP;

our iterative ROI reconstruction; ground truth. . . . . . . . . . . . . 129

11.4 Visual comparison of ROI reconstruction for Mouse Tissue using Spher-

ical Spiral acquisition and ROI-truncated projections. ROI radius =

75 voxels. Intensity profiles for a fixed row corresponding to the mid-

planar slices are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xiv



11.5 Relative L1 Error (RLE) vs iteration of our algorithm for ROI recon-

struction of two images: Shepp-Logan (red) and Mouse Tissue (blue).

Spherical ROI radius = 75 voxels. . . . . . . . . . . . . . . . . . . . . 133

11.6 Linear relationship between the logarithm of the Relative L1 Error

(RLE) and iterations of our algorithm for ROI reconstruction of two

images: Shepp-Logan (red) and Mouse Tissue (blue). Spherical ROI

radius = 75 voxels. Between iterations 8 and 14, the logarithm of the

error curves tend to be linear. . . . . . . . . . . . . . . . . . . . . . . 134

xv



List of Tables

9.1 Performance of our ROI reconstruction of Shepp-Logan Phantom for

various spherical ROI radii. . . . . . . . . . . . . . . . . . . . . . . . 103

9.2 Performance of the ROI reconstruction of Mouse Tissue for various

spherical ROI radii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.3 Performance of the ROI reconstruction of Human Jaw for various

spherical ROI radii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.4 Exponential rate of convergence of our ROI reconstruction algorithm.

The table shows rates of convergence for ROI reconstructions of three

images (Shepp-Logan, Mouse Tissue, and Human Jaw) on several spher-

ical regions of interest C of radii between 45 and 90 voxels. . . . . . . 114

11.1 Performance of our ROI reconstruction of Shepp-Logan Phantom for

various spherical ROI radii. . . . . . . . . . . . . . . . . . . . . . . . 131

11.2 Performance of our ROI reconstruction of Mouse Tissue for various

spherical ROI radii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xvi



Chapter 1

Introduction

1.1 Background and Motivation

Computed tomography (CT) is an indispensable non-invasive procedure that is com-

monly used in the field of medical imaging and other industries to acquire the internal

images of an object using x-rays. The word “tomography” is derived from the greek

word ⌧oµo�, meaning slice [42]. Modern x-ray CT allows one to visualize the internal

structure of a three-dimensional object as two-dimensional slices by computing the

spatial density of the x-ray linear-attenuation coe�cient (LAC), the physical param-

eter that distinguishes the internal structures from each other [7]. The spatial density

of the LAC of an anatomical object is acquired indirectly by solving an inverse prob-

lem which uses certain external measurements of the LAC density. Each measurement

is an integral of the LAC density along a line, representing a narrow pencil beam of

x-rays. The line-integral is indirectly obtained using using Lambert-Beer’s law [7,31],

by taking the logarithm of the ratio between the number of photons that enters the
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1.1 BACKGROUND AND MOTIVATION

object and the number of photons that exits.

The inception of the classical CT started during the 1960s and the 1970s, with the

pioneering works of Godfrey Hounsfield and Allan Cormack [7]. They received the

Nobel Prize for Medicine in 1979 for the invention of the first x-ray CT scanner and

the development the early reconstruction algorithms. In the 1970s, CT imaging de-

vices known as the third-generation CT scanners reconstructed the 2D cross-sectional

images of a 3D density by irradiating each cross-section with divergent fan-beam of

x-rays, rotating around the object along a circular path. One major disadvantage of

the 2D cross-sectional CT imaging via fan-beam x-rays is its lengthy acquisition time.

Since the movement of a patient is unavoidable for a long period of time, fan-beam CT

images usually have motion artifacts [7,57]. With the arrival of cone-beam CT scan-

ners commonly referred to as the seventh-generation CT scanners or the multi-slice

CT scanners [7], the data acquisition time for 3D CT was significantly shortened. The

cone-beam x-ray measurements are made by x-rays originating from a point source

and penetrating the 3D object of interest, where the source moves around the ob-

ject along a curve that surrounds the object. Compared to fan-beam CT, cone-beam

CT requires relatively less acquisition time and provide highly accurate 3D image

reconstruction. With the invention of the seventh-generation cone-beam CT scanner

and an overflow of cone-beam reconstruction algorithms developed between the mid

1980s to mid 1990s (see [7, 43, 57] for a comprehensive list), most of the CT research

interests shifted from the cross-sectional density reconstruction from fan-beam x-rays

to fully 3D image reconstruction from cone-beam x-rays.

Although several competing medical imaging modalities were invented during the

1980s, such as magenetic resonance imaging (MRI) and positron emission tomography

2



1.1 BACKGROUND AND MOTIVATION

(PET), CT still remains to be the most-widely-used imaging method in radiology to

date [7]. Currently, the number of medical CT scans performed in the US and Japan

are about 85 million and 63 million, respectively [6]. Besides its popularity in the

medical industry, applications of computed tomography have been developed recently

in other areas, such as forensics, archeology, and paleontology, [7]. In the industry,

Cone-beam scanners are used for non-destructive evaluation of products such as metal

parts and ceramic materials [57, 61].

Despite its popularity in the medical imaging, CT scans may cause risks of cancer

to patients due to high radiation levels of x-rays. X-ray radiation can severely damage

body cells and DNA molecules, which can eventually lead to cancer [6]. A study of

10.9 million people in Australia [40] reported that the increased incidence of cancer

after CT scan exposure in this group was mostly due to irradiation, where one in

1800 CT scans was followed by an excess cancer. The health risks of radiation-

induced carcinogenesis have shown to be essentially proportional to radiation exposure

levels [22].

The collective dosage of radiation to patients may be reduced either by minimizing

the number of CT scans that are not medically necessary, or by reducing the dose per

CT scan [6]. It may not be possible to reduce the number of CT scans required for a

patient undergoing regular scanning to monitor the growth of a tumor. However, the

level of x-ray dosage can be reduced significantly by using restricted cone-beam x-ray

scanning, where the x-rays are only allowed to pass through a small region-of-interest

(ROI) located within the whole object.

This thesis presents a novel algorithm in cone-beam CT that reconstructs the ROI

density of an object accurately from restricted cone-beam x-rays, while substantially

3



1.2 OUTLINE

reducing the overall dosage during the acquisition stage. Here data acquisition in-

volves x-ray sources positioned on any piecewise smooth 3D-curve satisfying the very

generic, Tuy’s conditions and uses only x-rays passing through the ROI. Our ROI

reconstruction algorithm converges for su�ciently large spherical ROIs within the

density support at exponential speed. This claim was verified using simulated acqui-

sition of ROI-truncated cone-beam projection data for various acquisition geometries,

including the twin-circular curve and the spherical spiral curve.

1.2 Outline

This thesis is divided into 12 chapters including the Introduction.

Chapter 2 reviews the current state of the art local CT reconstruction from

truncated projection data.

Chapter 3 recalls thoroughly the classical mathematical theory of cone-beam

computed tomography. We introduce the cone-beam transform, which integrates an

appropriate function f over half-lines in R3. To acquire cone-beam data, the source

of the cone-beam moves along a smooth curve in R3 that surrounds the support of f .

The aim of cone-beam CT is to reconstruct a density f from its cone-beam transform.

We discuss the well-known Tuy’s condition [59] of the source curve, which determines

whether an exact inversion of the cone-beam transform is possible, and give examples

of curves that satisfy the condition. In addition, we present Tuy’s exact cone-beam

inversion formula [59]. Although Tuy’s formula is not computationally e�cient, many

inversion formulas have been derived from it.

In Chapter 4, we introduce the classical 3D Radon transform, which maps an

appropriate function f on R3 to its integrals over planes. A few important proper-

4



1.2 OUTLINE

ties of the Radon transform are briefly discussed. The most remarkable theorem in

tomography, the Fourier Slice Theorem, is presented, and is used to derive the inver-

sion of the Radon transform. An e�cient numerical method to invert the 3D Radon

transform is presented.

In Chapter 5 we present Grangeat’s fundamental relation between the 3D Radon

transform and the cone-beam transform [20]. We explain how this link between

the 3D Radon transform and the cone-beam transform can be exploited to devise a

computationally e�cient cone-beam inversion method. Finally, we present a robust

filtered backprojection (FBP) type cone-beam inversion method, derived by Defrise

and Clack [13]. This method is a variant of Grangeat’s original inversion formula.

For proper medical diagnosis, it is important to produce high quality CT images.

It is just as important to decrease the overall x-ray radiation exposure on patients

to decrease health risks. In chapter Chapter 6, we introduce the notion of recon-

struction via ROI truncated cone-beam transform, where the cone-beam rays are only

allowed to pass through a fixed region-of-interest within the support of the density.

We present a new algorithm for accurate reconstruction from truncated cone-beam

projections acquired on arbitrary curves satisfying Tuy’s condition. A major compo-

nent of our ROI reconstruction algorithm requires e↵ective regularization of densities.

Chapter 7 discusses several wavelets-based regularization methods .

In Chapter 8, we present two numerical non-truncated cone-beam inversion al-

gorithms based on Grangeat’s formula with cone-beam data acquired from a generic

smooth curve satisfying Tuy’s condition. Next, we describe the numerical imple-

mentation of our ROI reconstruction algorithm. The algorithm is implemented on a

general setting and applies to any curve satisfying Tuy’s condition.

5



1.2 OUTLINE

Numerical ROI reconstruction results for a set of 3D images are presented in

Chapter 9, with acquisition on the twin-circular curve. We choose arbitrary spheres

of various radii placed within the support of the density f as the ROIs. To prove the

robustness and accuracy of our method, we compare it against a naive method for

ROI reconstruction, which applies inversion method directly on the truncated cone-

beam data. Our ROI reconstruction algorithm performed much better, giving relative

reconstruction of 10% in most cases, for relatively small spherical ROIs strictly within

the density. Our numerical experiments confirm that the algorithm converges to an

✏-accurate image within the ROI, given that the ROI is a sphere which is no smaller

than a critical radius, which depends on the level of accuracy demanded.

In Chapter 10, we present a non-truncated cone-beam inversion method based

on the exact cone-beam FBP formula, with acquisition on a non-standard spherical

spiral trajectory. We outline how an e↵ective source weighting function M can be

computed e�ciently. In Chapter Chapter 11, we validate our ROI reconstruction

algorithm, using the spherical spiral inversion technique developed in the previous

chapter, through numerical ROI reconstruction of several discretized densities.

In Chapter 12, we discuss some limitations of our algorithm and possible exten-

sions to intriguing research areas.

Note: Material in this thesis has appeared elsewhere. Parts of Chapter 6 has

appeared in [3] and parts of Sections 6.4 has appeared in [8].
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Chapter 2

State-of-the-Art Region-of-Interest

Tomography

The problem of region of interest (ROI) reconstruction from truncated projections in

CT has been studied in multiple papers and using a variety of methods. According

to Natterer [41], incomplete data problems (in 2D or 3D) can be categorized into the

following three categories:

1. Limited angle/source problems. Here, if the source curve � is parametrized as

{s(�) : � 2 ⇤}, then the non-truncated projection data is acquired from a

subset {s(�) : � 2 ⇤0} of �, where ⇤0 ⇢ ⇤.

2. Exterior problems. Here, the projection data is acquired from all source posi-

tions, and for a fixed region of interest C, measurements of all x-rays passing

through C are discarded. This problem aims to recover the density outside of

C.

3. Interior problems. Here, the projection data is acquired from all source posi-

7



2.1 WAVELETS-BASED ROI-RECONSTRUCTION

tions, and for a fixed region of interest C, line-integral measurements are kept

only for the rays passing through C. This problem aims to recover the density

strictly restricted to the region of interest C.

Natterer proved in [41] that the interior problem does not have an unique solution

in general. Regardless of the loss of uniqueness, there has been extensive research in

local reconstruction from ROI-restricted projections in CT literature (see [9] and [60]

recent reviews). In this chapter, we present briefly a few approximate and exact

methods for 2D and 3D ROI-reconstruction from truncated projections.

2.1 Wavelets-based ROI-Reconstruction

In the past, wavelets have been used to localize the 2D Radon transform in order

to solve the the two-dimensional interior problem. Papers by Tim Olson and Joe

Destefano [47, 48] developed a multi-resolution method that uses the properties of

wavelets to localize the 2D Radon transform in order to reconstruct approximately a

local region of interest. This wavelet-based tomographic method is not truly local as

it requires line-integral measurements of the density from all rays passing through the

region of interest C and a small fraction of the rays not passing through C. Rashid-

Farrokhi et al [50] developed a wavelet-based method which uses locally restricted

projection data, and found that the reconstruction error of their method depends on

the amount of data used in the algorithm. One of the first 3D ROI cone-beam CT

problem in the wavelet framework was first solved by Zhao and Wang [68]. Their main

contribution was the reformulation of the FDK cone-beam reconstruction algorithm

from the wavelet perspective, using both full and half-circular non-truncated cone-

8



2.2 KNOWN SUB-REGION ROI-RECONSTRUCTION

beam data acquisition, for either global or local approximate reconstruction without

severe image artifacts.

One should note that all the ROI-reconstruction methods mentioned above are

approximate and have no theoretical basis for exact and stable reconstruction. Re-

cently, Klann et al. [30] presented a wavelet-based algorithm for 2D region of interest

tomography form ROI-restricted data which converges to the exact density. In the

paper, it is proved that piecewise constant densities f of the following form

f(x) =
NX

n=1

an1⌦n(x),

where each set ⌦n is compact with piecewise smooth boundary and nontrivial interior,

are determined by their ROI-restricted x-ray data. Klann et al. [30] developed an

algorithm using a Haar wavelet basis and used a weighted `p-penalty with weights

that depend on the relative location of wavelets to the region of interest. Various

tests were performed on phantoms to demonstrate the e↵ectiveness of the method.

Besides requiring densities to be piecewise constant, their method assumes the ideal

case of a noiseless acquisition.

2.2 Known Sub-region ROI-Reconstruction

In many practical situations, the density f is known on a sub-region in advance, such

as air in airways, blood through vessels, or images from prior CT scans. Courdurier

et al. [10] showed that when the attenuation function is a priori known in a sub-

region, a reduced set of x-ray measurements are enough to uniquely determine the

whole density. Stability estimates were derived to show that reconstruction can be

9



2.3 SPARSE ROI-RECONSTRUCTION

stable near the region the attenuation is known. Similar types of ROI-reconstruction

problems with a priori knowledge of the ROI density were explored in [64,65]. How-

ever, these methods have serious limitations in the sense that the precise sub-region

knowledge maybe unavailable in many important cases such as perfusion cardiac

CT/micro-CT [29].

2.3 Sparse ROI-Reconstruction

Recent research e↵orts have been made in region-of-interest reconstruction from ROI-

truncated projections based on compressive sensing (CS). The Nyquist-Shannon sam-

pling theorem states that a signal must be sampled at least twice as fast as its max-

imum frequency for a an exact recovery. The CS theory has the power to sample

compressible signals at a rate much less than the Nyquist rate and yet allow accu-

rate reconstruction of these signals. Using the theory of compressed sensing, Yu and

Wang [66] recently showed that exact 2D region-of-interest reconstruction is theoret-

ically achievable with ROI-truncated projection data if the density f is a piecewise

polynomial on the ROI. Their method uses ROI-truncated data to iteratively recon-

struct the interior by minimizing the total variation of a reconstructed image. It was

empirically demonstrated that the interior problem is stable when the density f is

piecewise polynomial on the ROI.

Recently, Katsevich et al. [29] considered a similar problem as above, but with

the assumption that fROI , the density f restricted to the region of interest, is a

polynomial, rather than being piecewise polynomial. Assuming that the degree of

the polynomial of fROI is known, along with some other fairly mild assumptions,

a stability estimate for the interior problem was presented. In addition, Katsevich

10



2.4 ITERATIVE ROI-RECONSTRUCTION ALGORITHMS

et al. [29] proved the following general uniqueness result: if there is an open set

C ⇢ supp f on which fROI is the restriction of a real-analytic function, then fROI

is uniquely determined by the x-ray measurement restricted only to the rays passing

through C.

Generalized total variation based interior tomography, in 2D and 3D, is explored

in [34, 62]. The authors proposed a novel multiscale reconstruction method, which

uses the Bedrosian identity of the Hilbert transform to show that the high frequency

parts of the one-dimensional signals can be quickly recovered analytically. This im-

plies that computationally expensive iterative reconstruction need only be applied to

low resolution images in the down-sampled domain, which significantly reduces the

computational burden. Recall that non-truncated cone-beam acquisition from planar

curves do not provide su�cient data for exact reconstruction (see Tuy’s condition

in Chapter 3). It was shown that for acquisition from incomplete cone-beam source

curves (e.g., a circular curve), their multi-scale interior tomography approach can

be combined with a novel spectral blending method to mitigate cone-beam artifacts

from missing frequency regions. The e�cacy of their algorithm was validated using

truncated cone-beam data acquired from helical and circular trajectories.

2.4 Iterative ROI-Reconstruction Algorithms

In the past, iterative methods were shown to provide a more flexible alternative for

the reconstruction from truncated or incomplete cone-beam projections since they

can be applied to essentially any type of acquisition mode [55, 69]. However, those

ROI-reconstruction methods are mostly heuristic and provide no theoretical justifi-

cation for convergence. The ROI-reconstruction method presented in this thesis is
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2.4 ITERATIVE ROI-RECONSTRUCTION ALGORITHMS

an extension to the method presented in the PhD thesis of our collaborator Anando

Sen [51], who has provided constant guidance in the process of writing this thesis. In

each step of the iterative ROI-reconstruction algorithm in [51], a non-truncated cone-

beam inversion D�1 is applied to the ROI-truncated projection data, followed by an

application of a density regularization (local averaging or hard wavelets thresholding)

to the reconstructed density. One shortcoming of the algorithm from Sen’s thesis is

that it was only used with cone-beam inversion operators D�1 that rely on specific

imaging geometries. For example, Sen explored in [51] ROI-reconstruction using the

Fourier-based cone-beam filtered backprojection, which requires cone-beam sources

to lie on the sphere surrounding the density support.

12



Chapter 3

Classical Non-truncated

Cone-beam Reconstruction

In cone-beam tomography, one considers the exact reconstruction of a suitable three-

dimensional density function by inverting its non-truncated cone-beam transform.

The cone-beam transform integrates a density over all half-lines originating from a

source point, which is located on a smooth curve in the three-dimensional space. By

non-truncated cone-beam transform, we mean that each nonzero line integral value

of the density is available. The case when some of the line-integral data are missing is

known as the truncated cone-beam transform. Not all source curves actually permit

an exact inverse of the cone-beam transform. Only a family of curves satisfying a set

of special conditions permit exact reconstruction of a compactly supported density

from cone-beam measurements. A handful of researchers, including Tuy [59], Smith

[56], and Grangeat [19,20], independently developed exact cone-beam reconstruction

formulas in the 80s and 90s. Although their formulas appear to be di↵erent, they all
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3.1 DEFINITIONS

require the same condition on the source curve for exact reconstruction of the density.

In this chapter, we present Tuy’s cone-beam inversion formula [59] and the com-

pleteness conditions for exact reconstruction of a density from the non-truncated

cone-beam transform.

3.1 Definitions

Let S2 denote the unit sphere centered at the origin in R3. Recall that a ray r(s, �)

is a half-line in R3 that originates from a point s and extends in the direction of a

unit vector � 2 S2. That is,

r(s, �) = {x 2 R3 : s+ t�, t 2 R}.

Assume that the density function f : R3 ! R is smooth and has a compact support

⌦. The cone-beam transform integrates a density function f over rays in R3, where

the sources of the beam belong to a smooth three-dimensional curve �. We assume

that ⌦ ⇢ B and � ⇢ V , where B is a closed ball in R3 and V is a compact subset of

R3 \B.

Definition 3.1.1. The cone-beam transform (or the divergent beam transform) D

of a function f : R3 ! R of compact support is defined as the following integral

transform

Df(s, �) =

Z 1

0

f(s+ t�) dt, s 2 R3, � 2 S2. (3.1)

The value Df(s, �) represents the integral of f over the ray r(s, �). We refer to

the point s 2 R3 as the source of the cone-beam transform. In a practical medical
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3.1 DEFINITIONS

�
r(s,�)

s �

�

Figure 3.1: The cone-beam transform of the density function f integrates f over the
ray r(s, �) originating from the source s and in the direction � 2 S2.

imaging setting, the sources of the cone-beam are located on a smooth curve � ⇢ R3

surrounding the support ⌦ of f (see Figure 3.1). For a fixed source position s 2 �,

the set of all values Df(s, �) is called the cone-beam projection of f . Note that the

cone-beam projection of f from a source s 2 � is obtained by integrating f only over

those rays r(s, �) that intersect ⌦. The transform is given its name since these rays

originating from source s and penetrating the support ⌦ form the shape of a cone.

Remark 3.1.2. For a compactly supported 3D density function f , its X-ray trans-

form Xf is defined as [43]

Xf(x, �) =

Z 1

�1
f(x+ t�) dt, x 2 ⌦, � 2 S2.
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3.2 A BRIEF REVIEW OF DISTRIBUTIONS

We see that the cone-beam transform and the X-ray transform are identical, except

when x 2 ⌦. Many researchers in the tomography literature use these terms inter-

changeably.

3.2 A Brief Review of Distributions

Schwartz’s theory of distributions has many applications in various fields of science

and engineering. The theory of distrubtions plays a key role in the derivations of many

popular reconstruction algorithms of computed tomography. For example, the 2D

Radon inversion formula uses the Hilbert Transform of a function, which is an integral

that does not converge in the ordinary sense [41, 43]. In 3D cone-beam computed

tomography, intermediary functions in Tuy’s formula [59], Grangeat’s formula [20],

and Smith’s formula [56], use distributions that may or may not exist as functions in

the ordinary sense. In this section, we briefly discuss the concept of distributions and

some results relevant to derivation of inversion formulas in cone-beam tomography.

An in-depth study on the topic of distributions can be found in [4, 18, 36].

The Schwartz Space

An infinitely di↵erentiable function  on Rn is rapidly decreasing at infinity if

lim
||x||!1

|xp@q (x)| = 0

for all p 2 Nn and for all q 2 Nn, where Nn is the set of n-tuples of positive integers. In

other words, a smooth function  is rapidly decreasing if  and all of its derivatives

decrease faster than any inverse power of ||x|| at infinity. The class of all rapidly
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3.2 A BRIEF REVIEW OF DISTRIBUTIONS

decreasing functions denoted by S(Rn) forms a vector space over Rn. One commonly

refers to S(Rn) as the Schwartz space of functions.

A sequence of functions { j} converges to zero in S(Rn) if xp@q (x)! 0 uniformly

on Rn as j !1, for all p, q 2 Nn [4]. A linear functional T over S(Rn) is said to be

continuous if for any sequence { j} converging to zero in S(Rn), we have

lim
j!1

hT, ji = 0,

where hT, i represents the value of T on  2 S(Rn).

Distributions and their Properties

A continuous linear functional T over S(Rn) is called a distribution or a generalized

function. A distribution can be defined over other classes of test functions, such

as C1
c (Rn), the space of compactly supported infinitely di↵erentiable functions. To

distinguish from others, a distribution over the test function space is S(Rn) is called

a tempered distribution. The set of all distributions over S(Rn) is denoted by S 0(Rn)

Any locally integrable function f can be used to generate a distribution:

hf, i =
Z

Rn

f(x) (x) dx. (3.2)

Any such distribution which can be associated with an ordinary function is said to

be regular. There exist many distributions in which are not regular. For example,

Dirac’s delta distribution on S(R):

h�, i =  (0), for all  2 S(R). (3.3)
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3.2 A BRIEF REVIEW OF DISTRIBUTIONS

One can easily verify that � is a continuous linear functional on S(R). However, there

exist no ordinary function which has the sifting property of the delta distribution.

Such distributions that cannot be generated by ordinary functions are called singu-

lar. In practice, it is quite common to see singular distributions written as ordinary

functions. For example, the values of the delta distribution is usually written as

h�, i =
Z 1

�1
�(x) (x) dx =  (0).

It is understood that the integral is written formally to be consistent with the defini-

tion of regular distributions in (3.2). One should keep in mind that the �-distribution

does not make sense point-wise as ordinary functions, although it appears as �(x)

inside the formal integral.

If T is a distribution, then @qT , the partial derivative of T of order q 2 Nn exists

as a distribution in the following sense:

h@qT, i = (�1)|q|hT, @q i, for all  2 S(Rn),

where |q| =
Pn

i=1

qi. If T is generated by a di↵erentiable function f of order q 2 Nn,

then its distributional derivatives and classical derivatives coincide. It is interesting to

note that functions which do not have derivatives in the classical sense have derivatives

in the sense of distributions. Using distributional derivatives and the definition of the

�-distribution, one can define the singular distribution �0:

h�0, i = �h�, 0i = � 0(0), for all  2 S(R). (3.4)
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3.2 A BRIEF REVIEW OF DISTRIBUTIONS

Any singular distribution can be seen as the limit of a sequence of regular distributions

[18, 36]. If T is a distribution on S(Rn), then there exist a sequence of regular

distributions {Tn} in S 0(Rn) such that

lim
n!1

hTn, i = hT, i, for all  2 S(Rn). (3.5)

Note that di↵erent regular sequences can lead to the same value of limn!1hTn, i.

Hence, a singular distribution T is associated with a class of equivalent regular se-

quences, where each sequence satisfies (3.5). For example, the �-distribution can be

approximated by [18]

h�, i = lim
✏!0

+

⌧
1

⇡

✏

x2 + ✏2
, (x)

�
,

or,

h�, i = lim
a!1

⌧
sin ax

⇡x
, (x)

�
,

for all  2 S(R). When a distribution T is the limit of a regular sequence {Tn}, one

commonly writes

lim
n!1

Tn = T,

where the limit is to be understood in the sense of distributions, as in (3.5).

Distributions are only compared on open sets [18,36]. Two distributions T and T 0

in S 0(Rn) are said to be equal on an open set ⌦ ⇢ Rn if hT, i = hT 0, i for all test

functions  2 S(Rn) with supp ⇢ ⌦. This fact allows one to compare a singular

distribution with a regular distribution generated by a locally integrable function on

certain open sets. If T 2 S 0(Rn) and f is a locally integrable function on Rn such
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3.3 FOURIER TRANSFORM OF THE CONE-BEAM TRANSFORM AS A
DISTRIBUTION

that

hT, i = hf, i

for all � 2 S(Rn) with supp ⇢ ⌦, where ⌦ is some open set of Rn, then T = f on

⌦ in the sense of distributions. For example, the �-distribution is equal to zero on

(�1, 0) and (0,1).

The Fourier transform  ̂ of a test function  2 S(Rn) is defined as usual:

 ̂(⇠) = (2⇡)�n/2

Z

Rn

 (x) e�ihx,⇠i dx, ⇠ 2 Rn.

Note that  ̂ is a function rapidly decreasing at infinity since  2 S(Rn) [4]. Each

tempered distribution has a well-defined Fourier transform. If T is a tempered dis-

tribution, then its Fourier transform bT is a tempered distribution defined by

hbT , i = hT,  ̂i, for all  2 S(Rn). (3.6)

Each property of the classical Fourier transform on S(Rn) also holds for the distribu-

tional Fourier transform. These results and their proofs can be found in [4, 18].

3.3 Fourier Transform of the Cone-beam Trans-

form as a Distribution

As before, assume that the density f is smooth and compactly supported. For the-

oretical purposes, one can extend the cone-beam transform Df from R3 ⇥ S2 to a
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3.3 FOURIER TRANSFORM OF THE CONE-BEAM TRANSFORM AS A
DISTRIBUTION

function on R3 ⇥ R3 \ {0}

Df(s, y) =

Z 1

0

f(s+ ty) dt =
1

||y||Df

✓
s,

y

||y||

◆
, s 2 R3, y 2 R3 \ {0}. (3.7)

Denote Dsf(y) ⌘ Df(s, y) when the source s of the cone-beam transform is fixed.

As f is compactly supported, for each s 2 R3, there exists a constant C(s) > 0

such that |Dsf(�)|  C(s) for all � 2 S2. As the behavior of Dsf is similar to the

function ||x||�1, the function Dsf generates a tempered distribution over S(R3) (see

Tuy [59]). In fact, Dsf is a homogeneous distribution of degree �1. Thus, the Fourier

transform of Dsf also exists as a tempered distribution, which is defined in terms of

scalar products as

hdDsf, i = hDsf,  ̂i, for all  2 S(R3). (3.8)

Tuy [59] observed that the Fourier transform of the cone-beam transform can

be seen as a distributional limit of a regular sequence of distributions, generated by

locally integrable functions. The ordinary functions in the sequence are expressed in

terms of the Fourier transform of the original density function. This theorem is the

main ingredient of the derivation of Tuy’s cone-beam inversion formula.

Theorem 3.3.1. Let bf be the Fourier transform of f 2 C1
c (R3) and let {Tm} be the

sequence of regular distributions defined by

Tm(⇠) =

Z m

0

⇢ bf(⇢⇠)ei⇢hs,⇠i d⇢, m > 0, ⇠ 2 R3. (3.9)
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3.4 TUY’S INVERSION FORMULA

Then following holds for any test function  2 S(R3):

hdDsf, i = lim
m!1

hTm, i = lim
m!1

Z

R3

Tm(⇠) (⇠) d⇠. (3.10)

Proof. See Tuy [59, Proposition 2].

3.4 Tuy’s Inversion Formula

In 1983, Tuy [59] derived the very first closed-form exact inversion formulas for the

cone-beam transform with acquisition from a bounded smooth curve in R3 satisfying

a set of weak conditions. His formula served as a starting point for many other

cone-beam inversion methods.

The 3D density to be reconstructed is the real integrable function f with com-

pact support ⌦. In Tuy’s inversion method, the cone-beam sources are placed on

a bounded, continuous, and piecewise di↵erentiable curve � in R3, represented by a

vector valued function s : ⇤! R3,

� = {s(�) 2 R3 : � 2 ⇤},

where ⇤ is a finite union of intervals of the real-line. We assume that ⌦ ⇢ B and

� ⇢ V , where B is a closed ball in R3 and V is a compact subset of R3 \ B. Tuy’s

inversion formula is valid if for all x 2 ⌦ and for all � 2 S2, the following conditions

hold true:

1. There exists � = �(x, �) 2 ⇤ such that hx, �i = hs(�), �i,

2. hs0(�), �i 6= 0.
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3.4 TUY’S INVERSION FORMULA

These conditions are referred to as Tuy’s conditions. It can be easily seen why

a curve consisting of a circle fails Tuy’s conditions. Take � to be a circle of radius

R > 0 on a plane ⇧. Choose x 2 ⌦ \ (R3 \⇧); that is, x is a point in ⌦ which is not

in P . Note that the plane parallel to ⇧ which passes through x does not intersect �.

Thus, we see that this curve � fails to satisfy Condition 1.

Theorem 3.4.1 (Tuy [59]). Let f 2 C1
c (R3). Then for x 2 supp f ,

f(x) = �i (2⇡)�3/2

Z

S2

1

hs0(�), �i @�
⇣
\Ds(�)f(�)

⌘
dQ(�), (3.11)

where � = �(x, �) is such that hx, �i = hs(�), �i and hs0(�), �i 6= 0, and dQ is the

infinitesimal surface area on S2.

Proof. Recall that the Fourier transform of Dsf exists as a tempered distribution and

by Theorem 3.3.1, we have

dDsf(⇠) = lim
m!1

Z m

0

⇢ bf(⇢⇠)ei⇢hs,⇠i d⇢, ⇠ 2 R3, (3.12)

where the limit is understood in the sense of distributions. It can be shown that

@�(\Ds(�)f), the derivative of \Ds(�)f with respect to the source parameter also exists

as a tempered distribution, and it can be expressed as the limit of a sequence of

regular distributions [59, Proposition. 1]:

@�(\Ds(�)f(⇠)) = ihs0(�), ⇠i lim
m!1

Z m

0

⇢2 bf(⇢⇠)ei⇢hs(�),⇠i d⇢. (3.13)

Again, the limit above is understood as a distribution. Recall that the 3D Fourier
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3.4 TUY’S INVERSION FORMULA

inversion formula in spherical coordinates reads

f(x) = (2⇡)�3/2

Z

S2

Z 1

0

⇢2 bf(⇢�)ei⇢h�,xi d⇢ dQ(�), x 2 R3. (3.14)

The scalar product h�, xi can be replaced with h�, s(�)i as Tuy’s assumptions on

the source curve � guarantee that there always exists at least one � 2 ⇤ such that

hx, �i = h�, s(�)i for any ordered pair (x, �) 2 supp f ⇥ S2. Using this substitution

along with with (3.13) and (3.4), we arrive at Tuy’s cone-beam inversion formula:

f(x) = �i (2⇡)�3/2

Z

S2

1

hs0(�), �i @�
⇣
bDs(�)f(�)

⌘
dQ(�). (3.15)

It should be obvious to the reader why the assumption hs0(�), �i 6= 0 is necessary.

Remark 3.4.2. One should note that Tuy’s cone-beam inversion formula (3.11) holds

in the sense of distributions. This means that for each open neighborhood U of

⌦ ⌘ supp f , the original density function f and the left-hand side of (3.11) denoted

by F , satisfy

hf, i = hF, i,

for all test function  2 S(R3) such that supp is contained in U . This allows

one to conclude that f = F on any open set U contained in ⌦. It was observed

by Zeng, Clack, and Gullberg [67] more than a decade after Tuy’s inversion formula

was derived that further modification of the Tuy formula (3.11) leads to an exact

cone-beam inverse involving only ordinary functions. We will omit the discussion of

Zeng et al’s formula as it is theoretically equivalent to Grangeat’s cone-beam inversion

formula [43] presented in Section 5.2.
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3.5 CONDITIONS ON THE SOURCE CURVE

3.5 Conditions on the Source Curve

Let us repeat Tuy’s conditions on the source curve. For a smooth density f : R3 ! R

compactly supported on ⌦, a bounded and smooth curve � = {s(�) : � 2 ⇤} where

⇤ is a finite union of intervals in the real line, the Tuy conditions are

Condition 1: There exists � = �(x, �) 2 ⇤ such that hx, �i = hs(�), �i,

Condition 2: hs0(�), �i 6= 0.

In other words, every plane intersecting the support ⌦ must intersect the source

curve � non-tangentially at least once. If these conditions are fulfilled, Theorem 3.4.1

guarantees exact recovery of f(x) for all x 2 ⌦ from the cone-beam transform. For

this reason, the source curves � which satisfy Tuy’s conditions are said to be complete.

We have pointed out earlier that circular orbit � (Figure 3.2a) surrounding the

support ⌦ fails to be a complete curve in the sense of Tuy as there exist many planes,

such as the ones parallel to plane containing the orbit, that intersect ⌦ without

intersecting �. Thus, exact reconstruct is not possible from circular cone-beam ac-

quisition. The following are examples of curves that satisfy Tuy’s conditions, given

that the object ⌦ is su�ciently small and surrounded by the curve �:

• Two perpendicular circles (Figure 3.2b)

• Twin circles connected by straight line segment (Figure 3.2c)

• A circular helix (on the surface of a cylinder) (Figure 3.2d)

• A spherical helix (on the surface of a sphere)
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3.5 CONDITIONS ON THE SOURCE CURVE

(a)

(b)

(c)
(d)

Figure 3.2: Cone-beam source courves: (a) circle, (b) twin circles in orthogonal planes,
(c) two parallel circles joined by a line segment, (d) circular helix.

Note that even if the source curve � satisfies Tuy’s first condition, it may or

may not satisfy the second condition for each pair (x, �) 2 ⌦ ⇥ S2. The second

condition of Tuy fails when there exists � 2 ⇤ such that hx, �i = hs(�), �i, but

hs0(�), �i = 0. This means that the plane intersecting a point x 2 ⌦ goes through

a cone-beam source s(�) 2 �, but the plane is tangent to the curve at this point of

intersection. One cannot avoid checking the second condition as it leads to division

by zero in Tuy’s inversion formula (3.11). Tuy’s completeness condition is fulfilled

if, in addition to satisfying condition 1, for each tangential intersection s(�) with a
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3.5 CONDITIONS ON THE SOURCE CURVE

plane passing through x 2 ⌦ orthogonal to � 2 S2, one can find at least one �̃ 2 ⇤

such that s(�̃) intersects with the same plane non-tangentially, i.e. hs0(�̃), �i 6= 0.

3.5.1 Twin-Circular Curve

We shall refer to the curve � consisting of two circles of radius R > 0 with the same

center belonging to orthogonal planes as the twin-circular curve (see Figure 3.2b).

The twin-circular curve is thus far the simplest cone-beam scanning curve which

satisfies Tuy’s condition.

Let us demonstrate that a twin-circular curve � satisfies Tuy’s conditions if the

radius R > 0 is large enough with respect to the object.. We may explicitly define

� = �H [ �V , with

�H = {s(�) 2 R3 : s(�) = (R cos�, R sin�, 0),� 2 [0, 2⇡)},

�V = {s(�) 2 R3 : s(�) = (R cos�, 0, R sin�),� 2 [2⇡, 4⇡)},

and ⌦ ⌘ supp f is the closed ball ||x||  L. Let us also denote by ⇧H and ⇧V

the planes containing the circles �H and �V , respectively. Note that � is continuous

on [0, 4⇡) and di↵erentiable everywhere on [0, 4⇡), except for � 2 {0, 2⇡}. The

finite number of singularities of � can be dismissed since such a set has Lebesgue

measure zero, and Tuy’s hypothesis requires � to be piecewise di↵erentiable. Thus,

the regularity conditions of � are fulfilled for the twin circles.

Tuy’s first condition — every plane intersecting ⌦ must intersect � at least once —

is satisfied if and only if the radius R of the two circles �H and �V satisfy R >
p
2L.

This condition can be easily verified through geometric arguments.
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3.5 CONDITIONS ON THE SOURCE CURVE

To verify that Tuy’s second condition is fulfilled for �, we show here that whenever

a plane passing through some x 2 ⌦ intersects the horizontal circle �H , the intersec-

tion is almost always non-tangential, and when the intersection with �H is tangential,

one can obtain a non-tangential intersection on the vertical circle �V . Suppose that

for some (x, �) 2 ⌦ ⇥ S2, there exists � = �(x, �) 2 [0, 2⇡) such that hx, �i =

hs(�(x, �)), �i. We write x = (x
1

, x
2

, x
3

) and �(✓,�) = (cos ✓ cos�, sin ✓ cos�, sin�)

with ✓ 2 [0, 2⇡],� 2 [�⇡/2, ⇡/2]. The planes orthogonal to �(·,±⇡/2) and passing

through all points x 2 ⇧H\⌦ intersect � in infinitely many locations on the horizontal

circle �H with hs0(�), �i = 0 and twice on the vertical circle �V for � 2 {2⇡, 3⇡} where

s0(�) does not exist for � = 2⇡. So for pairs of (x, �) in the set (⇧H\⌦)⇥{�(·,±⇡/2)},

there exists only � = 3⇡ such that hx, �i = hs(�), �i with hs0(�), �i 6= 0. For all other

pairs (x, �) 2 ⌦⇥S2 when there exists a solution � = �(x, �) 2 [0, 2⇡) to the equation

hx, �(✓,�)i = hs(�(x, �(✓,�))), �(✓,�)i, (3.16)

then � solves the following equation

cos ✓ cos� cos�+ sin ✓ cos� sin� =
x
1

cos ✓ cos�+ x
2

sin ✓ cos�+ x
3

sin�

R
. (3.17)

Since � 6= ±⇡/2 by assumption, dividing both sides of the equation above by cos �

and applying a trigonometric identity we obtain

cos(�� ✓) =
x
1

cos ✓ + x
2

sin ✓ + x
3

tan�

R
. (3.18)
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3.5 CONDITIONS ON THE SOURCE CURVE

Thus, we must have that

����
x
1

cos ✓ + x
2

sin ✓ + x
3

tan�

R

���� < 1, (3.19)

by (3.18) and the assumption that R >
p
2L. Let ↵ be the unique angle in [0, 2⇡)

such that cos↵ = x1 cos ✓+x2 sin ✓+x3 tan�
R . Then

� = ✓ ± ↵ + k⇡ (3.20)

solves (3.16), where k is some integer such that � falls within the interval [0, 2⇡). We

now have to check that � given in (3.20) also satisfies hs0(�), �(✓,�)i 6= 0. Note that

hs0(�), �(✓,�)i = 0 if and only if

�R cos ✓ cos� sin�+R sin ✓ cos� cos� = 0 (3.21)

if and only if tan ✓ = tan� if and only if ✓ = �. Using this in (3.20), we have

↵ = 0 or ↵ = ⇡, which implies
��x1 cos ✓+x2 sin ✓+x3 tan�

R

�� = 1. But this cannot be

true, by (3.19). Thus, hs0(�), �(✓,�)i 6= 0 when � 2 [0, 2⇡) solves hx, �(✓,�)i =

hs(�(x, �(✓,�))), �(✓,�)i. By symmetry of the twin circles, it is trivial to realize that

whenever planes intersecting ⌦ intersect the vertical circle �V , the intersections are

almost always non-tangential, and whenever a plane does intersect �V tangentially,

there exists one source position in �H such that the intersection with the same plane

is not tangential.
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3.6 STABILITY OF CONE-BEAM RECONSTRUCTION

3.6 Stability of Cone-beam Reconstruction

Image reconstruction problems (from non-truncated or non-restricted data) are not

well-posed in the sense of Hadamard, which means one of the following [43]

1. They cannot be solved.

2. They can be solved, but not uniquely.

3. They can be solved uniquely, but the solution does not depend continuously on

the data.

When one of the above holds true, we call such a problem an ill-posed problem. The

problem of reconstruction of a 2D density from its line integrals (2D Radon transform)

has a unique solution, given by the 2D Radon inversion formula [41,43]. However, the

problem is still ill-posed since the inversion procedure does not continuously depend

on the projection data. The degree of ill-posedness of a reconstruction problem is

usually analyzed by singular value decomposition (SVD) or Sobolev space estimates

(see [43]). As the singular values of the 2D Radon transform decay at polynomial

speed, the density reconstruction problem from the 2D Radon data is modestly ill-

posed. For this reason, the discretized 2D Radon inversion can be implemented

without serious numerical instability.

The non-truncated cone-beam reconstruction problem,

recover f, from cone-beam data g = Dsf, s 2 �

is an ill-posed problem. We have seen that inversion formula (3.11) admits a unique

solution if Tuy’s conditions on the smooth and bounded source curve � are fulfilled.
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3.6 STABILITY OF CONE-BEAM RECONSTRUCTION

Finch [17] gave estimates in scales of Sobolev spaces when the source curve � satisfies

Tuy’s conditions to give a degree of ill-posedness of the cone-beam reconstruction

problem. Thus, one can conclude that if � satisfies Tuy’s conditions, that is,

every plane intersecting the support of f must intersect the source curve

� transversally at least once,

then a stable reconstruction of f is possible from its cone-beam data, regardless of

the exact inversion method used (other exact inversion formulas will be discussed in

the next chapter). On the contrary, if the source curve � fails Tuy’s conditions, i.e.

if there is a plane that intersects supp f which does not pass through �, then the

reconstruction procedure is unstable [17]. Such instabilities can result in severe arti-

facts in the digital implementations. For example, most popular cone-beam inversion

algorithms use cone-beam data acquired from the circular trajectory, but artifacts in

the vertical direction of the reconstructed images are prominent due to the fact that

a circular curve fails Tuy’s conditions. Various kinds of artifacts associated with the

circular trajectory can be found in [35].

The conditions on the source curve discussed in Section 3.5 determines the stability

of the cone-beam reconstruction problem. For a stable and exact inverse of the

non-truncated cone-beam transform, the source curve � must meet Tuy’s conditions.

The same stability condition also applies for our proposed inversion algorithm of

the truncated cone-beam transform in Chapter 6. Truncated cone-beam inversion

procedures based on curves violating Tuy’s conditions are severely unstable [32].
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Chapter 4

The 3D Radon Transform

The Radon transform is one of the most important integral transforms in the field

of computerized tomography. In two dimensions, it integrates densities over parallel

lines and in three dimensions, it integrates densities over planes. Johan Radon’s

famous paper from 1917 [49] gave a very simple formula to invert the n-dimensional

Radon transform. Radon’s inversion formula is very useful in R2, as it allows one to

invert the X-ray transform (X-ray transform and the Radon transform are identical

in R2). In the early CT literature, three-dimensional Radon inversion formula lacked

interest from CT researchers. Unlike the X-ray or cone-beam transform, there is no

practical realistic means of collecting 3D Radon data (plane integrals of the density).

Grangeat [19] first found a link between the cone-beam transform and the 3D Radon

transform. One can derive a cone-beam inversion method as follows. First, convert

cone-beam data to 3D Radon data. Next, use the 3D Radon inversion formula to

recover the density function from the collected Radon data.

In this chapter, we first define the 3D Radon transform. Then we present the well-

known Fourier Slice Theorem, and use this theorem to derive the inversion formula
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4.1 DEFINITION

of the 3D Radon transform. Finally, we give an e�cient two-stage algorithm to

numerically implement the 3D Radon inversion formula. The connection between

the non-truncated cone-beam transform and the 3D Radon transform is presented in

Chapter 5.

4.1 Definition

The Radon transform is an integral transform which maps a density function f on

Rn to its integrals over hyperplanes in Rn. The two-dimensional Radon transform

integrates a function over lines in R2 and the three-dimensional Radon transform

integrates a function over planes in R3. For the discussion, we only consider the 3D

Radon transform and give some important concepts such as the Fourier Slice Theorem

and the inversion formula. An in-depth study of the general n dimensional Radon

transform can be found in [21,41,43]. Here, we will only concentrate on the 3D Radon

transform.

We denote by S2 the unit sphere in R3 centered at the origin. In practice, one

typically considers the 3D Radon transform of a real-valued function f that belongs

to C1
c (R3), the class all of functions on R3 that are infinitely di↵erentiable and

compactly supported.

Definition 4.1.1. Let ⇧(!, ⇢) = {x 2 R3 : hx,!i = ⇢}, the plane orthogonal to

! 2 S2 and signed distance ⇢ 2 R from the origin. For f 2 C1
c (R3), the 3D Radon

transform R of f is defined as

Rf(!, ⇢) =

Z

x2⇧(!,⇢)

f(x) d⇧(x), ! 2 S2, ⇢ 2 R, (4.1)
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4.1 DEFINITION

where d⇧ denotes the two-dimensional Lebesgue measure on the plane.

� �(�,�)

�

�

x1 x2

x3

0

Figure 4.1: The 3D Radon transform integrates a density function f over a plane
⇧(!, ⇢) orthogonal to ! 2 S2 and having signed distance ⇢ from the origin.

The value Rf(!, ⇢) is simply the integral of f computed over the plane ⇧(!, ⇢) in

R3. The Radon transform Rf can be viewed as a function on the cylinder S2⇥R. It

is obvious that Rf is an even function on S2 ⇥ R verifying Rf(�!,�⇢) = Rf(!, ⇢)

for all (!, ⇢) 2 S2 ⇥R. Note that the smoothness of f implies the smoothness of Rf

on S2 ⇥ R [43].

The Fourier transform of f 2 C1
c (R3) and its inverse are defined by

bf(⇠) = (2⇡)�3/2

Z

R3

f(x) e�ihx,⇠i dx, ⇠ 2 R3, (4.2)
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4.2 3D FOURIER SLICE THEOREM

f(x) = (2⇡)�3/2

Z

R3

bf(⇠) eih⇠,xi dx, x 2 R3. (4.3)

If g is a compactly supported smooth function on the cylinder S2 ⇥ R, i.e. g 2

C1
c (S2⇥R), then the partial Fourier transform of g in the second argument is defined

as

bg(!, �) = (2⇡)�1/2

Z 1

�1
g(!, s) e�is� ds, � 2 R, (4.4)

g(!, s) = (2⇡)�1/2

Z 1

�1
bg(!, �) ei�s d�, s 2 R. (4.5)

4.2 3D Fourier Slice Theorem

We begin with an important theorem in CT literature, known as the “Fourier Slice

Theorem” which connects the Fourier Transform and the Radon transform. This

theorem is also known as the “Central Slice Theorem” or the “Projection Theorem”.

Here we only present the 3D version of the theorem. The general case of the Fourier

Slice Theorem can be found in [41,43].

If f is smooth and compactly supported, then Rf is a smooth function defined

on S2 ⇥ R and it has a well-defined partial Fourier transform. By (4.4), the partial

Fourier transform F(Rf)! of Rf is defined as

F(Rf)!(�) = (2⇡)�1/2

Z 1

�1
Rf(!, ⇢) e�i⇢� d⇢, ! 2 S2, � 2 R. (4.6)

Theorem 4.2.1 (3D Fourier Slice Theorem). Let f be a smooth and compactly sup-
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ported function on R3. Then for ! 2 S2, � 2 R,

F(Rf)!(�) = 2⇡ bf(�!). (4.7)

Proof. See [21, 41].

In equation (4.7), bf denotes the 3D Fourier transform of f . The theorem basically

states that for a fixed unit vector ! 2 S2, the partial Fourier transform of the Radon

transform is equal to the “slice” of the 3D Fourier transform of f (apart from a

multiplicative factor 2⇡), where the slice is precisely the line passing through the

origin with direction ! in the Fourier domain.

4.3 Radon’s 3D Inversion Formula

Here we present the inversion formula for the 3D Radon transform, derived by Johan

Radon in his famous paper [49] in 1917. For a compactly supported smooth function

f on R3, the 3D Radon transform R maps f to its integrals over planes in R3.

The three-dimensional Radon inversion formula is given as a backprojection of the

second derivative of the Radon transform with respect to its second variable ⇢. For

a function g defined on S2 ⇥R and x 2 supp f , the 3D backprojection operator R] is

defined as

R]g(x) =

Z

!2S2
g(!, h!, xi) dQ(!), (4.8)

where dQ denotes the infinitesimal area element on the unit sphere S2. Thus, for

g = Rf , R]g(x) is the average value of all integrals of f on planes passing through x

[43]. In general, the backprojection operator is a mapping from the space of integrable
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4.3 RADON’S 3D INVERSION FORMULA

functions on the cylinder Sn�1 ⇥ R to the space of integrable functions on Rn

Theorem 4.3.1 (3D Radon Inversion Formula). Let f 2 C2

c (R3). Then for all

x 2 supp f ,

f(x) = � 1

8⇡2

Z

S2

@2

@⇢2
Rf(!, ⇢)

����
⇢=hx,!i

dQ(!). (4.9)

That is, f(x) = � 1

8⇡2R]( @2

@⇢2Rf(!, h!, xi)).

Proof. Denote eS to be any half of the unit sphere S2. The Fourier inversion formula

in spherical coordinates reads

f(x) = (2⇡)�3/2

Z

eS

Z

R
�2 bf(�!) ei�hx,!i d� dQ(!). (4.10)

Using the Fourier Slice Theorem (4.7), we get

f(x) = (2⇡)�2

Z

eS

Z

R
�2(2⇡)�1/2cRf(!, �) ei�hx,!i d� dQ(!) (4.11)

= �(2⇡)�2

Z

eS

@2

@⇢2
Rf(!, ⇢)

����
⇢=hx,!i

dQ(!) (4.12)

= � 1

8⇡2

Z

S2

@2

@⇢2
Rf(!, ⇢)

����
⇢=hx,!i

dQ(!). (4.13)

Note that we have used above the fact that the inverse Fourier transform of �2bh is

�h00 for any twice di↵erentiable function h on R that is absolutely integrable.

In equation (4.9), the di↵erential operator @2

@⇢2 applies to the second argument of

Rf . Radon’s inversion formula tells us that f(x) can be recovered by backprojection

of (Rf)00 ⌘ @2

@⇢2Rf . That is, f(x) is just an average of (Rf)00 over all planes passing

through x. The density f can be reconstructed at a point x from the plane integral
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4.4 NUMERICAL IMPLEMENTATION OF THE 3D RADON INVERSION

values of f in an infinitesimal neighborhood of all planes passing through x. For this

reason, the 3D Radon inversion formula is said to be local.

4.4 Numerical Implementation of the 3D Radon

Inversion

In this section, we explain to how discretize the 3D Radon inversion formula (4.9)

to implement a computationally e�cient algorithm to reconstruct a 3D density on a

discrete 3D grid from a set of sampled Radon data.

Assume that the smooth 3D density f(x, y, z) is supported on ⌦, the closed ball

of radius r centered at the origin in R3. In this case, the support of Rf is S2⇥ [�r, r].

Thus, in order to fully reconstruct f on ⌦ by (4.9), one needs to know Rf(!, ⇢) for

all ! 2 S2 and ⇢ 2 [�r, r]. This is a su�cient condition for reconstruction of f on

its support ⌦ via Radon’s inversion formula. We represent ! 2 S2 in a spherical

coordinate system as

! = !(✓,�) = (cos ✓ sin�, sin ✓ sin�, cos�), 0  ✓  2⇡, 0  �  ⇡. (4.14)

Since Rf is an even function on S2⇥R, it is su�cient to know Rf on any hemisphere

eS. By convention, we choose eS = {!(✓,�) : 0  ✓  ⇡, 0  �  ⇡}. Defining the

following

K(✓,�, ⇢) ⌘ Rf(!(✓,�), ⇢)

K 00(✓,�, ⇢) ⌘ @2

@⇢2
Rf(!(✓,�), ⇢)

38



4.4 NUMERICAL IMPLEMENTATION OF THE 3D RADON INVERSION

and observing that h(x, y, z),!(✓,�)i = sin�(x cos ✓+y sin ✓)+z cos�, the 3D Radon

inversion formula (4.9) becomes the following double integral

f(x, y, z) = � 1

4⇡2

Z ⇡

0

Z ⇡

0

K 00(✓,�, ⇢(x, y, z, ✓,�)) sin� d� d✓, (4.15)

where ⇢(x, y, z, ✓,�) = sin�(x cos ✓ + y sin ✓) + z cos�.

In practice, one usually considers recovering the values of f on a discrete grid

inside the cube [�L,L]3, where L > r. Note that the cube actually contains ⌦, the

support of f . Define a rectangular 3D grid consisting of points (xi, yj, zk), where N

is even and

xi =

✓
2L

N

◆
i, i = �N

2
, . . . ,

N

2
, (4.16)

yj =

✓
2L

N

◆
j, j = �N

2
, . . . ,

N

2
, (4.17)

zk =

✓
2L

N

◆
k, k = �N

2
, . . . ,

N

2
. (4.18)

The sampled values f(xi, yj, zk) define a 3D discrete image of size N ⇥ N ⇥ N . We

suppose that the 3D Radon data K 00 are available on a spherical grid of size N✓ ⇥

N� ⇥N⇢, consisting of points (✓m,�n, ⇢s), where

✓m =

✓
⇡

N✓

◆
m, m = 1, . . . , N✓, (4.19)

�n =

✓
⇡

N�

◆
n, n = 1, . . . , N�, (4.20)

⇢s =

✓
2L

N⇢

◆
s, s = �N⇢

2
, . . . ,

N⇢

2
. (4.21)

Note that proper sampling of Radon data is necessary to obtain an accurate recon-
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4.4 NUMERICAL IMPLEMENTATION OF THE 3D RADON INVERSION

struction. A function defined on R3 is said to be band-limited with bandwith E > 0

if its Fourier transform vanishes outside the closed ball of radius E centered at the

origin. Following Natterer [43], for a 3D density f supported in a ball ||x|| < L

with bandwidth E > 0, one should sample at least (LE)2/2 directions, with stepsizes

�✓  ⇡/(LE),��  ⇡/(LE).

One can directly approximate the 3D Radon inversion formula to reconstruct

f(xi, yj, zk) by replacing the 2D integral in (4.15) by the double sum:

� 1

4⇡2

N✓X

m=1

N�X

n=1

K 00(✓m,�n, ⇢(x, y, z, ✓m,�n)) sin�m, (4.22)

where ⇢(x, y, z, ✓m,�n) = sin�n(xi cos ✓m + yj sin ✓m) + zk cos�n. Note that 3D inter-

polation will be necessary to obtain the values of K 00(✓m,�n, ⇢(x, y, z, ✓m,�n)) from

the acquired Radon data on the spherical grid, and this can be a computationally

demanding task. Ignoring the computational complexity of 3D interpolation, the di-

rect method computes a double sum that requires roughly N2 operations (assuming

N✓ = N� = N) to reconstruct the density at one point. Thus, N3 points can be re-

constructed by the direct method in approximately N3⇥N2 = N5 operations. When

N is large, we see that approximation of the 3D Radon inversion formula (4.15) by

the direct method can be computationally demanding and time consuming.

4.4.1 Two-stage Algorithm

We now present an e�cient method to implement the 3D Radon inversion formula

(4.15). Marr et al. [39] first showed that the 3D Radon inversion formula (4.15) can

be implemented more e�ciently than by the direct method through splitting the 2D
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4.4 NUMERICAL IMPLEMENTATION OF THE 3D RADON INVERSION

integrals into two 1D integrals. This method is commonly referred to as the “Two-

stage Algorithm”.

Let us denote fz(x, y) = f(x, y, z) and Q(✓,�, ⇢) = K 00(�, ✓, ⇢) · sin�. The double

integral in (4.15) can be decomposed into two successive integrals:

P (t, z, ✓) =
1

2⇡

Z ⇡

0

Q(✓,�, ⇢)
���
⇢=t sin�+z cos�

d�, (4.23)

fz(x, y) = �
1

2⇡

Z ⇡

0

P (t, z, ✓)
���
t=x cos ✓+y sin ✓

d✓. (4.24)

The 1D integrals above can be identified as 2D backprojections in parallel-beam ge-

ometry. For each ✓, the first integral (4.23) can be seen as the 2D backprojection of

sinogram data Q(✓,�, ⇢) on the vertical plane x cos ✓ + y sin ✓ = 0 that generates a

2D density P (t, z, ✓) on the tz-plane, where the t-axis is parallel to the unit vector

(cos ✓, sin ✓, 0). For each z, the second integral (4.24) can be viewed as the 2D back-

projection of sinogram data P (t, z, ✓) that obtains a 2D density fz(x, y) on the plane

through z, parallel to the xy-plane. A number of computationally e�cient algorithms

for 2D backprojection can be found in [26]. We present step-by-step instructions to

implement the two-stage algorithm next.
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Algorithm: Two-stage Algorithm for 3D Radon Inverison

Data: 3D Radon data K 00 sampled at the points (✓m,�n, ⇢s) for m = 1, . . . , N✓,

n = 1, . . . , N�, s = 1, . . . , N⇢ as given in equations (4.19) - (4.21).

Result: Reconstructed values of f at the points (xi, yj, zk) for i = 1, . . . , N ,

j = 1, . . . , N , k = 1, . . . , N . The reconstructed discretized 3D density

is obtained as stacks of discretized 2D densities fzk(xi, yj).

Sample t from the interval [�L,L] in the same way as ⇢:

t` =

✓
2L

N⇢

◆
`, ` = �N⇢

2
, . . . ,

N⇢

2
.

Step 1: For each m = 1, . . . , N✓, backproject the 2D sinogram data

Q(✓m,�n, ⇢s) on the vertical planes x cos ✓m + y sin ✓m = 0 to generate

a stack of 2D images P (t`, zk, ✓m) indexed by m.

Step 2: For k = 1, . . . , N , backproject the 2D sinogram data P (t`, zk, ✓m) on

the horizontal plane z = zk to generate a stack of discretized 2D

densities fzk(xi, yj).

4.4.2 Computational Complexity

To determine the computational complexity of the two-stage algorithm, let us sup-

pose that the 3D volume we are interested in reconstructing is of size N3 and the

parameters of the Radon data are sampled at N points in their proper domains using

the sampling scheme described earlier. Step 1 of the algorithm performs N back-

projections in 2D. It can be shown that each backprojection algorithm requires N3

operations [26]. Thus, Step 1 can be completed with N4 operations. Step 2 requires
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4.4 NUMERICAL IMPLEMENTATION OF THE 3D RADON INVERSION

N backprojections in 2D, so step 2 is also done with N4 operations. Therefore, the

two-step algorithm can be done by N4 +N4 = 2N4 operations.

We see that the two-step algorithm reduces the computation required for the direct

method by a factor of N/2. In addition, it should be noted that the direct method

requires 3D interpolation that can be computationally intensive and time consuming,

whereas the two-stage algorithm requires simple 1D linear interpolations for its 2D

backprojection steps, which can be calculated quite rapidly.
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Chapter 5

Practical Inversion Formulas for

the Non-truncated Cone-beam

Transform

We have already outlined the theory of non-truncated cone-beam reconstruction fol-

lowing the framework of Tuy [59] in Chapter 3. However, Tuy’s cone-beam-inversion

formula in its original form is purely theoretical and cannot be implemented nu-

merically for practical use. In this chapter, we present the very first exact cone-

beam reconstruction formula to be numerically implemented, due to Grangeat [20].

Grangeat’s formula deals with acquisition from sources on a very generic piecewise

smooth curve satisfying Tuy’s condition 1 (see Section 3.5). To this day, Grangeat’s

formula still serves as one of the few exact cone-beam reconstruction methods which

are stable and numerically implementable. In fact, several cone-beam-reconstruction

formulas were developed by further modification of Grangeat’s original formula. One
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TRANSFORM

of those variant inversion formulas, due to Defrise and Clack [13] and Kudo and

Saito [33], is also presented here.

5.1 Link between the Cone-beam Transform and

the 3D Radon Transform

Grangeat [19,20] introduced a new formula which relates the first radial derivative of

the 3D Radon transform of a density f on R3 and its cone-beam transform. Grangeat’s

formula assumes the following about the density f and the source curve �:

1. The 3D density f belongs the class Ck
c (R3), where k � 2. That is, the com-

pactly supported density f is at least twice di↵erentiable and all of its partial

derivatives up to that order are compactly supported.

2. Every plane that intersects the support of f must intersect the curve � at least

once.

The second condition of Grangeat is equivalent to Tuy’s condition, except the inter-

section of the plane and the trajectory is not required to be non-tangential, as it is

required in Tuy’s Condition 2.

Recall that the cone-beam transform Dsf of a function f : R3 ! R of compact

support is defined as

Dsf(�) =

Z 1

0

f(s+ t�) dt,

where s 2 R3 is the source position and � 2 S2 is the direction of the cone-beam ray

originating from s.
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5.2 GRANGEAT’S INVERSION METHOD

Theorem 5.1.1 (Grangeat [19, 20]). Let f 2 Ck
c (R3), k � 2 and let � be a smooth

curve in R3 satisfying Tuy’s condition 1. Then for ! 2 S2, the 3D Radon transform

Rf of f verifies

@

@⇢
Rf(!, ⇢)

����
⇢=hs,!i

=

Z

�2!?\S2
r!Dsf(�) d� (5.1)

where r! stands for the directional derivative in the direction ! 2 S2 and !? \ S2 is

the great circle on S2 with axis of rotation !.

Proof. See [20].

Remark 5.1.2. The left-hand side of (5.1) represents the first derivative of Rf with

respect to the radial parameter ⇢, computed on the plane ⇧(!, ⇢) that contains a

source position s 2 �. The symbol r!Ds represents the directional derivative of Dsf

in the direction ! 2 S2. The right-hand side of (5.1) is a line integral of r!Dsf

computed over !? \ S2, the great circle on the unit sphere S2 with axis of rotation

!. Note that !? denotes the subspace of R3 that is orthogonal to !. The symbol d�

denotes the infinitesimal arclength on the circle !? \ S2.

5.2 Grangeat’s Inversion Method

Grangeat’s fundamental relation (5.1) of the first derivative of the 3D Radon trans-

form and the cone-beam transform of a function f can be used to to invert the

cone-beam transform. Di↵erentiating both sides of (5.1) with respect to ⇢, we get

@2

@⇢2
Rf(!, ⇢)

����
⇢=hs,!i

=
@

@⇢

✓Z

�2!?\S2
r!Dsf(�) d�

◆ ����
⇢=hs,!i

. (5.2)
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5.3 CONE-BEAM INVERSION BY FILTERED BACKPROJECTION

For any x 2 supp f and ! 2 S2, Tuy’s condition gives us at least one source position

s = s(x,!) 2 � such that hx,!i = hs(x,!),!i. Using this substitution and the

identity (5.2) into the 3D Radon inversion formula (4.9), we obtain Grangeat’s cone-

beam inversion formula:

f(x) = � 1

8⇡2

Z

S2

@

@⇢

✓Z

�2!?\S2
r!Ds(x,!)f(�) d�

◆ ����
⇢=hx,!i

dQ(!). (5.3)

An exact reconstruction of a smooth compactly supported density f is possible by

the formula above as long as the source curve � fulfills Tuy’s completeness conditions.

5.3 Cone-beam Inversion by Filtered Backprojec-

tion

For a closed and bounded piecewise smooth curve � in R3, the cone-beam transform D

is a linear mapping from L2(R3) to L2(�⇥S2). The adjoint operator D⇤ of D linearly

maps a function from the space L2(�⇥S2) to a function in L2(R3). The adjoint D⇤ is

commonly referred to as the cone-beam backprojection in the literature. As detailed

in [37], the cone-beam backprojection operator D⇤ is defined by the formula

D⇤g(x) =

Z

�2⇤

1

||x� s(�)||2 g
✓
�,

x� s(�)

||x� s(�)||

◆
d�, x 2 R3, (5.4)

for all g 2 L2(�⇥ S2).

An exact or approximate cone-beam inversion formula is said to be of type filtered

backprojection (FBP) if it can be expressed as a backprojection of filtered cone-beam

data. Suppose f is a compactly supported smooth density function. In operator
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5.3 CONE-BEAM INVERSION BY FILTERED BACKPROJECTION

notation, any filtered backprojection formula is of the form

F = D⇤(Df ⇤  ),

where Df ⇤ is the convolution of Df by an appropriate filtering function  in L2(�⇥

S2). The choice of the source curve � determines whether F is exactly equal to f ,

for all x 2 supp f . Obviously, if � does not fulfill Tuy’s condition, the reconstruction

F computed by a FBP formula is not exactly equal to f . For this reason, the most

popular cone-beam FBP reconstruction method due to Feldkamp et al. [?] delivers

only an approximate reconstruction F of f , since the circular trajectory � fails to

meet Tuy’s conditions.

Grangeat’s original inversion method (5.3) can be used to exactly recover a com-

pactly supported and twice di↵erentiable density f as long as the source curve � sat-

isfies Tuy’s condition 1. However, Grangeat’s inversion formula is not a cone-beam

FBP type formula. We proceed to show that Grangeat’s original inversion formula

can be modified by appropriate change of variables to obtain an exact cone-beam

FBP inversion formula.

5.3.1 Derivation of an Exact FBP Formula

Grangeat’s fundamental relation can be used to derive a filtered backprojection type

inversion formula for the non-truncated cone-beam transform. This derivation is due

to Defrise and Clack [13]. Let � be a curve which satisfies Tuy’s conditions, and let

s(�) be the parametrization of � with � 2 ⇤, where ⇤ is a finite union of intervals in
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5.3 CONE-BEAM INVERSION BY FILTERED BACKPROJECTION

R. Let us write the cone-beam projection data as

g(�, �) = Df(s(�), �) =

Z 1

0

f(s(�) + t�) dt, (5.5)

where � 2 S2 and � 2 ⇤ ⇢ R. Define the intermediary function G(�,!) of cone-beam

transform g:

G(�,!) =

Z

�2S2\!?
r!g(�, �) d�, � 2 ⇤,! 2 S2. (5.6)

Here, r! stands for directional derivative in the direction ! 2 S2 acting on the second

argument of g, and S2 \ !? is the great circle on S2 with axis of rotation !. The

integral G(�,!) is identical to the right-hand side of Grangeat’s formula (5.1). For

� 2 ⇤,! 2 S2, from Grangeat’s formula we have

G(�,!) =
@

@⇢
Rf(!, hs(�),!i). (5.7)

Note here that the derivative of the 3D Radon transform Rf is computed on the

plane orthogonal to !, passing through a source point s(�).

Recall from earlier that for any x 2 supp f , f(x) can be reconstructed via Radon’s

3D inversion formula:

f(x) = � 1

4⇡2

Z

eS

@2

@⇢2
Rf(!, ⇢)

����
⇢=hx,!i

dQ(!), (5.8)

where eS denotes any hemisphere of S2 and dQ denotes the infinitesimal surface area

on S2. For any function  2 S(R), one has

 0(⇢
0

) = h�0(⇢
0

� ⇢), h(⇢)i =
Z 1

�1
�0(⇢

0

� ⇢)h(⇢) d⇢, (5.9)
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5.3 CONE-BEAM INVERSION BY FILTERED BACKPROJECTION

by the definition of the distribution �0. As we have mentioned in Chapter 3 the integral

involving the derivative of the delta distribution is purely formal. As f 2 C1
c (R3),

we have Rf(!, ·) 2 S(R), and the 3D Radon inversion formula can also be written as

f(x) = � 1

4⇡2

Z

eS

Z 1

�1
�0(⇢� hx,!i) @

@⇢
Rf(!, ⇢)

����
⇢=hx,!i

d⇢ dQ(!). (5.10)

Using (5.7), we have

f(x) = � 1

4⇡2

Z

eS

Z 1

�1
�0(⇢� hx,!i)G(�(!, ⇢),!) d⇢ dQ(!), (5.11)

where �(!, ⇢) is any solution to hs(�),!i = ⇢. In other words, the source point

s(�(!, ⇢)) 2 � is on the plane hx,!i = ⇢. To write the formula above in the form of a

cone-beam backprojection formula, for each ! 2 S2, we replace the inner integral over

⇢ as an integral over � by writing ⇢ = hs(�),!i. But the mapping ⇢ = hs(�),!i (with

! 2 S2 fixed) is not one-to-one as the plane ⇧(!, ⇢) may intersect � at more that

one point. To handle the redundancy, a smooth function M(!,�) can be introduced,

satisfying the normalization condition

n(!,⇢)X

k=1

M(!,�k) = 1, (5.12)

where n(!, ⇢) denotes the number of intersections between the plane ⇧(!, ⇢) and the

curve �, and �
1

, . . . ,�n(!,⇢) 2 ⇤ are the solutions to ⇢ = hs(�),!i. An obvious choice

for the function M(!,�) which satisfies the normalization condition is

M(!,�) =
1

n(!, hs(�),!i) , (5.13)
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5.3 CONE-BEAM INVERSION BY FILTERED BACKPROJECTION

where n(!, hs(�),!i) denotes the number of intersections between the source curve

� and the plane ⇧ passing through s(�) and orthogonal to !. However, this trivial

choice of M has many discontinuities. In the paper [13], one requires that M(!,�) be

continuously di↵erentiable in both � and ! in order to derive a stable reconstruction

formula. An appropriate weighting function M is given by [13]

M(!,�) =
|hs0(�),!i|mc(�)

Pn(!,hs(�),!i)
k=1

|hs0(�k),!i|mc(�k)
, (5.14)

where m is a positive integer and c : ⇤ ! R is a smooth function equal to one

everywhere, except near the boundaries of the interval ⇤. This choice of M is C1 in

both ! and � when m > 2 (see [13]).

It is proved in [13] that

Z 1

�1
G(�(!, ⇢),!) �0(⇢�hx,!i) d⇢ =

Z

⇤

|hs0(�),!i|M(!,�)G(�,!) �0(hx�s(�),!i) d�,

(5.15)

where M is an appropriate smooth weight function satisfying (5.12). Using this

equality in (5.11), we obtain

f(x) = � 1

4⇡2

Z

eS

Z

⇤

|hs0(�),!i|M(!,�)G(�,!) �0(hx� s(�),!i) d� dQ(!). (5.16)

With the assumption that f has a compact support, the integrand above is absolutely

integrable. Thus, we may change the order of integration above and obtain

f(x) = � 1

4⇡2

Z

⇤

Z

eS
|hs0(�),!i|M(!,�)G(�,!) �0(hx� s(�),!i) dQ(!) d�. (5.17)
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Note that the inner product can be written as

hx� s(�),!i = ||x� s(�)||
⌧

x� s(�)

||x� s(�)|| ,!
�
. (5.18)

Using the scaling property of the �0 distribution [5]:

�0(at) =
�0(t)

a2
, for all a > 0, (5.19)

we obtain

�0(hx� s(�),!i) = �0
✓
||x� s(�)||

⌧
x� s(�)

||x� s(�)||

�◆

= ||x� s(�)||�2�0
✓⌧

x� s(�)

||x� s(�)||

�◆
.

Defining gF for � 2 ⇤ and � 2 S2 as follows

gF (�, �) = � 1

4⇡2

Z

S2/2
|hs0(�),!i|M(!,�)G(�,!) �0(h�,!i) dS2(!), (5.20)

and plugging this into equation (5.17), we arrive at the filtered-backprojection cone-

beam inverison formula:

f(x) =

Z

�2⇤

1

||x� s(�)||2 g
F

✓
�,

x� s(�)

||x� s(�)||

◆
d�. (5.21)

This formula was derived by Defrise and Clack [13]. A similar formula was derived by

Kudo and Saito [33]. However, the formula presented in [33] involves a discontinuous

weighting function M (similar to (5.13)), which may lead to numerical instability.

The filtered-backprojection cone-beam inversion formula is summarized as a the-
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NON-TRUNCATED CONE-BEAM DATA

orem below.

Theorem 5.3.1 (Cone-beam FBP). Let f 2 C1
c (R3) and let � = {s(�) 2 R3 : � 2 ⇤}

be a source curve satisfying Tuy’s conditions. Then for any x 2 supp f ,

f(x) =

Z

�2⇤

1

||x� s(�)||2 g
F

✓
�,

x� s(�)

||x� s(�)||

◆
d�, (5.22)

gF (�, �) = � 1

4⇡2

Z

eS
|hs0(�),!i|M(!,�)G(�,!) �0(h�,!i) dQ(!), (5.23)

G(�,!) =

Z

�2S2\!?
r!g(�, �) d�, (5.24)

where M(!,�) is a smooth weight function, as given in (5.14).

5.4 Numerical Feasibility of the Inversion Formu-

las from Non-truncated Cone-beam Data

We have presented three exact cone-beam inversion formulas from non-truncated

data: Tuy’s formula, Grangeat’s formula, and the cone-beam filtered-backprojection

formula. With the assumption that the cone-beam sources are located on a curve

� fulfilling Tuy’s conditions, all three of the formulas deliver exact reconstruction

analytically. However, these formulas are very di↵erent in nature when it comes to

numerical implementation. In fact, only two of the formulas have been implemented

numerically.

Tuy’s formula in its original form is not numerically implementable. One reason

for this is that it requires the Fourier transform of a tempered distribution, followed

by a di↵erentiation with respect to the source parameter. Regularizing the divergent

integral of Fourier transform of Dsf can produce heavy artifacts in the reconstruction.
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Zeng et al [67] showed that Tuy’s formula can be numerically implemented after

substantial modification. However, the results for the modified Tuy algorithm are

not too promising compared to other reconstruction methods.

Grangeat’s method was the first exact inversion for non-truncated cone-beam data

to be numerically implemented. The implementation of the algorithm involves three

stages. In the first stage, the acquired cone-beam data are converted into (Rf)0, the

first radial derivative of the 3D Radon transform using Grangeat’s formula (5.1). In

the second stage, the Radon data are rebinned into an uniform spherical grid and

then numerically di↵erentiated to obtain an approximation of the second derivative

(Rf)00. Finally, the computationally e�cient Marr’s two-stage algorithm (see Section

4.4.1) is used to invert (Rf)00 to reconstruct the density f as stacks of discretized 2D

densities.

Although Grangeat’s method is numerically implementable, its second step of

rebinning 3D data is a computationally intensive procedure, especially when a large

number of source positions are sampled. Another shortcoming of this numerical

approach is that parallel computing cannot be utilized to handle multiple source

positions independently. Marr’s two-stage algorithm (see Section 4.4.1) requires all

of the discretized Radon data to be available. Thus, one must first process cone-

beam data from all source positions before entering the two-stage algorithm based

reconstruction phase.

On the other hand, the cone-beam FBP formula is implementable and computa-

tionally e�cient in its discretized form [12,44,46]. Since the inversion formula (5.22)

is given as an integral over the source parameter �, cone-beam projection from each

source can be processed and backprojected to the image domain, independent of other
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source positions. This method is well-suited for parallel implementation. Due to its

computational e�cacy and adaptability to a generic source curve, we have chosen

this method to make it a part of our ROI-reconstruction algorithm.
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Chapter 6

Region-of-Interest Reconstruction

from Truncated Cone-beam

Projections

The problem of reconstruction of a density function from its non-truncated cone-beam

projections is an ill-posed problem. We have seen in Chapter 3 that if Tuy’s hypothe-

ses on the density and the source curve are true, then the reconstruction problem is

uniquely solvable. If the cone-beam data is partially unknown, that is, if the projec-

tions are truncated, there can be several di�culties, such as numerical instability or

the lack of reconstruction algorithms. In this chapter, we present a novel method for

region-of-interest reconstruction from ROI-truncated cone-beam projections acquired

from any source curve satisfying Tuy’s conditions. ROI-truncated projection is sim-

ply a restriction of the usual cone-beam projection, where the only rays e↵ectively

acquired must pass through a fixed spherical region of interest (ROI) located within
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6.1 ROI TRUNCATED CONE-BEAM TRANSFORM

the support of the density.

6.1 ROI Truncated Cone-beam Transform

Let us assume that f : R3 ! R is smooth function with a compact support ⌦. For

simplicity, we assume that ⌦ is a closed ball of radius ⇢ > 0. Denote by r(s, �) the

ray or half-line originating from s 2 R3 in the direction of � 2 S2. For a spherical

region of interest C ⇢ ⌦ and for a bounded curve � ⇢ R3 supported outside ⌦, we

define the set of active rays JC as

JC = {r(s, �) 2 �⇥ S2 : r(s, �) \ C 6= ;}. (6.1)

Thus, JC is the set of all rays originating from the curve � and intersecting the

spherical region of interest C.

Definition 6.1.1. Let C be any spherical ROI in R3 such that C ⇢ ⌦. For s 2 R3

and � 2 S2, the C-truncated cone-beam transform of f is defined as

DCf(s, �) =

8
>><

>>:

Df(s, �), if r(s, �) 2 JC

0, if r(s, �) /2 JC .

(6.2)

For a source point s 2 R3, the C-truncated cone-beam projection integrates f over

only those rays or half-lines which originate from s and intersect the region of interest

C. The C-truncated cone-beam transform DC is just a restriction of the cone-beam

transform D.

Recall that the cone-beam transformDf is a function on R3⇥S2. More specifically,
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Detector��

s

B
C

Figure 6.1: Truncated cone-beam transform, the cone-beam rays originating from
s 2 � are only allowed to pass through the spherical region-of-interest C contained
in the support B.

if the cone-beam data is acquired from sources located on a smooth curve � in R3, then

Df is a function defined on a lower dimensional submanifold �⇥ S2. We have shown

earlier that if the 3D density f is smooth and compactly supported and the curve �

satisfies Tuy’s conditions and Df(s, �) is known for all (s, �) 2 �⇥S2, then f(x) can

be theoretically reconstructed for any x 2 ⌦ by an exact inversion formula such as

Tuy’s formula or Grangeat’s inversion formula. The problem of ROI reconstruction

from truncated projections has been studied in multiple papers, using a variety of
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methods (see Chapter 2 for a comprehensive list). In general, the C-truncated cone-

beam operator DC does not have an exact inverse ZC to give ZCDCf = 1Cf , where

1Cf denotes the restriction of f to ROI C. Most ROI reconstruction formulas from

truncated projections usually impose restrictions on the region of interest and depend

on a specific cone-beam acquisition geometry. In addition, a priori knowledge of the

density f within the ROI may be required for a stable and exact reconstruction.

We proceed to present an algorithm to invert the C-truncated cone-beam trans-

form DCf to recover f(x) for all x 2 C. Our algorithm is guaranteed to give an

✏-accurate inverse of DC , given that the region of interest C is no smaller than a

critical radius.

6.2 Approximate Inverses of the ROI Truncated

Cone-beam Transforms

The problem of reconstruction of a density function f inside a fixed region of in-

terest C strictly within the support of f from C-truncated cone-beam projections

is called an interior problem (see [41, 43]). Natterer showed in [41] that the two-

dimensional interior reconstruction problem from ROI restricted line integrals (2D

Radon transform) is not uniquely solvable. Indeed, the same can be argued about

the three-dimensional interior reconstruction problem from ROI restricted line inte-

grals (i.e., ROI truncated cone-beam transform). Although the uniqueness is lost,

one may still seek a method to construct an approximate recovery of f within the

ROI C from truncated projections.

We present the notion of ✏-accurate inverses of the ROI truncated cone-beam
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transform. Assume that ⌦ is a compact subset of R3. For an integer k � 0, denote

W k(⌦) to be the Sobolev space of functions on ⌦. Recall that

W k(⌦) =
�
f 2 L2(⌦) : D↵f 2 L2(⌦), 8|↵|  k

 

where ↵ = (↵
1

,↵
2

,↵
3

) 2 (Z+)3, |↵| = |↵
1

| + |↵
2

| + |↵
3

|, and D↵f is any partial

derivative of f of order |↵|. The space of functions W k(⌦) forms a Banach space,

endowed with the norm

||f ||Wk
(⌦)

=

0

@
Z

⌦

X

|↵|k

|D↵f(x)|2 dx

1

A
1/2

.

The theoretical proof (presented in [3]) of the convergence of our iterative ROI re-

construction requires the density function f to be of class W 5(⌦).

Definition 6.2.1. Suppose ⌦ is a bounded open ball of R3 and let � be a smooth

curve of R3 satisfying Tuy’s conditions. Let C be a spherical ROI strictly included

in ⌦. For ✏ > 0, we say that the C-truncated cone-beam transform DC admits an

✏-accurate inverse ZC if ZC is a bounded linear operator from L1(JC) to L1(⌦)

verifying

||f � ZCDCf ||L1
(⌦)

 ✏||f ||W 5
(⌦)

, (6.3)

for all f 2 W 5(⌦).

Note that the ✏-accurate inverse of the truncated cone-beam operator DC is not

unique. To see this, suppose for ✏ > 0, ZC is an ✏-accurate inverse of DC . Since
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f 2 W 5(⌦), one has the estimate

||f ||L1
(⌦)

 c
1

||f ||W 5
(⌦)

,

for some positive constant c
1

. Since DC is a bounded linear mapping from L1(⌦) to

L1(JC), there exists a positive constant c
2

such that

||DCf ||L1
(JC)

 c
2

||f ||L1
(⌦)

.

Define T : L1(JC) ! L1(⌦) to be a bounded linear mapping with operator norm

||T || < ✏
c1c2

. Thus, using the inequalities above, we have

||TDCf ||L1
(⌦)

 ✏||f ||W 5
(⌦)

.

Observing that

||f � (ZC + T )DCf ||L1
(⌦)

 ||f � ZCDCf ||L1
(⌦)

+ ||TDCf ||L1
(⌦)

 2✏||f ||W 5
(⌦)

,

we see that the operator ZC + T is a 2✏-accurate inverse of DC .

6.3 Regularization Operator

A major component of our ROI Reconstruction Algorithm is the regularization op-

erator �, which regularizes density functions f . Several variants of the regularization

operator � can be employed. In this section, we only present the average regulariza-
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tion operator. Other regularization operators will be presented in Chapter 7.

6.3.1 Local Averaging

Suppose f : R3 ! R has a compact support ⌦ and C is a spherical region of interest

strictly inside ⌦. Let ⌦\C = [jQj, where {Qj} are mutually disjoint and vol(Qj) = v.

That is, {Qj} is a disjoint partition of the complement of ROI C, with each subset

Qj having the same fixed volume v. Define �A, the average regularization operator as

�Af(x) =

8
>><

>>:

f(x), if x 2 C

1

v

R
Qj

f(x) dx, if x 2 Qj.

(6.4)

The local averaging method is computationally e�cient. If the density f is sampled

on a discrete 3D grid of size N3, then �Af can be computed with O(N3) operations.

6.4 A New ROI Reconstruction Algorithm

In this section, we propose an iterative algorithm to reconstruct the density within

a spherical region of interest. A similar ROI reconstruction algorithm for truncated

cone-beam data appeared in the Ph.D. thesis [51] of our collaborator, Anando Sen.

However, Sen’s work was particularly tested on specific acquisition geometries, includ-

ing sources on a sphere and a helix. In this thesis, we have extended Sen’s algorithm

to handle any smooth curve � satisfying Tuy’s condition.

Let C be a spherical region in R3, contained inside the support ⌦ of f . We assume

that the cone-beam scanning curve � is any curve in R3 which satisfies the Tuy’s con-

ditions, that is, any plane intersecting the support ⌦ must intersect the curve � at
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least once and this intersection must be non-tangential. Let � be a density regular-

ization operator (for example, one may select � = �A, or any other regularization

method discussed in Chapter 7).

Our ROI reconstruction algorithm is initialized by setting f
0

= D�1DCf , where

D�1 denotes an exact non-truncated inverse cone-beam operator. In Chapters 3 and

5, we presented a few non-truncated cone-beam inversion operators D�1. Successive

approximations fn of f are then iteratively obtained as follows

1. Compute the regularization �fn of fn (see Section 6.3).

2. Compute D�fn(s, ·) for all s 2 � and write

D�fn = DC�fn + (D�fn �DC�fn).

3. In the preceding formula, replace DC�fn with the known truncated projection

data DCf and let

fn+1

= D�1{DCf + (D�fn �DC�fn)}.

For smooth densities f with compact support, and for large enough spherical ROI C,

we expect the sequence of approximate densities fn generated by our algorithm to

converge an ✏-accurate inverse of the truncated cone-beam transform DC .
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6.5 Convergence of our ROI Reconstruction Algo-

rithm

In this thesis, we will verify through extensive numerical experiments (in Chapters 9

and 11) that for given any ✏ > 0, a sequence of densities (fj) generated by recursively

by our ROI reconstruction algorithm converges at an exponential to an an ✏-accurate

approximate of a smooth density f compactly supported on ⌦, given that the radius

of the ROI C ⇢ ⌦ is no smaller than a critical radius ⇢(✏).

A mathematical proof of the convergence of our ROI reconstruction algorithm

appears in the paper [3] written by our research team. The main result proved in [3]

is as follows. Assume f 2 W 5(⌦). Let D�1 be an explicit operator inverting the non-

truncated cone-beam projection D for smooth densities, (e.g., the Grangeat inversion

operator). Fix any spherical ROI C ⇢ ⌦. Define the operators

UN = �D�1⌧N(D �DC), (6.5)

where {⌧N} is an approximation of the identity in L2(J
⌦

) (see Section 6.5.1 for details)

and � is a regularization operator on L2(⌦). Given any ✏ > 0, one can then find

N = N(✏) and ⌘(✏) such that the operator U = UN(✏) becomes a contraction of

L1(⌦) provided rad(⌦)� rad(C)  ⌘(✏).

With N = N(✏) fixed as above and setting f
0

= D�1DCf , a sequence (fj) is

defined recursively by

fj+1

= f
0

+ Ufj, j = 1, 2, . . . (6.6)

The main criterion for convergence is the critical radius condition for an ROI
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6.5 CONVERGENCE OF OUR ROI RECONSTRUCTION ALGORITHM

C ⇢ ⌦. It is proved (Theorem 1, [3]) that the sequence (fj) converges to an ✏-

accurate reconstruction f̂ of f , at exponential speed in L1(C), for any spherical ROI

C ⇢ ⌦ having a radius satisfying rad(⌦)� rad(C)  ⌘(✏). That is, given an accuracy

level ✏ and a su�ciently large spherical ROI C ⇢ ⌦, we generate an approximation f̂

of f such that

||f̂ � f ||L1
(C)

 ✏||f ||W 5
(⌦)

.

6.5.1 Regularization in the Space of Rays

We briefly explain here the construction of the sequence of linear operators {⌧N} on

J
⌦

, the space of ⌦-active rays, used in (6.5). Further details of this sequence of linear

operators can be found in [3].

Definition 6.5.1. Let M be a C1 Riemannian manifold with volume element dµ

and finite volume. For any integer r � 1, we call any sequence ⌧N : L2(M)! Cr(M)

a Cr approximation of the identity in L2(M, µ) if the following conditions hold true:

(i) There is a constant c such that for all g 2 L2(M) and all integers N ,

||⌧Ng||W r
(M)

 cN r||g||L2
(M)

.

(ii) For any g 2 L2(M),

lim
N!1

||g � ⌧Ng||L2
(M)

= 0, for each g 2 L2(M).

(iii) For each integer 2  p  (r + 1), there is a constant c such that for all g 2
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W p(M)

||g � ⌧Ng||W p�1
(M)

 c

N
||g||W p

(M)

.

(iv) If g 2 L2(M) has a compact support, then so does ⌧Ng.

A sequence approximating the identity in L2(J
⌦

) can be easily constructed by

patching together local small convolutions through appropriate local maps. Since J
⌦

is a smooth Riemannian manifold, one can select an open finite covering {Uj : j 2 J}

and local maps hj : Vj ! Uj, to construct a finite partition of unity by C1 functions

uj with compact supports included in Uj and verifying

0  uj  1, and
X

j2J

uj = 1.

On each Euclidean ball Vj ⇢ Rk, select a linear operator �N(j) in L2(Vj) as follows.

Fix any smooth function w � 0 in L2(Vj) such that w is compactly supported and
R
Vj
w = 1. For f 2 L2(Rk), define the small convolutions by

�N(j)f = f ⇤ wN ,

where wN(x) = Nkw(Nx). For any g 2 L2(J
⌦

), let gj = guj and define

⌧Ng =
X

j2J

Gj � h�1

j , (6.7)

where Gj = �N(j)(gj � hj). For an appropriate index eN , ⌧ = ⌧ eN defines a regulariza-

tion operator in L2(J
⌦

).
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Chapter 7

Regularization Operators

A major step in our ROI reconstruction of densities from ROI truncated cone-beam

data involves regularization of densities outside the region of interest C. In Chapter

6, we have used a very simple regularization technique that locally averages a density

over boxes of a fixed size. In this chapter we introduce two sophisticated wavelets

based density regularization methods, called hard thresholding and soft thresholding.

We begin with a brief review of wavelets.

7.1 A Short Review of Wavelets

Before explaining several wavelets based regularization techniques, we briefly review

the theory of wavelets in one dimension, which can be naturally extended to higher

dimensions. Recall that a Multiresolution Analysis (MRA) is defined to be a sequence

of closed linear subspaces (Vj)j2Z ⇢ L2(R) which satisfies the following properties:

1. {0} ⇢ · · · ⇢ V�1

⇢ V
0

⇢ V
1

⇢ V
2

⇢ . . .
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2. [j2ZVj is dense in L2(R).

3. \j2ZVj = {0}.

4. f(x) 2 Vj if and only if f(2�jx) 2 V
0

.

5. There exists a scaling function � 2 L2(R) such that {Tm� : m 2 Z} is an

orthonormal basis (ONB) for V
0

, where Tm�(t) = �(t�m).

The MRA decomposes functions into di↵erent resolution levels associated with the

wavelet spaces Wj, j 2 Z, where each Wj is the orthogonal complement of Vj in Vj+1

,

i.e., Wj = Vj+1

 Vj. Thus, the space L2(R) is the direct sum of wavelet spaces Wj.

A function in  2 L2(R) can always be chosen such that the collection

{ j,k(x) = 2j/2 (2jx� kx) : j, k 2 Z}

forms an ONB for L2(R). We call such a function  2 L2(R) a mother wavelet

function. Thus, for any f 2 L2(R), we have the following wavelet expansion in L2(R)

f =
X

j2Z

X

k2Z

hf, j,ki j,k,

hf, j,ki =
Z 1

�1
f(x) j,k(x) dx.

Since the wavelet  is chosen in such a way so that each  j,k has a support of size 2�j,

the wavelet expansion of f can be viewed as a decomposition of f into its components

associated with various scales 2�j and locations 2�jk.
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7.2 WAVELETS-BASED REGULARIZATION

An MRA for L2(Rn) is generated by a multi-wavelet ( 
1

, . . . , L). For each f 2

L2(Rn), we have the wavelet expansion

f =
X

j2Z

X

k2Z

LX

`=1

hf, j,ki j,k,

where L = 2n � 1.

7.2 Wavelets-based Regularization

Regularization methods based on wavelets have shown to be very e↵ective in applica-

tions of signal processing and image processing. Intuitively, the wavelets coe�cients

of large magnitudes correspond to the main features of the density f , whereas the

coe�cients of smaller magnitudes are associated with noisy features of the density.

We present here two di↵erent wavelets based regularization methods.

For f 2 L2(R3), we have the wavelet expansion

f =
X

j2Z

X

k2Z

LX

`=1

hf, `
j,ki `

j,k, (7.1)

where  `
j,k is an orthonormal wavelet basis for L2(R3) and L = 23� 1 = 7. We define

a hard thresholding regularization operator �H as

�Hf =
X

j2Z

X

k2Z

LX

`=1

cj,k,`(f) 
`
j,k, (7.2)
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where

cj,k,`(f) =

8
>>>>>><

>>>>>>:

hf, `
j,ki if j  j

0

,

hf, `
j,ki if j > j

0

and |hf, `
j,ki| � Thj,

0 if j > j
0

and |hf, `
j,ki| < Thj.

(7.3)

The hard thresholding wavelet operator �H retains all coarse scale coe�cients at scale

j  j
0

. We do not apply any shrinkage in the coarser scales as it is important to

preserve some of the global features of the density. The threshold parameters Thj are

user selected, taking account of the noise at resolution level j.

One may also apply the wavelets based soft-thresholding method to regularize

densities. For f 2 L2(R3), a soft thresholding regularization operator �S is given by

�Sf =
X

j2Z

X

k2Z

LX

`=1

cj,k,`(f) 
`
j,k, (7.4)

where

cj,k,`(f) =

8
>>>>>>>>>><

>>>>>>>>>>:

hf, `
j,ki if j  j

0

,

hf, `
j,ki � Thj if j > j

0

and |hf, `
j,ki| � Thj,

hf, `
j,ki+ Thj if j > j

0

and |hf, `
j,ki|  �Thj,

0 if j > j
0

and |hf, `
j,ki| < Thj.

(7.5)

Note that the operators �H and �S are non-linear. However, these non-linear

operators can be well approximated by linearized versions which implement smooth

shrinkage of the wavelet coe�cients instead of abrupt truncation (see [51] for details).
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7.2.1 Selection of Threshold Parameters

Whether the hard thresholding �H or soft thresholding �S is to be used, one must

choose the threshold parameters Thj carefully for e↵ective regularization of densities.

The choice of the threshold parameters Thj depend on the type of problem one is

interested in solving.

In [51], an iterative ROI reconstruction algorithm was tested exhaustively with

regularization operators �H and �S to find the best threshold parameters Thj. The

ROI reconstruction algorithm in [51] is similar to our algorithm presented in Chapter

6, but is set in a restrictive setting with spherical acquisition. To generate the wavelet

decomposition, Daubechies wavelets Daub4 was used. It was found that the best

performance in the case of the hard thresholding operator �H is achieved when 9% of

the highest magnitude wavelet coe�cients are kept at the resolution level j. In the

case of soft thresholding �S, the threshold parameters Thj were chosen in such a way

that approximately 90% of the coe�cients were set to zero. The heuristic study in [51]

concluded that the hard thresholding operator �H performed much better compared

with the soft thresholding operator �S and the local-average operator �A introduced

in Chapter 6.
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Chapter 8

Numerical Implementation of the

Truncated Cone-beam Inverse

In this chapter, we first give the details of the numerical implementation of the two

exact non-truncated cone-beam transform inversion formulas presented in Chapter

5: Grangeat’s method and the shift-variant filtered backprojection (FBP) algorithm.

Although these methods are theoretically equivalent, their discretized versions appear

to be di↵erent. One characteristic both of these methods have in common is that

they can be used with projections acquired on arbitrary source curves satisfying Tuy’s

conditions. Next, we discuss the numerical implementation of our ROI reconstruction

algorithm from truncated cone-beam projections, using as an essential building block

the classical non-truncated inversion algorithms which are presented below.
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8.1 Data Acquisition with a Planar Detector

Assume that the 3D density function f(x
1

, x
2

, x
3

) has its support in ⌦, a closed ball

in R3 centered at the origin. Denote by L the radius of the ball ⌦. Thus, we have

⌦ = {(x
1

, x
2

, x
3

) 2 R3 : x2

1

+ x2

2

+ x2

3

 L2}. (8.1)

We assume that f is a smooth function. Let � be the smooth cone-beam scanning

curve satisfying Tuy’s conditions, parametrized by s(�),� 2 ⇤, with

s(�) = (s
1

(�), s
2

(�), s
3

(�)), � 2 ⇤, (8.2)

where ⇤ is a finite union of intervals of the real line and s
1

, s
2

, s
3

are smooth functions

defined on ⇤.

We define the virtual 2D detector corresponding to the source position s(�) to be

the tangent plane to � spanned by the unit vectors e�u and e�v , where

e�v = e�w ⇥ e�u, e�w =
s(�)

||s(�)|| , e�u =
s0(�)

||s0(�)|| , (8.3)

for � 2 ⇤. With our definition, the virtual detector is orthogonal to e�w and at distance

D� ⌘ ||s(�)|| from the source s(�). For u, v 2 R, each point ue�u + ve�v on the virtual

detector plane has local coordinates (u, v). We define the unit vector ��(u, v) by

��(u, v) =
ue�u + ve�v � s(�)p

u2 + v2 +D2

�

. (8.4)
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��������

Figure 8.1: Cone-beam data acquisition with a planar detector. Each ray �� orig-
inating from source s(�) is associated with a pair of local coordinates (u, v) on the
detector plane.

Thus, ��(u, v) is the unit direction vector of the cone-beam ray which originates

from the source s(�) and goes through the point (u, v) on the detector. Note that the

origin on the detector and the origin of the global coordinate system coincide. Let us

define the cone-beam projection data of the density f by a function gd,

gd(�, u, v) =

Z 1

0

f(s(�) + t��(u, v)) dt, � 2 ⇤, (u, v) 2 R2. (8.5)

Our earlier definition of the cone-beam transform and the function gd are related by
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Df(s(�), ��(u, v)) = gd(�, u, v). In a practical medical imaging setting, a physical

detector is always placed on one side of the object ⌦ at a fixed distance, and the

source s(�) is placed on the other side of ⌦. The impractical virtual detector that

intersects the object ⌦ is introduced only for the sake of simpler numerical algorithms.

Physically acquired cone-beam data can be immediately converted to virtual detector

“acquisition data” by simple homothetic rescaling of the coordinates. Without any

ambiguity, we can thus restrict our discussions to “data acquired” by the virtual

detector, which we will simply call the detector from now on.

Since f has support in the closed ball ⌦ of radius L > 0, we note that the cone-

beam rays from s(�) in the direction ��(u, v) for all (u, v) such that u2 + v2 > L2 do

not penetrate ⌦. Hence, we have gd(�, u, v) = 0 for all (u, v) such that u2 + v2 > L2,

and the support of gd(�, u, v) is contained in the closed disk u2 + v2  L2.

8.2 Grangeat’s Reconstruction from Non-truncated

Cone-beam Data

In Chapter 5, we have presented Grangeat’s analytical inversion formula for non-

truncated cone-beam data. However, further modification to the theoretical Grangeat’s

formula is necessary in order to develop a stable algorithm which can be implemented

numerically.
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8.2.1 Connection between the 3D Radon Transform and the

Cone-beam Transform

We proceed to express Grangeat’s fundamental relation in terms of the detector co-

ordinates. Although Grangeat’s original work [20] presents the fundamental relation

in detector geometry, his derivation of the inversion is not fully precise. We follow

Defrise and Clack [13] to derive Grangeat’s fundamental relation in detector geometry.

Let us denote g(�, �) to be the non-truncated cone-beam transform (3.1) of the

density f from source position s(�),� 2 ⇤, in the direction � 2 S2. That is, g(�, �) =

Ds(�)f(�). Recall that Grangeat’s fundamental relation makes a connection between

the first radial derivative of the 3D Radon transform Rf of f (4.1) and the non-

truncated cone-beam transform g by

@

@⇢
Rf(!, ⇢)

����
⇢=hs(�),!i

=

Z

�2S2\!?
r!g(�, �)f(�) d�, (8.6)

where the symbol r! stands for directional derivative in the direction ! 2 S2 acting

on the second argument of g and S2\!? is the great circle on S2 with axis of rotation

!. Note that (8.6) holds only when a cone-beam source s(�) lies on the plane ⇧(!, ⇢)

orthogonal to ! 2 S2 at signed distance ⇢ from the origin. Assuming that Tuy’s

conditions on the curve � and the smoothness assumptions on the density f are

fulfilled, Grangeat’s relation (8.6) permits each source position s(�) to deliver the

values of @
@⇢Rf for all planes ⇧ that contain the source s(�) and intersect the density

support ⌦.

On each detector plane, a line having signed distance ⌧ from the origin and or-

thogonal to the two-dimensional unit vector (cos#, sin#) (see Figure 8.2) satisfies the
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equation

u cos#+ v sin# = ⌧. (8.7)

Such lines on a detector plane can be represented by polar coordinates (#, ⌧) with

⌧ 2 R,# 2 [0, ⇡]. For a fixed source s(�) 2 � at distance D� from the origin, the

intersection between a plane ⇧(!, ⇢) containing s(�) and the detector plane is the line

(#, ⌧) (see Figure 8.3), where (!, ⇢) and (#, ⌧) are related by the formulas (proved

in [13])

!(#, ⌧) =
D� cos#e�u +D� sin#e�v + ⌧e�wp

D2

� + ⌧ 2
, (8.8)

⇢(#, ⌧) =
D�⌧p
D2

� + ⌧ 2
. (8.9)

Thus, for a fixed source s(�) on the curve �, there is a one-to-one correspondence

between the lines (#, ⌧) on the detector and the planes containing s(�) and intersecting

the density support ⌦.

77



8.2 GRANGEAT’S RECONSTRUCTION FROM NON-TRUNCATED
CONE-BEAM DATA

Figure 8.2: Parametrization of lines in the planar detector.

Figure 8.3: The fan-beam of rays on the plane ⇧(!, ⇢) orthogonal to ! 2 S2 and
containing the source s(�) intersects the detector at an oriented line (#, ⌧).

In the geometric setup defined by the object ⌦, the curve �, and the planar virtual
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detectors, the one-to-one correspondence between the planes ⇧(!, ⇢) containing s(�)

and the lines (#, ⌧) on the detector (given in (8.8)-(8.9)) allows one to re-formulate

the integral on the right-hand side of Grangeat’s fundamental relation (8.6) in terms

of the detector’s local coordinates. Let us define an intermediate function G by the

expression

G(�,!) =

Z

�2S2\!?
r!g(�, �) d�, � 2 ⇤,! 2 S2. (8.10)

Using the �0-distribution (see Section 3.2), one may write

G(�,!) = �
Z

S2
g(�, �)�0(h�,!i) dQ(�), � 2 ⇤,! 2 S2. (8.11)

Denote by eS ⇢ S2 to be the hemisphere on which g(�, ·) is defined. Define an

auxiliary spherical coordinate system where each point � 2 eS is represented by the

pair (�
1

,�
2

) such that �
1

2 [�⇡/2, ⇡/2] is the angle of elevation between ! and �e�w

and �
2

2 [0, ⇡] is the angle between ! and the plane spanned by e�w and e�u. Using

this angular coordinate system, we have

G(�,!) = �
Z ⇡

0

Z ⇡
2

�⇡
2

sin�
1

g(�, �(�
1

,�
2

))�0(h�(�
1

,�
2

),!i) d�
1

d�
2

. (8.12)

We define a similar function Gd(�,#, ⌧) ⌘ G(�,!(#, ⌧)) using the coordinates of

the lines. The spherical coordinates �
1

and �
2

of � = ��(u, v) are related to the local

detector coordinates (u, v) by

cos�
1

(u, v) = h��(u, v), e�wi = �
D�p

u2 + v2 +D2

�

,

�
2

(u, v) = arctan(v/u).
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The Jacobian of the transformation (�
1

,�
2

)! (u, v) is

�������

@�1

@u
@�1

@v

@�2

@u
@�2

@v

�������
=

�������

� 1p
u2

+v2
D�u

(u2
+v2+D2

�)
� 1p

u2
+v2

D�v
(u2

+v2+D2
�)

� v
u2

+v2
u

u2
+v2

�������
=

D�p
u2 + v2(u2 + v2 +D2

�)
.

Using the fact that sin�
1

=
p
u2

+v2p
u2

+v2+D2
�

, for ⌧ = ⌧
0

we have

Gd(�,#, ⌧0)

= �
Z ⇡

0

Z ⇡
2

�⇡
2

sin�
1

g(�, �(�
1

,�
2

))�0(h�(�
1

,�
2

),!(#, ⌧
0

)i) d�
1

d�
2

= �
Z 1

�1

Z 1

�1
D�(u

2 + v2 +D2

�)
�3/2gd(�, u, v)�

0

 
D�(u cos#+ v sin#� ⌧

0

)p
u2 + v2 +D2

�

p
⌧ 2
0

+D2

�

!
du dv

= �⌧
2

0

+D2

�

D�

Z 1

�1

Z 1

�1

gd(�, u, v)p
u2 + v2 +D2

�

�0(u cos#+ v sin#� ⌧
0

) du dv,

where we have used the scaling property of �0. Introducing the variables ⌧ and ⌧ 0

related to u and v by

⌧ = u cos#+ v sin#, ⌧ 0 = �u sin#+ v cos#, (8.13)

and using the main property of the �0-distribution, we have

Gd(�,#, ⌧0)

= �⌧
2

0

+D2

�

D�

Z 1

�1

Z 1

�1

gd(�, ⌧ cos#� ⌧ 0 sin#, ⌧ sin#+ ⌧ 0 cos#)p
⌧ 2 + (⌧ 0)2 +D2

�

�0(⌧ � ⌧
0

) d⌧ d⌧ 0

=
⌧ 2
0

+D2

�

D�

Z 1

�1

@

@⌧

 
gd(�, ⌧ cos#� ⌧ 0 sin#, ⌧ sin#+ ⌧ 0 cos#)p

⌧ 2 + (⌧ 0)2 +D2

�

!�����
⌧=⌧0

d⌧ 0
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=
⌧ 2
0

+D2

�

D�

@

@⌧

 Z 1

�1

gd(�, ⌧ cos#� ⌧ 0 sin#, ⌧ sin#+ ⌧ 0 cos#)p
⌧ 2 + (⌧ 0)2 +D2

�

d⌧ 0

!�����
⌧=⌧0

.

Note that the absolute integrability of the integrand allows the change of the order

of integration and di↵erentiation. We define L to be the operator which integrates

compactly supported two-dimensional densities over lines (#, ⌧). That is, L is the 2D

Radon transform and for any compactly supported function h over R2, we have

Lh(#, ⌧) =
Z 1

�1
h(⌧ cos#� ⌧ 0 sin#, ⌧ sin#+ ⌧ 0 cos#) d⌧ 0, (8.14)

for # 2 [0, ⇡] and ⌧ 2 R. Realizing that the integral with respect to ⌧ 0 is a 2D Radon

transform value of the weighted density gd(�, u, v), for each # 2 [0, ⇡] and for each

⌧ 2 R, we have

Gd(�,#, ⌧) =
⌧ 2 +D2

�

D�

@

@⌧

 
L
 

gd(�, u, v)p
u2 + v2 +D2

�

!
(#, ⌧)

!
. (8.15)

This intermediary functional Gd(�,#, ⌧) of the cone-beam data gd(�, u, v) is equal to

the first radial derivative of the 3D Radon transform of the density f , i.e.

Gd(�,#, ⌧) =
@

@⇢
Rf(!(#, ⌧), ⇢(#, ⌧)), (8.16)

where !(#, ⌧) and ⇢(#, ⌧) are defined as in (8.8) and (8.9).

8.2.2 Backprojection of the 3D Radon Data

Assume that the function Gd(�,#, ⌧) of (8.15) is known for all � 2 ⇤, # 2 [0, ⇡], and

⌧ 2 [�L,L], where L = rad(⌦). Since Gd is the first radial derivative of the 3D Radon
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transform, we may di↵erentiate Gd with respect to ⇢ to obtain @2

@⇢2Rf and use the 3D

Radon inversion formula (4.15) to reconstruct f . One problem with the computation

of the discretized derivative of @
@⇢Rf is the irregular sampling of the Radon data on

the points (�,!(#, ⌧), ⇢(#, ⌧)). Due to the same reason, one cannot implement the 3D

Radon inversion using the computationally e�cient two-stage algorithm (see Section

4.4.1) as it requires the Radon data to be on a spherical grid. This problem can be

solved by first rebinning or resampling of the irregular Radon data to a spherical

grid via 3D linear interpolation. An accurate and computationally e�cient rebinning

algorithm of Radon data is given in [45]. Once the Radon data have been rebinned to

a spherical grid and @
@⇢Rf(✓,�, ⇢) is known, @

@⇢Rf can be numerically di↵erentiated

with respect to ⇢ and then be inverted using the two-stage algorithm given in Section

4.4.1 to reconstruct the density f from its Radon transform.

8.2.3 Summary of Grangeat’s Inversion Algorithm from Non-

truncated Cone-beam Data

We assume that the 3D density f of interest is band-limited, with bandwidth E > 0.

That is, f 2 L2(R3) and its Fourier transform bf(⇠) = 0 for all ⇠ 2 R3 such that

||⇠|| > E. Suppose f is to be reconstructed on a discrete 3D equispaced rectangular

grid of size N3. It is di�cult to determine an e↵ective sampling of the sources on the

curve and the parameters of the flat 2D detector. The analysis of proper sampling

in cone-beam tomography, especially pertaining to exact reconstruction algorithms,

has not been explored thoroughly in the literature. A heuristic study of Grangeat’s

inversion algorithm in [35], applied to the incomplete circular source curve, suggests

the following sampling scheme. Let N� be the number of equally spaced source
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parameters to be sampled from the interval ⇤. Recall that for a fixed source s(�), each

ray ��(u, v) is associated with a sensor (u, v) on the detector. Let Nray be the number

of sensors (u, v) on each 2D array detector. For an accurate numerical implementation

of Grangeat’s formula, choose Nray = d((2L)/�x)2e and N� = d(⇡L)/�xe, where

�x = 1/(2E) is the sampling interval of the density f [35]. The sampling of Radon

domain parameters ✓,�, ⇢ can be done along the lines of the two-stage 3D Radon

algorithm discussed in Section 4.4.1. One may use these considerations as a guideline

to implement Grangeat’s inversion algorithm.

Grangeat’s inversion algorithm to reconstruct f from non-truncated cone-beam

data is summarized below.

Step 1: Compute Radon Data

For each sampled source position �`, ` = 1, . . . , N�:

1.1 Pre-weight the cone-beam projection data by the factor 1/
q
u2 + v2 +D2

�`
to

obtain hd(�`, u, v) :=
gd(�`,u,v)q
u2

+v2+D2
�`

, where D�`
is the distance between s(�`) and

the origin.

1.2 Compute Lhd(�`,#, ⌧), the 2D Radon transform (line integration of 2D im-

age) of the weighted cone-beam data hd(�`, u, v). E�cient methods for discrete

implementation of the 2D Radon transform L can be found in [25].

1.3 Di↵erentiate numerically with respect to ⌧ and obtain @
@⌧Lhd(�`,#, ⌧). Higher

order finite-di↵erence scheme is recommended for the numerical evaluation of

the derivative with respect to ⌧ (our numerical experiments in Chapter 9 used

3-point finite-di↵erence formulas of order 2).
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1.4 Post-weight by the factor (⌧ 2 +D2

�`
)/D2

�`
to obtain

Gd(�`,#, ⌧) =
⌧ 2 +D2

�`

D�`

@

@⌧
Lhd(�`,#, ⌧).

Proceed to Step 2 once Gd(�`,#, ⌧) is available for ` = 1, . . . , N�.

Step 2: Rebinning and Di↵erentiation

2.1 Rebin Gd(�,#, ⌧) = @
@⇢Rf(!(#, ⌧), ⇢(#, ⌧)) to a spherical grid (✓,�, ⇢) by tri-

linear interpolation, or by a numerically e�cient method presented in [45].

2.2 Di↵erentiate numerically with respect to ⇢ and obtain @2

@⇢2Rf(✓,�, ⇢).

Step 3: Backprojection via Two-stage Algorithm

Apply the two-stage algorithm from Section 4.4.1 to invert @2

@⇢2Rf(✓,�, ⇢) and recon-

struct the density function f .

8.2.4 Computational Complexity

Following [1, 2, 23], we briefly discuss the computational complexity of Grangeat’s

inversion algorithm from non-truncated data. Assume that f is to be reconstructed

as a voxel volume of size N ⇥ N ⇥ N , the cone-beam projections are 2D images of

size N ⇥ N , and total number of sources is N . Step 1 of the algorithm requires

O(N4) operations, where 2D discrete Radon transform is the most costly operation,

requiring O(N) operations per line. The rebinning of Radon data to a spherical

grid via trilinear interpolation in Step 2 requires O(N3) operations. The two-stage

84



8.3 CONE-BEAM FBP ALGORITHM

algorithm requires O(N4) operations, as we have discussed earlier in Section 4.4.1.

Thus, the computational complexity of Grangeat’s inversion algorithm is O(N4).

8.3 Cone-beam FBP Algorithm

In Theorem 5.3.1, we have presented a non-truncated cone-beam inversion formula

implementable by filtered backprojection (FBP) which can be numerically imple-

mented for a generic smooth curves satisfying Tuy’s conditions. Following Defrise

and Clack [13], we discuss the implementation of this cone-beam FBP formula in

terms of the detector coordinates.

8.3.1 Shift-Variant Filtering

We proceed to express filtered non-truncated cone-beam data gF (�, �) (see (5.23) in

Theorem 5.3.1) in terms of detector coordinates so that it can be practically imple-

mented. Define the function

K(�,!) =
1

4⇡2

|hs0(�),!i|M(!,�)G(�,!), (8.17)

so that we may write

gF (�, �) = �
Z

eS
K(�,!) �0(h�,!i) dQ(!). (8.18)

Recall that the source weighting function M is a smooth function in both ! and
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�, satisfying the normalization condition

n(!,⇢)X

k=1

M(!,�k) = 1, (8.19)

where n(!, ⇢) denotes the number of intersections between the plane ⇧(!, ⇢) and the

curve �, and �
1

, . . . ,�n(!,⇢) 2 ⇤ are the solutions to ⇢ = hs(�),!i. If M is defined

appropriately as above and the source curve � meets Tuy’s conditions, then K is a

smooth function with respect to � and !. Writing each point ! 2 eS using spherical

coordinates (�
1

,�
2

) as in Section 8.2, we obtain

gF (�, �) = �
Z ⇡

0

Z ⇡/2

�⇡/2

sin�
1

K(�,!(�
1

,�
2

))�0(h�,!(�
1

,�
2

)i) d�
1

d�
2

. (8.20)

Each line (#, ⌧) on the detector corresponds the plane ⇧ passing through s(�) and

orthogonal to ! 2 S2, where

!(#, ⌧) =
D� cos#e�u +D� sin#e�v + ⌧e�wp

D2

� + ⌧ 2
. (8.21)

The relations between the line (#, ⌧) and the spherical coordinates (�
1

,�
2

) of !(#, ⌧)

are given by

cos(�
1

(#, ⌧)) =
⌧p

D2

� + ⌧ 2
, �

2

(#, ⌧) = #. (8.22)

Realizing that the Jacobian of the mapping (�
1

,�
2

) ! (#, ⌧) is D�/(⌧ 2 + D2

�) and

since sin(�
1

(#, ⌧)) = D�/
p
⌧ 2 +D2

�, we have

gF (�, �) = �
Z ⇡

0

Z 1

�1

D2

�

(⌧ 2 +D2

�)
3/2

K(�,!(#, ⌧))�0(h�,!(#, ⌧)i) d⌧ d#. (8.23)
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Let us define Kd(�,#, ⌧) ⌘ K(�,!(#, ⌧)), and observe that

Kd(�,#, ⌧) =
1

4⇡2

|hs0(�),!(#, ⌧)i|Md(�,#, ⌧)Gd(�,#, ⌧), (8.24)

where we denote Md(�,#, ⌧) ⌘M(!(#, ⌧),�) and Gd(�,#, ⌧) is the same intermediate

function used above in equation (8.15). For � = ��(u, v) as in (8.4), we have

h��(u, v),!(#, ⌧)i =
D�(u cos#+ v sin#� ⌧)p
u2 + v2 +D2

�

p
⌧ 2 +D2

�

. (8.25)

Thus,

gF (�, ��(u, v)) =

= �
Z ⇡

0

Z 1

�1

D2

�

(⌧ 2 +D2

�)
3/2

Kd(�,#, ⌧)�
0(h��(u, v),!(#, ⌧)i) d⌧ d#

= �
Z ⇡

0

Z 1

�1

D2

�

(⌧ 2 +D2

�)
3/2

Kd(�,#, ⌧)�
0

 
D�(u cos#+ v sin#� ⌧)p
u2 + v2 +D2

�

p
⌧ 2 +D2

�

!
d⌧ d#

= �(u2 + v2 +D2

�)

Z ⇡

0

Z 1

�1

Kd(�,#, ⌧)p
⌧ 2 +D2

�

�0(u cos#+ v sin#� ⌧) d⌧ d#

= (u2 + v2 +D2

�)

Z ⇡

0

@

@⌧

 
Kd(�,#, ⌧)p
⌧ 2 +D2

�

!�����
⌧=u cos#+v sin#

d#,

where we have used the scaling property of the �0 distribution. Finally, defining the

function gFd (�, u, v) ⌘ gF (�, ��(u, v)), we obtain

gFd (�, u, v) = (u2 + v2 +D2

�)

Z ⇡

0

@

@⌧

 
Kd(�,#, ⌧)p
⌧ 2 +D2

�

!�����
⌧=u cos#+v sin#

d#. (8.26)

The function gFd (�, u, v) is called the shift-variant filtered cone-beam projection. We
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use the term “filtering” here formally just as an analogy with true FBP backprojec-

tions algorithms that use convolutions, such as the FDK algorithm [16] or Katsevich’s

spiral cone-beam FBP algorithm [27,27]. The operations used to compute gFd (�, u, v)

do not reduce to a convolution in the general case, when the weighting function

Md(�,#, ⌧) is not a constant with respect to the source parameter � [46]. However, if

the function Md(�,#, ⌧) is a constant with respect to � for a source curve � satisfy-

ing Tuy’s conditions, then the filtering operations can be e�ciently implemented via

2D convolutions of the cone-beam projection data [46] to obtain a true cone-beam

filtered-backprojection inversion algorithm.

Let us summarize the steps needed to compute the filtered cone-beam data. As-

sume that Gd(�,#, ⌧) has been computed using the steps we have shown earlier in

Section 8.2. We also assume that the values of the weight function Md(�,#, ⌧) have

been pre-computed or can be calculated without requiring intensive numerical e↵ort.

1. Compute Kd(�,#, ⌧) =
1

4⇡2 |hs0(�),!(#, ⌧)i|Md(�,#, ⌧)Gd(�,#, ⌧).

2. Compute the weighted data eKd(�,#, ⌧) :=
Kd(�,#,⌧)p

⌧2+D2
�

.

3. Di↵erentiate numerically to compute eK 0
d(�,#, ⌧) :=

@
@⌧
eKd(�,#, ⌧).

4. Perform 2D backprojection (see [26]) on the uv-plane to e�ciently compute the

integral

J(�, u, v) :=

Z ⇡

0

eK 0
d(�,#, ⌧)|⌧=u cos#+v sin# d#.

5. Compute gFd (�, u, v) := (u2 + v2 +D2

�)J(�, u, v).

One advantage of this filtering procedure is that each projection gd(�`, u, v) obtained

from source s(�`) can be processed by the steps outlined above independently of
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the data acquisitions obtained from other source positions. Thus, the shift-variant

filtering step can be digitally implemented using parallel computing schemes.

8.3.2 Voxel-driven Backprojection of Filtered Cone-beam Pro-

jections

One can reconstruct f by the filtered backprojection inversion formula

f(x) =

Z

�2⇤

1

||x� s(�)||2 g
F

✓
�,

x� s(�)

||x� s(�)||

◆
d�, x 2 ⌦, (8.27)

where gF is the properly filtered cone-beam data. Let us explain how the cone-beam

FBP formula can be numerically implemented by a voxel-driven procedure, similar

to the one commonly used in the FDK algorithm [16].

In numerical image reconstruction, the density function f is usually sampled on a

3D discrete grid contained in a cube [�L,L]3. Note that the cube [�L,L]3 actually

contains ⌦, the support of f . Define a rectangular 3D grid  consisting of points

(x
1

(i), x
2

(j), x
3

(k)), where N is even and

x
1

(i) =

✓
2L

N

◆
i, i = �N

2
, . . . ,

N

2
, (8.28)

x
2

(j) =

✓
2L

N

◆
j, j = �N

2
, . . . ,

N

2
, (8.29)

x
3

(k) =

✓
2L

N

◆
k, k = �N

2
, . . . ,

N

2
. (8.30)

The sampled values f(x
1

(i), x
2

(j), x
3

(k)) define a 3D discrete image of size N ⇥N ⇥

N . We assume that the cone-beam projections are acquired from a discrete set of

sources {s(�`)} sampled from Tuy’s curve �, with ` = 1, . . . , N
⇤

and �`��`�1

= ��.
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The projection data acquired from each s(�`) are gathered in the 2D discrete image

gd(�`, ui, vj) of size Nu ⇥Nv with

ui =

✓
2L

N

◆
i, i = �Nu

2
, . . . ,

Nu

2
, (8.31)

vj =

✓
2L

N

◆
j, j = �Nv

2
, . . . ,

Nv

2
, (8.32)

where we can assume that Nu and Nv are even.

We can rewrite the FBP formula in terms of the local detector coordinates (u, v)

as

f(x) =

Z

�2⇤

1

||x� s(�)||2 g
F
d (�, u(�, x), v(�, x)) d�, x 2 ⌦, (8.33)

where the detector coordinates (u(�, x), v(�, x)) correspond to the direction vector

��(u(�, x), v(�, x)) = (x� s(�))/||x� s(�)||. One can easily verify that

u(�, x) =
D�hx, e�ui

D� � hx, e�wi
, (8.34)

v(�, x) =
D�hx, e�vi

D� � hx, e�wi
, (8.35)

by solving for the intersection of the line passing through s(�) and x 2 ⌦ and the

planar detector. The voxel-driven backprojection procedure can be implemented as

follows:

1. For each �`, ` = 1, . . . , N
⇤

1.1 For each x 2  (reconstruction grid in (8.28))

1.1.1 Compute gd(�`, u(�`, x), v(�`, x)) by bilinear interpolation, where

u(�`, x), v(�`, x)) are as in (8.34).
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1.1.2 Set F `(x) := gd(�`, u(�`, x), v(�`, x))/||x� s(�`)||2

2. For each x 2  (reconstruction grid in (8.28))

2.1 Set frec(x) := ��
PN⇤

`=1

F `(x), where frec(x) is the reconstructed value of

f(x).

8.3.3 Summary of the Exact Cone-beam FBP Algorithm

In the numerical implementation of the cone-beam FBP algorithm, the sampling of

parameters is the same as for Grangeat’s inversion algorithm. In fact, Step 1 of the

cone-beam FBP algorithm is identical to Step 1 of Grangeat’s method.

The exact cone-beam FBP algorithm to reconstruct f from cone-beam data is

summarized below.

Step 1: Compute Radon Data

For each sampled source position �`, ` = 1, . . . , N�:

1.1 Pre-weight the cone-beam projection data by the factor 1/
q
u2 + v2 +D2

�`
to

obtain hd(�`, u, v) :=
gd(�`,u,v)q
u2

+v2+D2
�`

, where D�`
is the distance between s(�`) and

the origin.

1.2 Compute Lhd(�`,#, ⌧), the 2D Radon transform (line integration of 2D im-

age) of the weighted cone-beam data hd(�`, u, v). E�cient methods for discrete

implementation of the 2D Radon transform L can be found in [25].

1.3 Di↵erentiate numerically with respect to ⌧ and obtain @
@⌧Lhd(�`,#, ⌧). Higher

order finite-di↵erence scheme is recommended for the numerical evaluation of
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the derivative with respect to ⌧ (our numerical experiments in Chapter 9 used

3-point finite-di↵erence formulas of order 2).

1.4 Post-weight by the factor (⌧ 2 +D2

�`
)/D2

�`
to obtain

Gd(�`,#, ⌧) =
⌧ 2 +D2

�`

D�`

@

@⌧
Lhd(�`,#, ⌧).

Step 2: Shift-variant Filtering

For each sampled source position �`, ` = 1, . . . , N�:

2.1 Compute Kd(�,#, ⌧) =
1

4⇡2 |hs0(�),!(#, ⌧)i|Md(�,#, ⌧)Gd(�,#, ⌧).

2.2 Compute the weighted data eKd(�,#, ⌧) :=
Kd(�,#,⌧)p

⌧2+D2
�

.

2.3 Di↵erentiate eKd with respect to ⌧ and obtain eK 0
d(�,#, ⌧) :=

@
@⌧
eKd(�,#, ⌧).

2.4 Perform 2D backprojection (see [26]) on the uv-plane to e�ciently compute the

integral

J(�, u, v) :=

Z ⇡

0

eK 0
d(�,#, ⌧)|⌧=u cos#+v sin# d#.

2.5 Compute gFd (�, u, v) := (u2 + v2 +D2

�)J(�, u, v).

Step 3: Cone-beam Backprojection

Backproject the filtered cone-beam data gFd (�, u, v) onto the 3D reconstruction grid

(8.28), using the voxel-driven method discussed in 8.3.2, to reconstruct f .
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8.3.4 Computational Complexity

Let us briefly discuss the complexity of the cone-beam FBP algorithm. Assume that

we are interested in reconstructing f on a discrete 3D grid of sizeN⇥N⇥N , from cone-

beam projections images of size N ⇥N , measured from N sources. According to [13],

the filtering steps (Steps 1 and 2) in the algorithm require O(N4) operations, mainly

due to the complexity of 2D line-integration and backprojection. A modified shift-

variant filtering, where line-integration is performed via the linogram method [14,15],

can reduce the filtering complexity down to O(N3 logN). However, the voxel-driven

3D cone-beam backprojection requires O(N4) operations. Thus, the complexity of

the exact cone-beam FBP algorithm is O(N4).

8.4 ROI Reconstruction Algorithm

We presented in Chapter 6 a novel algorithm to compute the ✏-accurate inverse of the

C-truncated cone-beam transform DC , where C is a spherical region of interest. There

are three main tasks involved in each iteration of our ROI reconstruction algorithm:

1. Forward cone-beam projection

2. Inversion of cone-beam data by a non-truncated inverse D�1

3. Density regularization

It is very important to use an accurate yet fast forward cone-beam projection

model in our iterative algorithm. The forward projection step can be accomplished by

a number of ray-tracing methods, where each sampled ray is traced through individual

voxel-volumes while accumulating the line integral value associated with the ray.
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There exist a number of accurate and fast ray-tracing forward cone-beam projection

methods, including Joseph’s method [25] and Siddon’s method [54].

We have presented two computationally e�cient and theoretically exact non-

truncated cone-beam inverse operator D�1 in Sections 8.2 and 8.3. Virtually any

numerically implementable inverse D�1 can be incorporated with our reconstruction

from ROI truncated cone-beam data outlined in Section 6.4. However, to retain

numerical stability, we recommend the use of a non-truncated cone-beam inverse

operator D�1 that is both theoretically exact and stable. Recall from Section 3.6

that for non truncated cone-beam data, there is an inverse operator D�1 which is

both theoretically exact and stable if and only if the source curve � satisfies Tuy’s

conditions.

The density regularization method was discussed in explicit details in Section 6.3.

Although any of the regularization methods we presented will assure convergence of

our algorithm, through numerical experiments we found that the hard thresholding

regularization method gives the best results.

8.4.1 Summary of our ROI Reconstruction Algorithm

Our ROI reconstruction algorithm from ROI C-truncated cone-beam data is initial-

ized by setting f
0

= D�1DCf , where D�1 denotes an exact inverse of the non trun-

cated cone-beam transform. In Chapters 3 and 5, we presented a few non-truncated

cone-beam inverison operators D�1. Successive approximations fn of f are then iter-

atively obtained as follows

1. Compute the regularization �fn of fn (see Section 6.3).
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2. Compute D�fn(s, ·) for all s 2 � and write

D�fn = DC�fn + (D�fn �DC�fn).

3. In the preceding formula, replace DC�fn with the known truncated projection

data DCf and let

fn+1

= D�1{DCf + (D�fn �DC�fn)}.

For smooth densities f with compact support, and for large enough spherical ROI C,

we expect the sequence of approximate densities fn generated by our algorithm to

converge an ✏-accurate inverse of the truncated cone-beam transform DC .

8.4.2 Stopping Criterion

Let C be the spherical region of interest. As a stopping criterion for our ROI recon-

struction algorithm, we adopted a standard rule to stop the iteration when fj and

fj+1

become close enough within C. For some small tolerance b > 0, we iterate the

ROI reconstruction algorithm for all j satisfying

||fj+1

� fj||L1
(C)

 b. (8.36)
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Chapter 9

Numerical Results for ROI

Reconstruction with Twin-Circular

Acquisition

In this chapter, we analyze the performance of our ROI reconstruction algorithm

through extensive numerical experiments with simulated truncated cone-beam data

acquired from the twin-circular acquisition geometry. The conditions imposed on the

density function f : R3 ! R and the cone-beam source curve � are to be assumed as

before. Assume that f has a compact support on the closed ball ⌦ of R3. We will

denote by frec the reconstruction of f .

Let us first define a few classical metrics to analyze the fidelity of reconstructed

images.

Definition 9.0.1. Let f be the real valued density function on R3 and frec be the

reconstruction of f . For a spherical region of interest C inside ⌦, the ROI relative
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L1-error (RLE) of the reconstruction of f within C is defined by

RLE =
||f � frec||L1

(C)

||f ||L1
(C)

, (9.1)

where ||f ||L1
(C)

=
R
C |f(x)|dx.

Definition 9.0.2. Let f be the real valued density function on R3 and frec be the

reconstruction of f . For a spherical region of interest C inside ⌦, the peak signal-to-

noise ratio (PSNR) of the reconstruction of f within C is defined by

PSNR = 10 · log
10

 
supx2C |f(x)|

1

vol(C)

||f � frec||L1
(C)

!
. (9.2)

Definition 9.0.3. Let the set of N� points {s(�i) 2 R3 : �
1

, . . . ,�N�
2 ⇤} be a

discretization of the cone-beam acquisition curve �. Assume that each discretized

non-truncated cone-beam projection image is of size Nu ⇥Nv. For a spherical region

of interest C inside ⌦, denote by P (�i, C) the number of sampled rays that intersect

C. Define the truncation level ⌧(C) as

⌧(C) = 1�
N�X

i=1

P (�i, C)

N�NuNv
. (9.3)

9.1 Reconstruction Setup

For our numerical experiments, we have implemented the ROI reconstruction algo-

rithm using the non-truncated cone-beam inverse operator D�1, which is based on

the shift-variant cone-beam FBP formula presented in Chapter 8. The reconstruction

was set on cone-beam acquisition geometry consisting of a source curve � formed by
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two orthogonal circles of the same radius and a flat panel detector. The parameters

of the reconstruction geometry are outlined below.

3D image size = 2563 voxels

Radius of each circle = 1472 voxels

Number of sources per circle = 360

Detector size = 256 rows, 256 columns

Detector spacing = 1 voxel

Source to detector distance = 1472 voxels

The center of the 3D image and the center twin-circles coincide. It is assumed

that each density is supported in a ball of radius 128 voxels. The radius 1472 vox-

els was selected after performing intensive numerical simulations; it gave the most

accurate reconstruction for the inversion of non-truncated cone-beam data. As we

have used a virtual detector centered at the origin, the source to detector distance

is equal to the radii of the circles. To process the cone-beam projection data for the

shift-variant cone-beam FBP algorithm following the methods outlined in Chapter

8, we have sampled 180 ⇥ 256 = 46, 080 parametric lines per detector, where 180 is

the number of direction angles # and 256 is the number of sampled lines per direc-

tion #. For the regularization step of the ROI reconstruction algorithm, we chose

hard-thresholding regularization method, as we found this method to be more e�-

cient when compared with other density regularization methods (see Chapter 7 for

details). We used Daubechies wavelets Daub4 (see [38]) in R3 to generate the wavelet

decomposition of the density function of interest, and discarded 90% of the wavelets

coe�cients of smaller magnitudes.
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9.2 ROI Reconstruction of the Shepp-Logan Phan-

tom

We have tested ROI reconstruction using our algorithm on the 3D Shepp-Logan head

phantom [52, 53]. The head phantom is sampled on a 3D discrete grid of size 256 ⇥

256⇥ 256. The three middle planar slices of the Shepp-Logan phantom are shown in

Figure 9.1.

xy view yz view xz view

Figure 9.1: The mid-planar slices of the 3D Shepp-Logan Phantom and a spherical
region of interest C (boundary shown in red).

We have selected various spherical regions of interest C of varying radii between

45 and 90 voxels, arbitrarily located strictly within the support of the density. One

specific spherical ROI C located within the density image is shown in Figure 9.1.

As expected, direct application of the shift-variant cone-beam FBP to the ROI-

truncated projections give unacceptable inaccuracies. As can be seen in Figure 9.2,

severe artifacts such as heavy blurring and false edges are present in the naive ROI

reconstruction method, whereas our algorithm gives far superior results. The com-

parison of the naive method and our ROI reconstruction method, along with the
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true density are presented in Figure 9.2. Superior quality of our ROI reconstruction

method is evident from the line intensity profiles of the mid-planar slices of the images

reconstructed by the two methods and the ground truth, shown in Figure 9.3. Com-

pared to the ground truth, although our ROI reconstructions are highly accurate, the

reconstructed densities are slightly blurred. This is because the non-truncated cone-

beam inverse operator D�1 (exact cone-beam FBP) used in our ROI reconstruction

algorithm requires the density f of interest to be smooth. The 3D Shepp-Logan den-

sity has a number of discontinuities. Our ROI reconstructions appear to be smooth

especially in the regions where the Shepp-Logan phantom has discontinuities.
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Naive
reconstruction

Our algorithm Ground truth

xy 
view

yz 
view

xz 
view

Figure 9.2: Visual comparison of ROI reconstruction for 3D Shepp-Logan phantom
using Twin-circular acquisition and ROI-truncated projections. ROI radius = 45
voxels. Middle slices are shown from the xy, yz, and xz planes. From left to right:
direct application of shift-variant cone-beam FBP; our iterative ROI reconstruction;
ground truth.
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(a) xy slice

(b) yz slice

Figure 9.3: Visual comparison of ROI reconstruction for 3D Shepp-Logan phantom
using Twin-circular acquisition and ROI-truncated projections. ROI radius = 45
voxels. Intensity profiles for a fixed row corresponding to the mid-planar slices are
shown.

We will assess the performance of our ROI-reconstruction method and compare
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it to the performance of the naive method quantitatively using the two metrics RLE

and PSNR introduced in the beginning of this chapter. When a region of interest C

of radius 75 voxels is chosen, a direct application of the cone-beam FBP method to

the truncated projection data yields RLE = 46.2% and PSNR = 10.95 dB, whereas

our iterative ROI reconstruction method performs clearly better with RLE = 8.9%

and PSNR = 22.3 dB after only 9 iterations. Additional ROI reconstruction results

for the Shepp-Logan phantom are given for di↵erent ROI radii in Table 9.1.

It is obvious that smaller size ROIs yield larger degree of cone-beam truncations ⌧ .

From the perspective of medical imaging, large truncation ⌧ in the X-ray projections

means the body to be imaged undergoes less radiation exposure than usual. Our

ROI reconstruction method achieves reconstruction error RLE = 14.8% with ROI

truncation level ⌧ = 89.6%. This is a significant gain the world of medical imaging.

The relationship between the degree of truncation ⌧ and the relative reconstruction

error RLE is evident from Figure 9.4.

Table 9.1: Performance of our ROI reconstruction of Shepp-Logan Phantom for var-
ious spherical ROI radii.

ROI radius Truncation level RLE PSNR
45 voxels 89.6% 14.8% 19.7 dB
60 voxels 81.8% 14.7% 19.8 dB
75 voxels 71.9% 8.9% 22.3 dB
90 voxels 59.9% 4.8% 25.6 dB
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Figure 9.4: Relation between the degree of truncation level ⌧ and the relative recon-
struction error RLE for ROI reconstruction of the Shepp-Logan phantom.

9.3 ROI Reconstruction of Biological Data

A reconstruction method benchmarked by simulated phantoms such as the Shepp-

Logan head phantom does not necessarily prove the robustness of the method in

handling real data problems. In this section, our ROI reconstruction algorithm is

validated by region of interest reconstruction of biological data. It is a challenging

task to obtain real C-truncated cone-beam projection data, especially with arbitrary

source curves. In order to obtain as close to real biological projection data, we

start from 3D densities reconstructed previously by classical methods from real non-

truncated cone-beam X-ray projection data. The 3D densities are tested to make

sure that they are free of severe artifacts. We then simulate ROI-truncated cone-

beam projections with discretized sources lying on the twin-circular trajectory from
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these 3D densities.

Our first 3D density data was a previously reconstructed density from a full non-

truncated X-ray CT scan of a mouse. The planar slices of the mouse data are shown

in Figure 9.5. The original image was of size 512 ⇥ 768 ⇥ 512. We extracted a sub-

cube ⌦ of size 2563 located near the brain of the mouse. For ROI-reconstruction

tests, we selected small spherical regions of interest C of varying radii between 45

and 90 voxels arbitrarily placed strictly within ⌦. A visual comparison of the direct

application of cone-beam FBP method to truncated data and our ROI reconstruction

algorithm is shown in Figure 9.6. Line intensity profiles of the ROI reconstructions

by both methods and the ground truth are presented in Figure 9.7. A summary of

quantitative performance for various ROIs is given in Table 9.2.

Saggital view Axial view

Figure 9.5: Planar slices of full body scan of a mouse.

It is interesting to note that with substantial truncation level ⌧ = 81.8%, our ROI

reconstruction achieves RLE = 9.4% and PSNR = 29.3 dB. This demonstrates how

useful our method can be in radiology to produce high quality ROI reconstructions

with smaller dosage of radiation.
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Naive
reconstruction

Our algorithm Ground truth

xy 
view

yz 
view

xz 
view

Figure 9.6: Visual comparison of ROI reconstruction for Mouse Tissue using Twin-
circular acquisition and ROI-truncated projections. ROI radius = 45 voxels. Middle
slices are shown from the xy, yz, and xz planes. From left to right: direct application
of shift-variant cone-beam FBP; our iterative ROI reconstruction; ground truth.
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(a) xy slice

(b) yz slice

Figure 9.7: Visual comparison of ROI reconstruction for Mouse Tissue using Twin-
circular acquisition and ROI-truncated projections. ROI radius = 45 voxels. Intensity
profiles for a fixed row corresponding to the mid-planar slices are shown.

Our second biological image data set was a previously reconstructed density from
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Table 9.2: Performance of the ROI reconstruction of Mouse Tissue for various spher-
ical ROI radii.

ROI radius Truncation level RLE PSNR
45 voxels 89.6% 12.5% 26.8 dB
60 voxels 81.8% 9.4% 29.3 dB
75 voxels 71.9% 8.3% 30.1 dB
90 voxels 59.9% 7.8% 31.4 dB

non-truncated CT scans of a human jaw. The whole 3D data set is of size 536⇥536⇥

440. The planar slices of the image are shown in Figure 9.8.

Saggital view Coronal view

Figure 9.8: Planar slices of full scan of a human jaw.

As we have done for the mouse data, we extracted a discretized sub-cube ⌦ of

size 2563 from the full data set to test ROI reconstruction. The spherical ROIs

C of various radii between 45 and 90 voxels were strictly included within ⌦. Visual

comparison of ROI reconstructions by naive cone-beam FBP formula and our iterative

reconstruction method are shown in Figure 9.9. The quantitative performance of our

method is given in Table 9.3.
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Naive
reconstruction

Our algorithm Ground truth

xy 
view

yz 
view

xz 
view

Figure 9.9: Visual comparison of ROI reconstruction for Human Jaw using Twin-
circular acquisition and ROI-truncated projections. ROI radius = 45 voxels. Middle
slices are shown from the xy, yz, and xz planes. From left to right: direct application
of shift-variant cone-beam FBP; our iterative ROI reconstruction; ground truth.
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Table 9.3: Performance of the ROI reconstruction of Human Jaw for various spherical
ROI radii.

ROI radius Truncation level RLE PSNR
45 voxels 89.6% 15.0% 21.2 dB
60 voxels 81.8% 13.3% 26.5 dB
75 voxels 71.9% 10.2% 29.0 dB
90 voxels 59.9% 9.8% 29.4 dB

9.4 Numerical Analysis of the Convergence our

ROI Reconstruction Algorithm

In this section, we present the critical radius condition for ✏-accurate ROI recon-

struction from C-truncated cone-beam projections and the rate of convergence of our

algorithm.

9.4.1 Critical Radius

We have stated in Chapter 6 that for ✏ > 0, there exists a critical radius ⇢(✏) such

that our ROI reconstruction algorithm converges to an ✏-accurate inverse within a

ROI C strictly within ⌦, given that the radius of C is no smaller than the critical

radius ⇢(✏). The statement was proved using rigorous mathematics by our research

team (see [3] for details).

Based on our extensive numerical experiments of ROI reconstruction of the three

images on several regions of interest C of various radii, we estimated the critical radius

⇢(✏) of ROI reconstruction for each image. We fixed an accuracy level ✏ = 10%. The

critical radius ⇢ of ROI reconstruction of the Shepp-Logan is 73 voxels. The critical

radius ⇢ for the Mouse Tissue and the Human Jaw are 49 and 82 voxels, respectively.
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The relative reconstruction error REL vs. ROI radius plots of the three images is

shown in Figure 9.10.

Figure 9.10: Relative L1 Error (RLE) vs ROI radius for ROI reconstruction of three
images: Shepp-Logan (red), Mouse Tissue (blue), and Human Jaw (green). The black
dashed line represents a fixed ROI reconstruction accuracy level ✏ = 10%. The radius
value corresponding to the intersection between the dashed line and an error curve of
an image gives the critical radius ⇢(✏) of ROI reconstruction of that image.

9.4.2 Rate of Convergence

It is proved theoretically in [3] that our ROI reconstruction algorithm converges to an

✏-accurate at an exponential speed, given that the radius of the region of interest C is

no smaller than a critical radius ⇢(✏). It is evident from the plots presented in Figure

9.11 and Figure 9.12 that the relative reconstruction error decays exponentially after

4 to 5 iterations. This means that the decay of the relative L1 error RLE with respect
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to iteration k can be modeled by

RLE(k) = ae�bk,

where a > 0 is a constant and b > 0 is the rate of decay. Based on our numerical

experiments of ROI reconstructions of the three discretized densities on various ROIs,

we estimated the exponential rate of convergence for each case by linear regression.

As the first 4 to 5 iterations involve dealing with severely noisy data, we used relative

errors obtained between for k � 6 to estimate of the rate of decay for each case. We

found that the exponential rate of convergence to be between 0.22 and 0.34. The

estimated convergence rates of our algorithm for individual cases are presented in

Table 9.4.
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Figure 9.11: Relative L1 Error (RLE) vs iteration of our algorithm for ROI recon-
struction of three images: Shepp-Logan (red), Mouse Tissue (blue), and Human Jaw
(green). Spherical ROI radius = 45 voxels.
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Figure 9.12: Relationship between logarithm of the Relative L1 Error (RLE) and
iterations of our algorithm for ROI reconstruction of three images: Shepp-Logan
(red), Mouse Tissue (blue), and Human Jaw (green). Spherical ROI radius = 45
voxels. After 4-5 iterations, the logarithm of the error curves tend to be linear.

Table 9.4: Exponential rate of convergence of our ROI reconstruction algorithm. The
table shows rates of convergence for ROI reconstructions of three images (Shepp-
Logan, Mouse Tissue, and Human Jaw) on several spherical regions of interest C of
radii between 45 and 90 voxels.

ROI radius Shepp-Logan Mouse Tissue Human Jaw
45 voxels 0.25 0.22 0.23
60 voxels 0.28 0.24 0.26
75 voxels 0.30 0.24 0.27
90 voxels 0.34 0.23 0.24
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Chapter 10

Non-truncated Cone-beam

Inversion with Acquisition from a

Generic Source Curve

In this chapter, we present a non-standard source curve (spherical spiral) for non-

truncated cone-beam reconstruction which satisfies Tuy’s condition. In CT literature,

there exist a number of exact non-truncated cone-beam inversion algorithms. For

example, Katsevich [27,28] proved a theoretically exact Spiral CT non-truncated cone-

beam inversion formula, which can be numerically implemented using shift-invariant

filtering. However, the Katsevich algorithm requires the source curve � to be a

circular helix. To our knowledge, Grangeat’s method, or its variant cone-beam FBP

inversion (see Chapter 5), are the only exact and stable algorithms for non-truncated

cone-beam acquisition with any source curve � satisfying Tuy’s conditions. In this

chapter, we focus our discussion to spherical spiral curves satisfying Tuy’s conditions.
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10.1 Spherical Spiral Source Curve

A circular spiral source curve � is parametrically expressed by

s(�) =

✓
R cos�, R sin�,

Rh�

2⇡

◆
, �2⇡T  �  2⇡T, (10.1)

where R > 0 is the radius, T > 0 is the number of turns, and h > 0 is the pitch of the

spiral, i.e., the vertical height between two turns (see Figure 10.1). Note that � lies

on the surface of a finite cylinder Z with radius R > 0 and height 2hT . The circular

spiral � will satisfy Tuy’s conditions (see Chapter 3) if the support of the density f

is a relatively small compact set ⌦ contained inside of Z. Thus, to implement an

exact and stable non-truncated cone-beam inversion of densities supported in ⌦, one

must find appropriate parameters R, T , and h of the circular spiral � so that Tuy’s

conditions are fulfilled.

Assume that the virtual planar detector is defined as in Chapter 8. For a fixed

source s(�), the cone angle of the beam of x-rays originating from s(�) and passing

through the object ⌦ depends on the distance between the detector and the source

position s(�). The sizes of the finite planar detectors depend on the cone angles, as

the detectors should be large enough to contain the non-truncated cone-beam pro-

jections. One disadvantage of the the circular spiral � is that as the source moves

along the spiral, the distance D� between the source s(�) and the origin (that is, the

distance between s(�) and the virtual detector) is not constant. Thus, the cone angle

or the size of the detector will always change, depending on s(�). Using detectors

of di↵erent sizes may lead to degraded numerical reconstructions from non-truncated

cone-beam projections. In fact, for generic source curve reconstruction algorithms
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such as Grangeat’s method, or its variant cone-beam FBP algorithm, choosing di↵er-

ent sized detectors mean irregularly sampling non-truncated cone-beam data, which

can generate unpredictable inaccuracies in the reconstructions.

Figure 10.1: A circular spiral trajectory �, typically used in cone-beam CT. The
spiral � clearly satisfies Tuy’s condition as the spiral radius R = 3, pitch h = 0.5,
vertical height v = 3 and the object radius L = 1.

The circular spiral may be modified so that the source s(�) is always at a fixed

distance from the origin. We define the spherical spiral curve � to be

s(�) =

 
2⇡R cos�p
4⇡2 + (h�)2

,
2⇡R sin�p
4⇡2 + (h�)2

,
Rh�p

4⇡2 + (h�)2

!
, �2⇡T  �  2⇡T,

(10.2)
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with T turns which lie on the sphere of radius R > 0 (see Figure 10.2). Note that

the parameter h > 0 does not necessarily represent a fixed pitch of the spiral. The

vertical height v of the spherical spiral � is

v = ||s(2⇡T )� s(�2⇡T )|| = 2hRTp
1 + (hT )2

. (10.3)

The curve � defined in (10.2) will satisfy Tuy’s condition 1 if and only if the radius

R and the vertical height v are su�ciently large compared to the radius of the closed

ball containing the density support ⌦.

Figure 10.2: A non-standard spherical spiral trajectory �. The spiral � clearly satisfies
Tuy’s condition as the spiral radius R = 3, parameter h = 0.5, vertical height v ⇡ 4.2
and the object radius L = 1.
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10.2 Non-truncated Cone-beam FBP Inversion

We now present in detail the implementation of the non-truncated cone-beam FBP

inversion formula with spherical spiral acquisition. Most of the implementation details

have already been presented in Section 8.3. However, we need to choose a specific

weighting function particularly associated with the spherical spiral curve �.

10.2.1 Geometry and Data Acquisition

Assume that the 3D density function f(x
1

, x
2

, x
3

) is smooth and has its support in

⌦, a closed ball in R3 centered at the origin. Denote by L the radius of the ball ⌦.

Thus, we have

⌦ = {(x
1

, x
2

, x
3

) 2 R3 : x2

1

+ x2

2

+ x2

3

 L2}. (10.4)

Let � be the spherical spiral cone-beam scanning curve defined as in (10.2). One

must choose the parameters R, T , and h of the curve � appropriately to fulfill Tuy’s

conditions. The following inequalities

R >
p
2L, L <

2hRTp
1 + (hT )2

, (10.5)

must hold simultaneously in order to guarantee Tuy’s completeness condition of the

spherical spiral curve �.

As in Chapter 8, we define the planar virtual detector corresponding to the source

position s(�) to be the tangent plane to � spanned by the unit vectors e�u and e�v ,

where

e�v = e�w ⇥ e�u, e�w =
s(�)

||s(�)|| , e�u =
s0(�)

||s0(�)|| , (10.6)
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for �2⇡T  �  2⇡T . With our definition, the virtual detector is orthogonal to e�w

and at distance D� ⌘ ||s(�)|| from the source s(�). For u, v 2 R, each point ue�u+ve�v

on the virtual detector plane has local coordinates (u, v). The unit vector ��(u, v)

defined by

��(u, v) =
ue�u + ve�v � s(�)p

u2 + v2 +D2

�

. (10.7)

is parallel to the cone-beam ray which originates from the source s(�) and goes

through the point (u, v) on the detector. The cone-beam projection data of the

density f is

gd(�, u, v) =

Z 1

0

f(s(�) + t��(u, v)) dt, � 2 ⇤, (u, v) 2 R2. (10.8)

10.2.2 Weighting Function

Recall the source weighting function M required by the non-truncated cone-beam

FBP formula from Chapter 5. In a typical situation a plane ⇧(!, ⇢), orthogonal to

! 2 S2 at distance ⇢ from the origin, may contain more than just one source in �.

In such cases, non-truncated cone-beam data acquired from a number of sources can

be used to compute the same 3D Radon data. To handle this redundancy, a smooth

function M(!,�) can be introduced, satisfying the normalization condition

n(!,⇢)X

k=1

M(!,�k) = 1, (10.9)

where n(!, ⇢) denotes the number of intersections between the plane ⇧(!, ⇢) and the

curve �, and �
1

, . . . ,�n(!,⇢) 2 ⇤ are the solutions to ⇢ = hs(�),!i. An obvious choice
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for the function M(!,�) which satisfies the normalization condition is

M(!,�) =
1

n(!, hs(�),!i) , (10.10)

where n(!, hs(�),!i) denotes the number of intersections between the source curve

� and the plane ⇧ passing through s(�) and orthogonal to !. However, this trivial

choice of M has many discontinuities. An appropriate weighting function M is given

by [13]

M(!,�) =
|hs0(�),!i|mc(�)

Pn(!,hs(�),!i)
k=1

|hs0(�k),!i|mc(�k)
, (10.11)

where m is a positive integer and c : ⇤ ! R is a smooth function equal to one

everywhere, except near the boundaries of the interval ⇤. This choice of M is C1 in

both ! and � when m > 2 (see [13]).

In order to compute the values of a weighting function M(!,�) (similar to the one

given in (10.11)) for the spherical spiral curve �, for each source position � 2 ⇤, first

we need to compute n(!, ⇢), the number of intersections between the plane ⇧(!, ⇢)

and the curve �, for all ! 2 S2 and all ⇢ 2 R. There is at least one intersection

between the plane ⇧(!, ⇢) and the spherical spiral curve � if and only if there exists

a � 2 ⇤ satisfying h!, s(�)i = ⇢. In other words, writing ! = (!
1

,!
2

,!
3

), the number

of � 2 ⇤ satisfying

!
1

2⇡R cos�p
4⇡2 + (h�)2

+ !
2

2⇡R sin�p
4⇡2 + (h�)2

+ !
3

Rh�p
4⇡2 + (h�)2

= ⇢, (10.12)

will give us the exact number of intersections between ⇧(!, ⇢) and �. However, it

is not feasible to solve (10.12) analytically. Thus, we solve this nonlinear equation
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numerically. Let us define the function F by

F (!, ⇢, R, h,�) = 2⇡R(!
1

cos�+ !
2

sin�) +R!
3

h�� ⇢
p
4⇡2 + (h�)2. (10.13)

It can be shown that for fixed !, ⇢, R, h, the zeros of the function F in � solve the

nonlinear problem (10.12). There exists a number of fast iterative algorithms in the

numerical analysis literature that can be used to find the roots of a smooth function,

such as the bisection Method and the Newton’s method (see [11, 58]). To e↵ectively

solve for every root of the function F (!, ⇢, R, h; ·) lying on the interval ⇤ using an

iterative method, we propose the following scheme. Partition the interval ⇤ into

a su�ciently large number of sub-intervals {⇤j}, with each sub-interval ⇤j having

the same length. Next, for each sub-interval ⇤j, evaluate F (!, ⇢, R, h; ·) at the end

points of ⇤j. If the signs of F (!, ⇢, R, h; ·) are di↵erent at the end-points of ⇤j, apply

an iterative root finding algorithm to find � 2 ⇤j such that F (!, ⇢, R, h,�) = 0;

otherwise, move on to the next sub-interval ⇤j+1

. As this process of computing n(!, ⇢)

is computationally very intensive, to save computation time, one most pre-compute

and store the values of n(!, ⇢) and the roots of the function F (!, ⇢, R, h; ·).

Once we have computed n(!, ⇢), the number of intersections between the plane

⇧(!, ⇢) and the spherical spiral curve �, for all ! 2 S2 and all ⇢ 2 R, the values of

an appropriate weighting function M(!,�) can be computed by (10.11). Again, to

save computation time, the values of M(!,�) should be pre-computed and stored for

later use.
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10.3 Cone-beam FBP with Acquisition from a

Generic Source Curve

In Chapter 8, we discussed in detail the numerical implementation of the cone-beam

FBP algorithm for an arbitrary source curve � satisfying Tuy’s condition. One can

simply follow the algorithm outlined in Section 8.3.3 to implement the non-truncated

numerical inverse of the cone-beam transform with acquisition from any generic Tuy’s

source curve, such as the spherical spiral. In the shift-variant filtering stage of the

FBP algorithm, a weighting function M should be chosen appropriately for an exact

and stable reconstruction.. The weighting function for the spherical spiral is presented

in Section 10.2.2.
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Chapter 11

Numerical Results for ROI

Tomography with Spherical Spiral

Acquisition

In this chapter, we analyze the performance of our ROI reconstruction algorithm

through extensive numerical experiments with simulated truncated cone-beam data

acquired from the spherical spiral acquisition geometry discussed in Chapter 10. The

conditions imposed on the density function f : R3 ! R and the cone-beam source

curve � are to be assumed as before. Assume that f has a compact support on the

closed ball ⌦ of R3. We will denote by frec the reconstruction of f .

11.1 Reconstruction Setup

For our numerical experiments, we have implemented the ROI reconstruction algo-

rithm using the non-truncated cone-beam inverse operator Z, which is based on the
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shift-variant cone-beam FBP formula presented in Chapter 8. The reconstruction

was set on cone-beam acquisition geometry consisting of a spherical spiral (10.2) and

a flat planar detector. The parameters of the reconstruction geometry are outlined

below.

3D image size = 2563 voxels

Radius of the spherical spiral = 3200 voxels

Number of turns T of the spiral = 3

Value of h = 0.35

Number of sources = 720

Detector size = 256 rows, 256 columns

Detector spacing = 1 voxel

Source to detector distance = 3200 voxels

The center of the 3D image and the center of the spherical spiral coincide. The

large radius 3200 voxels for the spherical spiral curve � was selected after performing

intensive numerical simulations; it gave the most accurate reconstruction in the cases

of non-truncated cone-beam inversion. To process the cone-beam projection data for

the shift-variant cone-beam FBP algorithm following the methods outlined in Chapter

8, we have sampled 180 ⇥ 256 = 46, 080 parametric lines per detector, where 180 is

the number of direction angles # and 256 is the number of sampled lines per direction

#.

For the regularization step of the ROI-reconstruction algorithm, we chose hard-

thresholding regularization method, as we found this method to be superior when

compared with other density regularization methods (see Chapter 6 for details). We
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used Daubechies wavelets (Daub4) (see [38] for details) in R3 to generate the wavelet

decomposition of the density function of interest, and discarded 90% of the wavelets

coe�cients of smaller magnitudes.

11.2 Performance of our ROI-Reconstruction Al-

gorithm

We have tested ROI reconstruction using our algorithm on the discretized densities of

the 3D Shepp-Logan (Figure 9.1) head phantom and the Mouse tissue (Figure 9.5).

We have selected several spherical regions of interest C of varying radii between 60

and 90 voxels, arbitrarily located strictly within the support of the density.

We see that direct application of the shift-variant cone-beam FBP to the ROI-

truncated projections gives slightly better results with spherical spiral acquisition

than twin-circular acquisition. This is largely due to the fact that the spherical spiral

curve �makes more redundant cone-beam measurements than the twin-circular curve.

Regardless of this fact, as can be seen in Figure 11.1 and Figure 11.3, severe artifacts

such as heavy blurring and ring artifacts are present in the naive ROI-reconstruction

method, whereas our algorithm gives far superior results. The line intensity profiles of

the mid-planar slices of the images reconstructed by the two methods and the ground

truth are shown in Figure 11.2 and Figure 11.4. We see that our ROI reconstruction

follows the true density much closely than the naive reconstruction, especially on the

boundaries of the ROI.
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Naive
reconstruction

Our algorithm Ground truth

xy 
view

yz 
view

xz 
view

Figure 11.1: Visual comparison of ROI reconstruction for 3D Shepp-Logan phantom
using Spherical Spiral acquisition and ROI-truncated projections. ROI radius = 75
voxels. Middle slices are shown from the xy, yz, and xz planes. From left to right:
direct application of shift-variant cone-beam FBP; our iterative ROI reconstruction;
ground truth.
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(a) xy slice

(b) yz slice

Figure 11.2: Visual comparison of ROI reconstruction for 3D Shepp-Logan phantom
using Spherical Spiral acquisition and ROI-truncated projections. ROI radius = 75
voxels. Intensity profiles for a fixed row corresponding to the mid-planar slices are
shown.
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Naive
reconstruction

Our algorithm Ground truth

xy 
view

yz 
view

xz 
view

Figure 11.3: Visual comparison of ROI reconstruction for Mouse Tissue using Spheri-
cal Spiral acquisition and ROI-truncated projections. ROI radius = 75 voxels. Middle
slices are shown from the xy, yz, and xz planes. From left to right: direct application
of shift-variant cone-beam FBP; our iterative ROI reconstruction; ground truth.
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(a) xy slice

(b) yz slice

Figure 11.4: Visual comparison of ROI reconstruction for Mouse Tissue using Spher-
ical Spiral acquisition and ROI-truncated projections. ROI radius = 75 voxels. In-
tensity profiles for a fixed row corresponding to the mid-planar slices are shown.
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We will assess the performance of our ROI reconstruction method and compare

it to the performance of the naive method quantitatively using the two metrics RLE

and PSNR introduced in the in Chapter 9. The truncation level ⌧(C) from (9.3) is

also presented for each ROI C to quantify the dose-reduction associated with each

C-truncated cone-beam acquisition. When a region of interest C of radius 60 voxels

is chosen for ROI reconstruction of the Mouse Tissue, a direct application of the cone-

beam FBP method to the truncated projection data yields RLE = 25.2%, whereas

our iterative ROI reconstruction method performs better with RLE = 19.2% and

PSNR = 22.3 dB after 18 iterations. For ROI reconstruction of the Shepp-Logan

phantom with an ROI of radius 75 voxels, after 16 iterations our iterative algorithm

yields RLE = 15.7% and PSNR = 18.9 dB, whereas a direct application of cone-

beam FBP to truncated data gives RLE = 19.4%. Additional ROI reconstruction

results for the Shepp-Logan phantom are given for di↵erent ROI radii in Table 11.1

and Table 11.2.

Table 11.1: Performance of our ROI reconstruction of Shepp-Logan Phantom for
various spherical ROI radii.

ROI radius Truncation level RLE PSNR
60 voxels 81.8% 48.5% 11.9 dB
75 voxels 71.9% 15.7% 18.9 dB
90 voxels 59.9% 18.8% 20.3 dB

Table 11.2: Performance of our ROI reconstruction of Mouse Tissue for various spher-
ical ROI radii.

ROI radius Truncation level RLE PSNR
60 voxels 81.8% 19.2% 23.7 dB
75 voxels 71.9% 13.9% 26.5 dB
90 voxels 59.9% 14.7% 26.4 dB
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11.3 Numerical Analysis of the Convergence our

ROI-Reconstruction Algorithm

In this section, we present the critical radius condition for ✏-accurate ROI recon-

struction from C-truncated cone-beam projections and the rate of convergence of our

algorithm.

11.3.1 Critical Radius

We have stated in Chapter 6 that for ✏ > 0, there exists a critical radius ⇢(✏) such

that our ROI reconstruction algorithm converges to an ✏-accurate inverse within a

ROI C strictly within ⌦, given that the radius of C is no smaller than the critical

radius ⇢(✏). The statement was proved rigorously by our research team (see [3] for

details).

Based on our extensive numerical experiments of ROI reconstruction of the two

discretized densities (Shepp-Logan and Mouse Tissue) on several regions of interest C

of various radii, we estimated the critical radius ⇢(✏) of ROI reconstruction for each

image. With a fixed accuracy level ✏ = 14%, the estimated the critical radiii ⇢ of

ROI reconstruction of the Shepp-Logan and the Mouse Tissue densities were 83 and

68 voxels, respectively. It is interesting to note that the Mouse Tissue gives a smaller

critical radius, due to its smoothness.

11.3.2 Convergence Speed

It is proved theoretically in [3] that our ROI reconstruction algorithm converges to

an ✏-accurate at an exponential speed, given that the radius of the region of interest
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C is no smaller than a critical radius ⇢(✏).

It is evident from the error plots presented in Figure 11.5 and Figure 11.6 that the

relative reconstruction error decays exponentially after just a iterations. Extensive

experimental results are necessary to numerically estimate the rate at which the error

of our ROI-reconstruction algorithm decreases. However, we can conclude based

on our experiments that the algorithm will always converge, given the density is

su�ciently regular and the radius of the ROI is no smaller than a critical radius.

Figure 11.5: Relative L1 Error (RLE) vs iteration of our algorithm for ROI recon-
struction of two images: Shepp-Logan (red) and Mouse Tissue (blue). Spherical ROI
radius = 75 voxels.
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Figure 11.6: Linear relationship between the logarithm of the Relative L1 Error
(RLE) and iterations of our algorithm for ROI reconstruction of two images: Shepp-
Logan (red) and Mouse Tissue (blue). Spherical ROI radius = 75 voxels. Between
iterations 8 and 14, the logarithm of the error curves tend to be linear.
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Chapter 12

Conclusion

In this thesis, we have examined the problem of three-dimensional region-of-interest

tomographic reconstruction using ROI-truncated cone-beam data. The ROI recon-

struction from truncated projections is useful for cases which require several follow

up scans, for example scans to monitor the progress of a tumor. If only a specific re-

gion of interest C needs to be monitored, our iterative ROI-reconstruction algorithm

can be used to reconstruct this region. Our method greatly reduces the radiation

exposure of a patient to harmful x-rays.

Our iterative ROI-reconstruction algorithm is used with fairly generic cone-beam

acquisition setups, with sources located on arbitrary bounded smooth curves � 2 R3

satisfying classical Tuy’s condition. Our algorithm was validated with simulation of

truncated cone-beam data acquired on the twin-circular curve and the spherical spiral

curve. In both of these acquisition geometries, our algorithm successfully computed

✏-accurate inverses for su�ciently small regions of interest, from ROI-truncated cone-

beam data, with less than 20 iterations.

There are a few advantages to using our ROI-reconstruction algorithm by com-
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parison to other algorithms available in the current literature (see Chapter 2). Our

ROI-reconstruction method imposes no local restriction on the density f , aside from

the fact that f must be compactly supported and su�ciently regular. Many existing

methods in the ROI CT literature require the density of f restricted to the region

of interest C to be piecewise constant or piecewise polynomial, which can be a very

strong condition to impose in practical medical imaging situations. Secondly, our

method gives a critical radius condition for the ROIs, ensuring the convergence of our

algorithm.

12.1 Future Research

Novel Cone-beam CT Geometries

Our ROI-reconstruction method was validated through numerical experiments of

ROI-reconstruction with acquisition on two di↵erent source curves: the twin-circular

curve and the spherical spiral. However, one may seek the best cone-beam acquisition

curve that can be used for practical applications of both full and region of interest

reconstruction.

Computational Improvement

For our numerical experiments, our iterative ROI-reconstruction algorithm using

Grangeat’s variant cone-beam FBP was written entirely in Matlab, using some paral-

lelization in the filtering stages. As well-known, Matlab codes run significantly slower

than codes written in a lower level languages such as C. For faster computations,

we need to implement our ROI-reconstruction algorithm using a low-level language,
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using parallelization where applicable.

Recently, a number of researchers studied graphical processing unit (GPU) based

implementations of cone-beam CT algorithms [24,63] for faster acquisition and recon-

struction time. Modern GPUs are very e�cient at manipulating computer graphics

and image processing, and their highly parallel structure makes them more e↵ective

than general-purpose CPUs for algorithms where the processing of large blocks of

visual data is done in parallel. Our ROI-reconstruction needs to be modified to be

implementable with a GPU unit.
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Properties and operations. Academic Press, 1969.

[19] P. Grangeat, “Reconstruire les structures tridimensionnelles internes de

l’organisme humain,” Ph.D. dissertation, 1990.

[20] ——, “Mathematical framework of cone beam 3D reconstruction via the first

derivative of the Radon transform,” in Mathematical methods in tomography.

Springer, 1991, pp. 66–97.

[21] S. Helgason, The Radon transform on Rn. Springer, 2011.

[22] W. Huda, W. Randazzo, S. Tipnis, G. D. Frey, and E. Mah, “Embryo dose

estimates in body CT,” American Journal of Roentgenology, vol. 194, no. 4, pp.

874–880, 2010.

[23] C. Jacobson, “Fourier methods in 3D reconstruction from cone-beam data: De-

partment of electrical engineering,” Ph.D. dissertation, Dissertation, 1996.

140



BIBLIOGRAPHY

[24] X. Jia, Y. Lou, R. Li, W. Y. Song, and S. B. Jiang, “GPU-based fast cone

beam CT reconstruction from undersampled and noisy projection data via total

variation,” Medical physics, vol. 37, no. 4, pp. 1757–1760, 2010.

[25] P. M. Joseph, “An improved algorithm for reprojecting rays through pixel im-

ages,” Medical Imaging, IEEE Transactions on, vol. 1, no. 3, pp. 192–196, 1982.

[26] A. C. Kak and M. Slaney, Principles of computerized tomographic imaging. IEEE

press, 1988.

[27] A. Katsevich, “Theoretically exact filtered backprojection-type inversion algo-

rithm for spiral CT,” SIAM Journal on Applied Mathematics, vol. 62, no. 6, pp.

2012–2026, 2002.

[28] ——, “An improved exact filtered backprojection algorithm for spiral computed

tomography,” Advances in Applied Mathematics, vol. 32, no. 4, pp. 681–697,

2004.

[29] E. Katsevich, A. Katsevich, and G. Wang, “Stability of the interior problem

with polynomial attenuation in the region of interest,” Inverse problems, vol. 28,

no. 6, p. 065022, 2012.

[30] E. Klann, E. T. Quinto, and R. Ramlau, “Wavelet methods for a weighted spar-

sity penalty for region of interest tomography,” Inverse Problems, vol. 31, no. 2,

p. 025001, 2015.

[31] P. Kuchment, The Radon transform and medical imaging. SIAM, 2014, vol. 85.

141



BIBLIOGRAPHY

[32] H. Kudo and T. Saito, “Feasible cone beam scanning methods for exact re-

construction in three-dimensional tomography,” JOSA A, vol. 7, no. 12, pp.

2169–2183, 1990.

[33] ——, “Derivation and implementation of a cone-beam reconstruction algorithm

for nonplanar orbits,” Medical Imaging, IEEE Transactions on, vol. 13, no. 1,

pp. 196–211, 1994.

[34] M. Lee, Y. Han, J. P. Ward, M. Unser, and J. C. Ye, “Interior tomography

using 1D generalized total variation. Part II: Multiscale implementation,” SIAM

Journal on Imaging Sciences, vol. 8, no. 4, pp. 2452–2486, 2015.

[35] S. W. Lee, G. Cho, and G. Wang, “Artifacts associated with implementation of

the Grangeat formula,” Medical physics, vol. 29, no. 12, pp. 2871–2880, 2002.

[36] M. J. Lighthill, “Fourier analysis and generalized functions,” Cambridge Univer-

sity Fluid Mech, vol. 1960, pp. 9–305, 1960.

[37] A. K. Louis, “Development of algorithms in computerized tomography,” in Pro-

ceedings of Symposia in Applied Mathematics, vol. 63, 2006, p. 25.

[38] S. Mallat, A wavelet tour of signal processing. Academic press, 1999.

[39] R. B. Marr, C.-N. Chen, and P. C. Lauterbur, “On two approaches to 3D re-

construction in NMR zeugmatography,” in Mathematical aspects of computerized

tomography. Springer, 1981, pp. 225–240.

[40] J. D. Mathews, A. V. Forsythe, Z. Brady, M. W. Butler, S. K. Goergen, G. B.

Byrnes, G. G. Giles, A. B. Wallace, P. R. Anderson, T. A. Guiver, P. McGale,

142



BIBLIOGRAPHY

T. M. Cain, J. G. Dowty, A. C. Bickersta↵e, and S. C. Darby, “Cancer risk

in 680, 000 people exposed to computed tomography scans in childhood or

adolescence: data linkage study of 11 million australians,” BMJ, vol. 346, 2013.

[Online]. Available: http://www.bmj.com/content/346/bmj.f2360

[41] F. Natterer, The mathematics of computerized tomography. SIAM, 1986, vol. 32.

[42] ——, “Numerical methods in tomography,” Acta Numerica, vol. 8, pp. 107–141,

1999.
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[49] J. Radon, “Über die bestimmung von funktionen durch ihre integralwerte längs
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