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Abstract

Recently, the use of special local test functions other than polynomials in Discontinuous

Galerkin (DG) approaches has attracted a lot of attention and became known as DG-

Tre↵tz methods. In particular, for the 2D Helmholtz equation, plane waves have been used

in [13] to derive an Interior Penalty (IP) type Plane Wave DG (PWDG) method and to

provide an a priori error analysis of its p-version with respect to equidistributed plane wave

directions. However, the dependence on the distribution of the plane wave directions has

not been studied. In this thesis, we study the dependence by formulating the choice of the

directions as an optimal control problem with a tracking type objective functional and the

variational formulation of the PWDG method as a constraint. The necessary optimality

conditions are derived and numerically solved by a projected gradient method. Numerical

results are given which illustrate the benefits of the approach.
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CHAPTER 1

Introduction

Standard finite element discretizations of the Helmhlotz equation are ine�cient at high

frequencies. Due to numerical dispersion, the mesh must resolve the wavelength to in-

creasing accuracy for large wavenumbers in order to prevent phase errors from building up

over the domain and ‘polluting’ the Galerkin solution, see [5]. This e↵ect is particularly

problematic for low order methods.

For this reason, recently, the use of special local test functions other than polynomials in

Discontinuous Galerkin (DG) approaches has attracted a lot of attention. These are known

as the DG-Tre↵tz methods. In general a Tre↵tz method is a volume-oriented discretiza-

tion scheme, for which all trial and test functions, when restricted to any element of a

given mesh, are solutions of the PDE under consideration. For most of the Tre↵tz spaces

used, continuity across interfaces separating mesh elements cannot be enforced strongly,

as Tre↵tz functions are not as ‘flexible’ as piecewise polynomials. Therefore, often DG
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formulations are used in conjunction with Tre↵tz spaces. A survey of Tre↵tz methods for

Helmholtz equation can be found in [14].

In this thesis we concentrate on the Plane Wave DG (PWDG) method which uses plane

wave basis functions, see [9, 10, 12, 13]. In [9] it was shown that the ultra weak varia-

tional formulation (UWVF) for Helmholtz equation, [3], is a special case of PWDG. In [3]

O. Cessenat and B. Despres make the choice of plane wave directions as being uniformly

distributed because in their experiments other choices did not lead to any significant im-

provements in the performance. Since then, the dependence of the performance of PWDG

on the distribution of the plane wave directions has not been studied.

In this thesis we study this dependence by formulating the choice of the directions as an

optimal control problem with a tracking type objective function and the variational formu-

lation of the PWDG method as a constraint. We analyse the e↵ects of optimally choosing

the directions via two di↵erent examples.

This thesis is organised as follows: the second chapter gives an overview of the PWDG

method used to numerically solve the Helmholtz problem.

In the third chapter, we introduce an objective functional and optimal control problem to

study the dependence on the distribution of the plane wave directions. We derive the first

order necessary optimality conditions for the stated optimal control problem. We then

state the projected gradient method that is used to numerically solve the optimal control

problem while detailing some of the calculations required therein.

In the fourth chapter, we present the numerical results for two di↵erent test problems which

illustrate the benefits of the approach detailed in the third chapter.

Finally, our last chapter concludes the thesis with some possible future directions of re-

search including further tests that can be done using our method.
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CHAPTER 2

The Plane Wave Discontinuous Galerkin Method

For a bounded convex polygonal domain ⌦ 2 R2 with boundary � = @⌦ we consider the

Helmholtz equation

��u� !2u = 0 in ⌦, (2.1a)

n ·ru+ i!u = g on � = @⌦. (2.1b)

where ! > 0 is the wavenumber, g 2 L2 (�) is a given function, and n denotes the exterior

normal vector on �. We rewrite (2.1) as the first order system:

i!� �ru = 0 in ⌦, (2.2a)

�r · � + i!u = 0 in ⌦, (2.2b)

i!n · � + i!u = g on �. (2.2c)
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The variational formulation of (2.2) reads: Find (�, u) 2 H (div,⌦)⇥H1 (⌦) such that for

all (⌧ , v) 2 H (div,⌦)⇥H1 (⌦) it holds

(i!�, ⌧ )0,⌦ + (u,r · ⌧ )0,⌦ = hu,n · ⌧ iH1/2(�),H�1/2(�) , (2.3a)

(�,rv)0,⌦ + (u, v)0,� + (i!u, v)0,⌦ =

✓

1

i!
g, v

◆

0,�

(2.3b)

where,

H1 (⌦) =
�

f 2 L2 (⌦) | @xif 2 L2 (⌦) , i = 1, 2
 

H (div,⌦) =
�

f 2 L2
�

⌦;C2
�

| div (f) 2 L2 (⌦)
 

.

We consider a shape regular family of geometrically conforming, quasi-uniform simplicial

triangulations Th (⌦) of the computational domain ⌦. For D ⇢ ⌦, we denote by Eh (D)

the set of edges of the triangulation in D. For T 2 Th, we refer to hT as the diameter of

T and set h := max {hT |T 2 Th (⌦)}. For E 2 Eh
�

⌦
�

, the length of E will be denoted by

hE . For functions v 2
Q

T2Th(⌦)H
1 (T ) the trace of v on E 2 Eh

�

⌦
�

may exhibit a jump

across E. For E 2 Eh
�

⌦
�

with E = T+ \ T�, T± 2 Th (⌦) we define

{v}E :=

8

>

<

>

:

(v|T+\E+v|T�\E)
2 , E 2 Eh (⌦)

v|E , E 2 Eh (�)
, (2.4a)

[v]E :=

8

>

<

>

:

v|T+\E � v|T�\E , E 2 Eh (⌦)

v|E , E 2 Eh (�)
. (2.4b)

For vector-valued functions we use an analogous notation.

We approximate (2.3a) and (2.3b) by introducing the following local spaces spanned by

plane waves

Vp (T ) :=

(

v(x) :=
p
X

l=1

↵l exp(i!dl · x)
)

V p := Vp (T )
2

(2.5)

where ↵l 2 C and dl, 1  l  p, are p di↵erent unit directions

dl = (cos(✓l), sin(✓l))
T , 1  l  p = 2m+ 1, m 2 N (2.6)
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We set ✓ = (✓1, · · · , ✓p)T . Setting ✓p+1 = ✓1 + 2⇡ we require that

✓ 2 K := {✓ 2 [0, 2⇡)p | ✓min  ✓l+1 � ✓l  ✓max, 1  i  p} ,

✓min :=
2⇡⌘1
p

, ✓max :=
2⇡⌘2
p

, 0 < ⌘1 < 1 < ⌘2 < 3/2.
(2.7)

The associated global spaces are given by

Vh :=
�

vh 2 L2 (⌦) | vh|T 2 Vp (T ) , T 2 Th (⌦)
 

,

V h :=
n

⌧ h 2 L2 (⌦)2 | ⌧ h|T 2 V p (T ) , T 2 Th (⌦)
o

.

(2.8)

Then,the PWDG approximation of (2.1a), (2.1b) amounts to computation of (uh,�h) 2

Vh ⇥ V h such that for all (vh, ⌧ h) 2 Vh ⇥ V h it holds

X

T2Th(⌦)

⇣

(i!�h, ⌧ h)0,T + (uh,r · ⌧ h)0,T

⌘

�
X

T2Th(⌦)

(buh,n@T · ⌧ h)0,@T = 0, (2.9a)

X

T2Th(⌦)

⇣

(�h,rvh)0,T + (i!uh, vh)0,T

⌘

�
X

T2Th(⌦)

(n@T · b�h, vh)0,@T = 0. (2.9b)

Here, the PWDG flux functions buh and b�h are given by

buh|E :=

8

>

<

>

:

{uh}E � �
i! [ruh]E , E 2 Eh (⌦)

uh � �
�

1
i!nE ·ruh + uh � 1

i!g
�

, E 2 Eh (�)
, (2.10a)

b�h|E :=

8

>

<

>

:

1
i!{ruh}E � ↵[uh]E , E 2 Eh (⌦)
1
i!ruh � (1� �)

�

1
i!ruh + nEuh � 1

i!nEg
�

, E 2 Eh (�)
, (2.10b)

where nE is the exterior unit normal on E and ↵ > 0, � > 0 and � 2 (0, 1) are flux

parameters independent of h, p, and !.

By choosing ⌧ h = rvh in (2.9a), we can eliminate �h from (2.9a) and (2.9b),and obtain

the following variational formulation of PWDG method:

Find uh 2 Vh such that for all vh 2 Vh it holds

X

T2Th(⌦)

⇣

(ruh,rvh)0,T � !2 (uh, vh)0,T

⌘

�

X

T2Th(⌦)

⇣

(uh � buh,n@T ·rvh)0,@T + i! (n@T · b�h, vh)0,@T

⌘

= 0

(2.11)
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Moreover, using Green’s formula for the first term on the left-hand side in (2.11) and

observing
�

��� !2I
�

uh|T = 0, T 2 Th (⌦), we are led to a formulation of the PWDG

method involving only integrals over the edges E 2 Eh
�

⌦
�

:

Find uh 2 Vh such that

ah (uh, vh) = lh (vh) , 8 vh 2 Vh, (2.12)

where the sesquilinear form ah(·, ·) : Vh ⇥ Vh ! C and the functional lh : Vh ! C are given

by

ah (uh, vh) :=
X

E2Eh(⌦)

⇣

({uh}E ,nE · [rvh]E)0,E + i�!�1 (nE · [ruh]e,nE · [rvh]E)0,E

� (nE · {ruh}E , [vh]E)0,E + i↵! ([uh]E , [vh]E)0,E

⌘

+

X

E2Eh(�)

⇣

(1� �) (uh,nE ·rvh)0,E + i�!�1 (nE ·ruh,nE ·rvh)0,E

� � (nE ·ruh, vh)0,E + i(1� �)! (uh, vh)0,E

⌘

(2.13a)

lh (vh) :=
X

E2Eh(�)

⇣

i�!�1 (g,nE ·rvh)0,E + (1� �) (g, vh)0,E

⌘

(2.13b)

As has been shown in [13], the variational equation (2.12) admits a unique solution uh 2 Vh.

Moreover, if the solution u of (2.1a),(2.1b) satisfies u 2 Hk+1 (⌦) , k 2 N, and if the mesh

width h of the triangulation Th (⌦) satisfies !h   for some  > 0, then there exists a

constant C > 0, independent of p and u, but depending on , such that the following a

priori estimate holds true (cf. Theorem 3.14 in [13])

ku� uhk0,⌦  C!�1 diam (⌦)hk�1

✓

log p

p

◆k�1/2

kukk+1,!,⌦ , (2.14)

where k · kk+1,!,⌦ stands for the !-weighted Sobolev norm

kvkk+1,!,⌦ :=

0

@

k+1
X

j=0

!2(k+1�j)|v|2j,⌦

1

A

1/2

, v 2 Hk+1 (⌦) .

6



Setting N := card (Th (⌦)) and ✓ := (✓1, · · · , ✓p)T , the global PWDG space Vh is spanned

by Np basis function

Vh = span
⇣

�(1)
h , · · · ,�(Np)

h

⌘

,

�((k�1)p+l)
h : = exp

⇣

i! (cos (✓l) , sin (✓l))
T · x

⌘

|Tk , 1  k  N, 1  l  p.

(2.15)

Then, uh 2 Vh can be written as

uh =
Np
X

j=1

uj�
(j)
h , uj 2 C, 1  j  Np. (2.16)

Further, setting y := (y1, · · · , yNp)
T 2 CNp with yj := uj , 1  j  Np, the PWDG

approximation (2.12) represents a complex linear algebraic system

A (✓)y = b (✓) , (2.17)

where the matrix A (✓) = (akl (✓))
Np
k,l=1 2 CNp and

the vector b (✓) = (b1 (✓) , · · · , bNp (✓))
T 2 CNp are given by

akl (✓) := ah
⇣

�(l)
h (✓) ,�(k)

h (✓)
⌘

, 1  k, l  Np,

bl (✓) := lh
⇣

�(l)
h

⌘

, 1  l  Np.

(2.18)
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CHAPTER 3

Optimization of Plane Wave Directions

The a priori estimate (2.14) for the L2-norm of the global discretization error tells us how

the error depends on the number of plane wave directions, p. It does not however provide

any information on the appropriate choice of the directions dl = (cos (✓l) , sin (✓l))
T , 1 

l  p, except that they are supposed to satisfy assumption (2.7).

In fact, since

Vh = span (exp (i!d1 · x) |T1 , · · · , exp (i!dp · x) |TN ) , (3.1)

where N := card (Th (⌦)), the solution uh 2 Vh of (2.12) depends on ✓ := (✓1, · · · , ✓p)T 2

K according to

uh (✓) =
N
X

k=1

p
X

l=1

ukl exp (i!dl · x) |Tk , ukl 2 C (3.2)

We attempt to choose ✓ 2 K such that with respect to the L2-norm the solution uh (✓) of

(2.12) is as close as possible to a given desired state ud 2 L2 (⌦).

8



This can be formulated as the optimal control problem

min
uh2Vh, ✓2K

J (uh,✓) :=
1

2
kuh (✓)� udk20,⌦, (3.3a)

subject to the PWDG constraint

ah (uh (✓) , vh (✓)) = lh (vh (✓)) , vh (✓) 2 Vh. (3.3b)

Introducing the Hermitian Matrix M (✓) = (mkl (✓))
Np
k,l=1 2 CNp⇥Np and the vector

c (✓) = (c1 (✓) , · · · , cNp (✓))
T according to

mkl (✓) :=
⇣

�(k)
h ,�(l)

h

⌘

0,⌦
, 1  k, l  Np,

cl (✓) :=
⇣

ud,�(l)
h

⌘

0,⌦
, 1  l  Np,

(3.4)

the algebraic formulation of (3.3a)-(3.3b) turns out to be

min
y2CNp, ✓2K

J (y,✓) : =
1

2
hM (✓)y,yi � Re (hc (✓) ,yi) + 1

2

⇣

ud, ud
⌘2

0,⌦
, (3.5a)

subject to the state equation

e (y,✓) : = A (✓)y � b (✓) = 0. (3.5b)

We further denote by G : K ! CNp the control-to-state map which assigns to the control

✓ 2 K the unique solution y 2 CNp of the state equation (3.5b) and by Jred : K ! R

the reduced objective functional

Jred (✓) := J (G (✓) ,✓) .

Then, the control-reduced formulation of the optimal control problem (3.5a)-(3.5b) reads

as follows

min
✓2K

Jred (✓) . (3.6)

9



3.1. FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS

Theorem 3.1. The optimal control problem (3.5a)-(3.5b) admits an optimal solution

(y⇤,✓⇤) 2 CNp ⇥K.

Proof. Let
n

✓(n)
o

N
, ✓(n) 2 K, n 2 N, be a minimizing sequence, i.e.,it holds

Jred
⇣

✓(n)
⌘

! min
✓2K

Jred (✓) as n ! 1 (3.7)

Obviously, the sequence
n

✓(n)
o

N
is bounded and hence, there exists a subsequence N0 ⇢ N

and ✓⇤ 2 Rp such that

✓(n) ! ✓⇤, N0 3 n ! 1.

In view of the closedness of K, we have ✓⇤ 2 K. Moreover, due to the continuity of both

the control-to-state map G and of the reduced objective functional Jred we deduce

G
⇣

✓(n)
⌘

! G (✓⇤) , Jred
⇣

✓(n)
⌘

! Jred (✓
⇤) as N0 3 n ! 1.

Consequently, from (3.7) we have

Jred (✓
⇤) = min

✓2K
Jred (✓) ,

and with y⇤ := G (✓⇤) it follows that the pair (y⇤,✓⇤) 2 CNp ⇥K is an optimal solution

of (3.5a)-(3.5b).

Remark 3.2. Since the control-to-state map G is a non-convex function of the control ✓,

we do not have uniqueness of the solution.

3.1 First-Order Necessary Optimality Conditions

We will derive the first-order necessary optimality conditions for the optimal control prob-

lem (3.5a)-(3.5b) by the method of Lagrange multipliers which is justified if the linear

independence constraint qualification holds true.
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3.1. FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS

To this end, we note that the bound constraints on the control can be expressed as the

inequalities G (✓)  0, where the mapping g = (g1, g2) : Rp ! Rp ⇥ Rp is defined by the

means of

g1 (✓) := (✓2 � ✓1 � ✓max, · · · , ✓p+1 � ✓p � ✓max) ,

g2 (✓) := (✓min � (✓2 � ✓1), · · · , ✓min � (✓p+1 � ✓p)) .

(3.8)

For a local minimum (y⇤,✓⇤) 2 CNp ⇥ K of (3.5a)-(3.5b), the active set is given by

A (✓⇤) = A1 (✓⇤) [A2 (✓⇤) where

A1 (✓
⇤) :=

�

q 2 {1, · · · , p} | ✓⇤q+1 � ✓⇤q � ✓max = 0
 

, (3.9a)

A2 (✓
⇤) :=

�

q 2 {1, · · · , p} | ✓min �
�

✓⇤q+1 � ✓⇤q
�

= 0
 

(3.9b)

We refer to I (✓⇤) := {1, · · · , p} \ A (✓⇤) as the inactive set. The linear independence

constraint qualification requires linearization of
�

e, (g1)A1(✓⇤), (g2)A2(✓⇤)
�

at (y⇤,✓⇤) to be

surjective.

Theorem 3.3. Let p⇤i := card (Ai (✓⇤)) , 1  i  2. The mapping

⇣

re (y⇤,✓⇤) ,rg1,A1(✓⇤) (✓
⇤) ,rg2,A2(✓⇤) (✓

⇤)
⌘

: CNp ⇥ Rp ! CNp ⇥ Rp⇤1 ⇥ Rp⇤2

is surjective. In particular, for any (r, s1, s2) 2 CNp ⇥ Rp⇤1 ⇥ Rp⇤2 there exists a unique

solution (�y, �✓) 2 CNp ⇥ Rp of the equation

⇣

re (y⇤,✓⇤) (�y, �✓) ,rg1,A1(✓⇤) (✓
⇤) �✓,rg2,A2(✓⇤) (✓

⇤) �✓
⌘

= (r, s1, s2).

Proof. For k 2 A1 (✓⇤)

rg1,k0 =

8

>

>

>

>

<

>

>

>

>

:

�1 , k0 = k

+1 , k0 = k + 1

0 , otherwise

, (3.10)
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3.1. FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS

whereas for k 2 A2 (✓⇤)

rg1,k0 =

8

>

>

>

>

<

>

>

>

>

:

+1 , k0 = k

�1 , k0 = k + 1

0 , otherwise

. (3.11)

Since I (✓⇤) 6= ;, there exists q 2 {1, · · · , p} such that q 2 I (✓⇤). We renumber the controls

according to b✓⇤k := ✓⇤q+k�1,
d✓⇤k+p :=

b✓⇤k + 2⇡, 1  k  p, and set (�✓)k = 0 for k 2 I
⇣

c✓⇤
⌘

.

If A
⇣

c✓⇤
⌘

= ;, there is nothing to show. If A
⇣

c✓⇤
⌘

6= ;, there exists

kmin := min
n

k 2 {2, · · · , p}|k 2 A
⇣

c✓⇤
⌘o

.

Moreover, in view of p+ 1 2 I
⇣

c✓⇤
⌘

, there also exists

kmax := max
n

k 2 {kmin + 1, · · · , p+ 1}|k 2 I
⇣

c✓⇤
⌘o

.

In view of (3.10), (3.11), (�✓)k , kmin  k  kmax � 1, is the unique solution of the

linear algebraic system with a regular upper triangular matrix. For the computation of

(�✓)k 2 A
⇣

c✓⇤
⌘

\ {kmin, · · · , kmax � 1} we proceed in the same way. On the other hand,

the equation re (y⇤,✓⇤) (�y, �✓) = r can be equivalently written as

A (✓) �y = r✓ (b (✓
⇤)�A (✓⇤)y⇤) �✓,

which has a unique solution �y 2 CNp.

Due to Theorem 3.3, the necessary optimality conditions can be derived by the method

of Lagrange multipliers.
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3.1. FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS

Theorem 3.4. Assume that (y⇤,✓⇤) 2 CNp ⇥K is an optimal solution of (3.5a)-(3.5b).

Then,there exist an adjoint state p⇤ 2 CNp and a multiplier µ⇤ =
�

µ⇤
1,µ

⇤
2

�

2 R2p
+ ,

µ⇤
i =

⇣

µ⇤
i,1, · · · , µ⇤

i,p

⌘T
, 1  i  2, such that the state equation, the adjoint state equation

and the gradient equation

A (✓⇤)y⇤ � b (✓⇤) = 0,

AH (✓⇤)p⇤ +M (✓⇤)y⇤ � Re (c (✓⇤)) = 0,

r✓J (y⇤,✓⇤) + Re (hr✓ (A (✓⇤)y⇤ � b (✓⇤)) ,p⇤i) +r✓g1 (✓
⇤)T µ⇤

1 +r✓g2 (✓
⇤)T µ⇤

2 = 0

are satisfied as well as the complementary conditions

gi,q (✓
⇤)  0, µ⇤

i,q � 0, gi,q (✓
⇤)µ⇤

i,q = 0, 1  q  p, 1  i  2.

Proof. We introduce the Lagrangian L : CNp ⇥ Rp ⇥ CNp ⇥ R2p
+ according to

L (y,✓,p,µ) := J (y,✓) + Re (he (y,✓) ,pi) + g1 (✓)
T µ1 + g2 (✓)

T µ2.

Setting x := (y,✓,p) and x⇤ := (y⇤,✓⇤,p⇤), the first order necessary optimal conditions

are given by

@L

@y
(x⇤,µ⇤) = 0,

@L

@✓
(x⇤,µ⇤) = 0,

@L

@p
(x⇤,µ⇤) = 0, (3.12a)

@L

@µi
(x⇤,µ⇤)T

�

⌫i � µ⇤
i

�

 0, ⌫i 2 Rp
+, 1  i  2. (3.12b)

The state equation, the adjoint state equation, and the gradient equation result from the

third, first and second equation in (3.12a), whereas the complimentary conditions are a

consequence of (3.12b)
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3.2. PROJECTED GRADIENT METHOD

3.2 Projected Gradient Method

The projected gradient method is based on the formulation of the gradient equation as the

variational inequality

�r✓J (y⇤,✓⇤) + Re (hr✓ (b
⇤ (✓⇤)�A (✓⇤)y⇤) ,p⇤i) 2 @IK ,

where @IK is the indicator function of the constrained set K.

The algorithm for the Projected Gradient Method is as follows:

Step 1: Choose an initial control ✓(0) 2 K and a tolerance TOL > 0 and set n = 0

Step 2.1: Set n = n+ 1 and compute y(n) 2 CNp and p(n) 2 CNp as the unique solutions

of the state equation

A
⇣

✓(n�1)
⌘

y(n) = b
⇣

✓(n�1)
⌘

and of adjoint state equation

AH
⇣

✓(n�1)
⌘

p(n) = Re
⇣

c
⇣

✓(n�1)
⌘⌘

�M
⇣

✓(n�1)
⌘

y(n).

Step 2.2: Compute ✓̃
(n) 2 Rp according to

✓̃
(n)

= ✓(n�1) � 
⇣

r✓J
⇣

y(n),✓(n�1)
⌘

+r✓ Re
⇣D

A
⇣

✓(n�1)
⌘

y(n) � b
⇣

✓(n�1)
⌘

,p(n)
E⌘⌘

,

where  > 0 is Armijo line search parameter.

Step 2.3: Computer ✓(n) as the projection of ✓̃
(n)

onto the constraint set K.

Step 2.4: If n > 1 and

�

�

�

J
⇣

y(n),✓(n)
⌘

� J
⇣

y(n�1),✓(n�1)
⌘

�

�

�

< TOL,

stop the algorithm.Otherwise, go to Step 2.1.

In the following section we present the calculations needed for the implementation of this

method.
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3.3. SOME IMPORTANT CALCULATIONS

3.3 Some Important Calculations

Consider equation is Step 2.2 from Section 3.2. For the update formula we need to calculate

the following quantity:

r✓J (y,✓) +r✓ Re (hA (✓)y � b (✓) ,pi)

First we will calculate r✓J (y,✓). Here, from (3.5b) we know that y is the unique solution

to

A (✓)y = b (✓)

Also, from (3.4) and (3.5a) we know that

J (y,✓) =
1

2
hM (✓)y,yi � Re (hc (✓) ,yi) + 1

2

⇣

ud, ud
⌘2

0,⌦
(3.13)

where,

mkl (✓) :=
⇣

�(k)
h ,�(l)

h

⌘

0,⌦
, 1  k, l  Np,

cl (✓) :=
⇣

ud,�(l)
h

⌘

0,⌦
, 1  l  Np,

(3.14)

and N is the total number of triangles in our triangulation T and p is the number of plane

wave basis functions used. Let y = {↵j}Np
j=1.

Note that for any two given basis functions �(k)
h and �(l)

h either,

µ
⇣

supp
⇣

�(k)
h

⌘

\ supp
⇣

�(l)
h

⌘⌘

= 0

or,

supp
⇣

�(k)
h

⌘

\ supp
⇣

�(l)
h

⌘

= T 2 T ,

where µ is the 2-D Lebesgue measure.

Let Tk,l be defined as

Tk,l :=

8

>

<

>

:

; , if µ
⇣

supp
⇣

�(k)
h

⌘

\ supp
⇣

�(l)
h

⌘⌘

= 0

supp
⇣

�(k)
h

⌘

\ supp
⇣

�(l)
h

⌘

, otherwise
(3.15)
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3.3. SOME IMPORTANT CALCULATIONS

and set Tl := supp
⇣

�(l)
h

⌘

2 T . Using this we can rewrite (3.14) as

mkl (✓) :=

Tk,l

exp (i!dk · x) exp (i!dl · x)dx , 1  k, l  Np,

cl (✓) :=

Tl

udexp (i!dl · x)dx , 1  l  Np,

(3.16)

where dk = [cos(✓k), sin(✓k)]T .

By (3.13) we can see that

r✓J (y,✓) = r✓

0

@

1

2

Np
X

k,l=1

mkl(✓)↵l↵k

1

A�r✓

 

Re
Np
X

k=1

ck(✓)↵k

!

(3.17)

By di↵erentiating equations in (3.16) with respect to ✓j we get

@

@✓j

0

@

1

2

Np
X

k,l=1

mkl(✓)↵l↵k

1

A =
1

2

0

B

@

8p
X

l=1

↵j↵l

Tj,l

�

i!d⇤
j · x

�

exp(i!dj · x) · exp(i!dl · x)dx

+
8p
X

l=1

↵l↵j

Tj,l

�

�i!d⇤
j · x

�

exp(i!dl · x) · exp(i!dj · x)dx

1

C

A

=
1

2

0

B

@

8p
X

l=1

↵j↵l

Tj,l

�

i!d⇤
j · x

�

exp(i!dj · x) · exp(i!dl · x)dx

+
8p
X

l=1

↵j↵l

Tj,l

�

i!d⇤
j · x

�

exp(i!dj · x) · exp(i!dl · x)dx

1

C

A

=Re
8p
X

l=1

↵j↵l

Tj,l

�

i!d⇤
j · x

�

exp(i!dj · x) · exp(i!dl · x)dx ,

(3.18)
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3.3. SOME IMPORTANT CALCULATIONS

where d⇤
j = [� sin(✓j), cos(✓j)]T and

@

@✓j

 

Re
8p
X

k=1

ck(✓)↵k

!

=Re

 

@

@✓j

8p
X

k=1

ck(✓)↵k

!

=Re

✓

@cj(✓)

@✓
↵j

◆

=Re

0

@↵j

⌦

�

�i!d⇤
j · x

�

udexp(i!dj · x)dx

1

A

(3.19)

Now for r✓ Re (hA (✓)y � b (✓) ,pi) we have,

@

@✓j
Re (hA (✓)y � b (✓) ,pi) =Re

✓

@

@✓j
hA (✓)y � b (✓) ,pi

◆

=Re

0

@

@

@✓j

Np
X

k=1

pk

 

Np
X

l=1

akl(✓)↵l � bk(✓)

!

1

A

=Re

0

@

Np
X

k=1

pk

 

Np
X

l=1

@akl(✓)

@✓j
↵l �

@bk(✓)

@✓j

!

1

A

(3.20)

We can obtain formulas for @akl(✓)
@✓j

and @bk(✓)
@✓j

by directly di↵erentiating formulas in (2.18)

using (2.13a),(2.13b).

Using (3.18)-(3.20) we can calculate the required terms for the update formula in Step 2.2

from Section 3.2.
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CHAPTER 4

Numerical Results

This chapter is devoted to documentation of the numerical results that illustrate the e↵ect

of choosing the plane wave directions for PWDG method optimally.

We will consider two variants of the problem. First we will look at the Helmholtz equation

in the convex domain ⌦ := (0, 1)⇥ (�0.5, 0, 5). For this domain we will consider two cases.

In the first case the solution is continuous. In the second case the solution has a singularity.

For the second case we consider the non-convex domain ⌦ := (�1, 1)2 \ (S1 [ S2) where

S1 = conv ((0, 0), (�0.25,+0.50), (�0.50,+0.50))

S2 = conv ((0, 0), (+0.25,�0.50), (+0.50,�0.50))

18



4.1. TEST PROBLEM ON CONVEX DOMAIN

4.1 Test Problem on Convex Domain

We consider a square domain ⌦ = (0, 1)⇥ (�0.50,+0.50), partitioned by a mesh consisting

of 8 triangles (see Figure 4.1, upper-left plot), so that h = 1/
p
2. We fix ! = 10, such that

the entire wavelength � = 2⇡/! ⇡ 0.628 is completely contained in ⌦.

We choose the inhomogeneous boundary condition (g in 2.1b) in such a way that the

analytical solutions are the circular waves given, in polar coordinates x = (r cos', r sin')

by

u(x) = J⇠(!r) cos(⇠'), ⇠ � 0;

here, J⇠ denotes the Bessel function of the first kind and order ⇠. For t ⌧ 1, these functions

behave like

J⇠(t) =
1

�(⇠ + 1)

✓

t

2

◆⇠

Thus, if ⇠ 2 N, u can be analytically extended to a Helmholtz solution in R2, while, if

⇠ /2 N, its derivatives have a singularity at the origin. Then u 2 H⇠+1�✏(⌦) for every ✏ > 0,

but u /2 H⇠+1(⌦).

We consider the regular case ⇠ = 1 and singular cases ⇠ = 2/3 and ⇠ = 3/2. The profiles

of the analytical solutions corresponding to these three cases are displayed in Figure 4.1,

upper-right and lower plots.

We consider two choices of numerical fluxes: with constant parameters (↵ = � = � = 1/2),

or depending on p, h and ! (↵ = ��1 = ��1 = a0p/(!h log p) with a0 = 10. We consider

p = 3, 5, · · · , 27.

We also need to choose the starting control ✓0 = (✓1, ✓2, · · · , ✓p)T . We consider two di↵erent

choices: uniform distribution (✓i = 2⇡(i�1)/p, 1  i  p), and random distribution, where

each ✓i, 1  i  p is chosen randomly from [0, 2⇡).

Plots comparing the L2 errors between the computed solutions and the analytical solutions
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0.4

0.5

x

y

Figure 4.1: The mesh used for numerical experiments and the analytical solutions for
⇠ = 1, 2/3, 3/2. The colored bar on the right of each figure indicates the mapping

between data values and colors.

for the two di↵erent choices of flux parameters (↵ = � = � = 1/2) and (↵ = ��1 = ��1 =

10p/(!h log p)) are shown in Figures 4.2 and 4.5 respectively. Similarly for (↵ = � = � =

1/2) and (↵ = ��1 = ��1 = 10p/(!h log p)), the starting control ✓0 and the optimal control

obtained via the projected gradient method for particular choices of p are shown in Figures

4.3 and 4.5 respectively. In each figure, the plots corresponding to ⇠ = 1, 2/3, and 3/2

are in first, second and third rows respectively. Also, the plots for uniformly distributed

initial control are on the left and the plots for randomly distributed initial control are on

the right.

20



4.1. TEST PROBLEM ON CONVEX DOMAIN

3 5 7 9 11 13 15 17 19 21 23 25 27
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of plane wave basis functions

L2  e
rro

r

ξ = 1 , α=β=δ=0.5

 

 
Optimal Directions
Uniform Distribution

3 5 7 9 11 13 15 17 19 21 23 25 27
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Number of plane wave basis functions

L2  e
rro

r

ξ = 1 , α=β=δ=0.5

 

 
Optimal Directions
Random Distribution

3 5 7 9 11 13 15 17 19 21 23 25 27
10−4

10−3

10−2

10−1

100

Number of plane wave basis functions

L2  e
rro

r

ξ = 2/3 , α=β=δ=0.5

 

 
Optimal Directions
Uniform Distribution

3 5 7 9 11 13 15 17 19 21 23 25 27
10−4

10−3

10−2

10−1

100

Number of plane wave basis functions

L2  e
rro

r

ξ = 2/3 , α=β=δ=0.5

 

 
Optimal Directions
Random Distribution

3 5 7 9 11 13 15 17 19 21 23 25 27
10−5

10−4

10−3

10−2

10−1

100

Number of plane wave basis functions

L2  e
rro

r

ξ = 3/2 , α=β=δ=0.5

 

 
Optimal Directions
Uniform Distribution

3 5 7 9 11 13 15 17 19 21 23 25 27
10−5

10−4

10−3

10−2

10−1

100

Number of plane wave basis functions

L2  e
rro

r

ξ = 3/2 , α=β=δ=0.5

 

 
Optimal Directions
Random Distribution

Figure 4.2: L2 errors for ↵ = � = � = 0.5
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4.1. TEST PROBLEM ON CONVEX DOMAIN

Analysis of the results we get from the experiments show that in this example, if we

consider the uniform distribution of the starting control ✓0 = (✓1, ✓2, · · · , ✓p)T , where

✓i = 2⇡(i � 1)/p, 1  i  p, optimization of the plane wave directions does not lead to

a significant overall improvement in the L2 error. We only obtain minor improvements in

10 out of 78 cases (13 values of p, 3 values of ⇠, 2 choices of flux parameters ↵,�, �) when

starting with a uniform distribution of ✓0.

However, if we choose a random distribution of starting control ✓0, we observe significant

improvements in the L2 error in nearly all of the 78 test cases. In some cases we see an

improvement of orders of magnitude.

These observations suggest that for this particular example, a uniform distribution of ✓0

is optimal or close to optimal for all tested cases. However, the improvements observed in

case of a random distribution of ✓0 validates our belief that the optimal choice of plane

wave directions in PWDG leads to a reduction in error between the computed and the

analytical solutions.
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Figure 4.3: Starting and Optimal distributions of directions for ↵ = � = � = 0.5
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Figure 4.4: L2 errors for ↵ = ��1 = ��1 = 10p/ (!h log(p))
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Figure 4.5: Starting and Optimal distributions of directions for
↵ = ��1 = ��1 = 10p/ (!h log(p))
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4.2. TEST PROBLEM ON NON-CONVEX DOMAIN: SCREEN PROBLEM

4.2 Test Problem on Non-Convex Domain: Screen Problem

For this example, we choose ⌦ = (�1, 1)2 \ (S1 [ S2) where

S1 = conv ((0, 0), (�0.25,+0.50), (�0.50,+0.50))

S2 = conv ((0, 0), (+0.25,�0.50), (+0.50,�0.50))

Let �R = @(�1,+1)2 and �D = @S1 [ @S2. Consider the problem

��u� !2u = 0 in ⌦, (4.1a)

n ·ru+ i!u = g on �R, (4.1b)

u = 0 on �D (4.1c)

which describes an acoustic wave with wave number ! > 0 scattered at the sound-soft

scatterer ⌦D = S1 [ S2 with boundary �D.

Note that equation (4.1b) describes the non-homogeneous Robin boundary condition and

(4.1c) describes the homogeneous Dirichlet boundary condition. To account for the ad-

ditional Dirichlet boundary condition we have to modify the flux functions cuh and c�h

from(2.10a)-(2.10b) as follows

buh|E :=

8

>

>

>

>

<

>

>

>

>

:

{uh}E � �
i! [ruh]E , E 2 Eh (⌦)

uh � �
�

1
i!nE ·ruh + uh � 1

i!g
�

, E 2 Eh (�R)

uh , E 2 Eh (�D)

, (4.2a)

b�h|E :=

8

>

>

>

>

<

>

>

>

>

:

1
i!{ruh}E � ↵[uh]E , E 2 Eh (⌦)
1
i!ruh � (1� �)

�

1
i!ruh + nEuh � 1

i!nEg
�

, E 2 Eh (�R)

1
i!ruh � h�1

E (nEu� nEg) , E 2 Eh (�D)

, (4.2b)

Here  ⇡ (1 + p)2 is a su�ciently large penalty parameter that allows us to enforce the

Dirichlet boundary conditions on �D.
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Figure 4.6: Starting mesh used in the Adaptive IPDG code (left) and final mesh obtained
after 3 refinement steps (right)

For our test problem we consider ! = 15 and a non-homogeneous Robin boundary value

(g in 4.1b) as follows:

g = ! cos(y) + i! sin(y).

Note that we can not calculate the analytical solution of (4.1a)-(4.1c). Therefore, we refer

to [17] and [15], which use an Adaptive Interior Penalty Discontinuous Galerkin scheme to

solve the same problem. We use its implementation and theory to obtain an approximation

of the analytical solution of (4.1a)-(4.1c), which is needed for our optimal control method.

We input the starting mesh (left plot in Figure 4.6) into the adaptive IPDG implementation

from [17] and after 3 refinement steps we obtain the mesh (right plot in Figure 4.6) and the

approximation to exact solution of (4.1a)-(4.1c) required for the optimal control algorithm.

The profile for the approximate exact solution is displayed in Figure 4.7.

Note that we restrict the number of refinement steps to 3. This is required because further

refinement leads to a finer mesh, which leads to sti↵ness matrix A (✓) in (2.17) becoming

ill-conditioned. We also restrict our choice of the number of plane wave directions p to

3, 5, 7 and 9. Higher values of p lead to A (✓) becoming ill-conditioned. We choose flux
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Figure 4.7: IPDG approximation to solution of (4.1a)-(4.1c). The colored bar on the right
indicates the mapping between data values and colors.

parameters ↵ = � = � = 1/2.

For starting control ✓0 = (✓1, ✓2, · · · , ✓p)T we choose the uniform distribution, that is

✓i = 2⇡(i� 1)/p, 1  i  p.

Plot comparing the L2 errors between the computed solution and the IPDG approximation

of (4.1a)-(4.1c) is shown in Figure 4.8. The starting control ✓0 and the optimal control

obtained via the projected gradient method for each choice of p are shown in Figure 4.9.

In this example we observe that despite starting with a uniform distribution of starting

control ✓0, optimization of plane wave directions leads to a significant reduction in the L2

error in all of the tested cases. This is in contrast with the previous example where starting
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Figure 4.8: L2 errors for Screen Problem

with a uniform distribution of starting control ✓0 resulted in insignificant reductions in L2

error.

This observation can be explained by the fact that the analytical solutions in the first

example were symmetric to some extent. However, the solution to the screen problem does

not exhibit any form of symmetry. This suggests that while a uniform distribution of plane

wave directions is close to optimal if the solution exhibits some symmetry, that is not the

case when the solution is asymmetric. This again validates our our belief that optimal

choice of plane wave directions leads to a reduction in the error between computed and

actual solutions.
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Figure 4.9: Starting and Optimal distributions of directions
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CHAPTER 5

Conclusions and Future Work

We investigated the dependence on the plane wave directions chosen for the basis func-

tions used in PWDG method used to solve the 2D Helmholtz equation. We studied this

dependence by formulating the choice of the directions as an optimal control problem with

a tracking type objective functional and the variational formulation of the PWDG method

as a constraint. We proved that the necessary optimality conditions hold true. However,

due to the problem being non-convex, we have multiple local minima. Thus, our optimal

choice of directions depends on the initial value of the control that we use. We test out

optimal control algorithm on two di↵erent examples.

The first example considers a Helmholtz equation with non-homogeneous Robin boundary

conditions. This example is also considered in [13]. We observe that in this case the uniform

distribution of directions is close to optimal. We assume that this is due to the symmetry

of the solution. However, if we choose a random distribution of directions as our starting
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control, as suggested in [3] by Cessenat and Despres, we do achieve significant reductions

in error by optimizing the choice of plane wave directions. This illustrates the benefits

of choosing the plane wave directions optimally. This is further validated by the second

example in which we consider the screen problem which describes an acoustic wave being

scattered by a sound-soft scatterer. In the second example, where we do have symmetry

of the solution, we see significant gains by optimizing our choice of plane wave directions

compared to the uniform distribution.

In the second example we had to greatly restrict our choice of p due to ill-conditioned

systems being generated by the PWDG method. The development of an e↵ective precon-

ditioner remains an issue that needs to be addressed in future work. This would allow us

to validate our work further for a wider range of problems. Another avenue for further

investigation is to allow the directions to vary independently in each triangle of the trian-

gulation. Currently we use the same directions in all triangles of the triangulation. We

believe allowing the directions to vary independently will lead to significant reductions in

error. The possibility of varying number of plane waves independently of the triangle can

also be explored. Finally describing an hp-adaptive PWDG method for Helmholtz equation

can be explored.
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