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Abstract

This thesis presents the research work completed over the past 4 years in the context

of a collaborative project between The Methodist Hospital (TMH) and the University

of Houston. We have developed and implemented novel algorithmic approaches to:

develop patient-specific static mitral valve models from tagged 3D-Echocardiographic

image data; incorporate this 3D-Echo data into a new methodology for diffeomorphic

valve tracking; and investigate the strain distributions on valve leaflets derived from

the deformations captured through valve tracking.

First, we have applied spline techniques in order to generate static models of

the mitral valves at discrete instants. Classical smoothing splines are applied to the

modeling of valve boundary curves, while tensor product smoothing splines are used

to fit surfaces to the mitral valve interior leaflets. Two approaches are presented

for this surface modeling: one (lofting) works in all cases but requires more effort

to execute, while the other (principal plane) is simpler in its approach but does not

work for all mitral valves. These techniques are illustrated by the display of multiple

mitral valve models.

Next, we have considered optimal diffeomorphic matching of these mitral valve

models by a variational approach based on Hilbert spaces of time dependent vector

fields. Since models matched by diffeomorphisms are extracted from sequences of

3D-Echo images, we have proposed an equivalent formulation and solution of this

problem, one that involves an iterative scheme that alternates between pure geo-

metric diffeomorphic matching and image intensity registration. Several detailed,

concrete examples are presented to validate the performance of our approach.
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Finally, we have developed the methods needed to compute, compare, and quan-

tify the distribution of strain values on mitral valve leaflets. We adopted standard

finite difference techniques for computing the strain tensor on a leaflet surface and

applied the Kolmogorov-Smirnov tests to evaluate how 3 groups of mitral valves

(normal, pre-surgery, post-surgery) compare in terms of strain values distributions.

These results have been published in a joint paper between UH and TMH. A second

joint paper will be submitted in May 2014.
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Chapter 1

Introduction

This thesis presents the research work that we have completed over the past 4 years,

in the context of a joint 2008-2014 study between a University of Houston team

of mathematicians and computer scientists led by Robert Azencott, and a team of

cardiologists at The Methodist Hospital (TMH) led by William Zoghbi, MD. Cardi-

ologists at TMH and elsewhere are interested in detailed evaluation and modelization

of human mitral valves, periodic deformations during standard heart cycles, and non-

invasive quantification of the effectiveness of mitral valve surgical repair techniques.

One particular mitral valve surgery which has shown promising results over the

last 20 years is called Non-Resectional Dynamic repair (NRD), and involves the

insertion of an artificial ring along the mitral annulus. NRD surgery has been shown

to help restore normal function for mitral valves exhibiting leaflets prolapse and/or

mitral regurgitation (see [31], [32] for details).
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3D-Echocardiographic image sequences (3D-Echo) are non-invasive and are part

of most standard medical examination protocols for heart patients. These 3D-images

provide clinicians with direct visual evidence of mitral valve dysfunctions, such as

organic regurgitation or mitral leaflets prolapse. Computer analysis of ultrasound

images of the mitral valve has already been used to study the areas of regurgitation in

pre-surgery patients (see [1], [9], [40]). Following valve repair surgery, patients often

undergo post-operative 3D-Echo to help surgeons to evaluate visually the functional

impact of surgery. More generally, 3D-Echo image data have been studied through

various registration techniques in order to reconstruct and/or modelize cardiac de-

formations (see [14],[22], [43]).

But to study mitral valve dynamics in the context of elasticity theory, finite ele-

ments models have focused on the numerical evaluation of mitral leaflets stress and

strain throughout the cardiac cycle. This finite elements modeling (FEM) approach

requires complicated elasticity assumptions on leaflet tissue and many patient-specific

parameters that are generally impossible to acquire on live human patients. Of-

tentimes, these FEM approaches require animal-based data for proper evaluation.

Specifically, in order to accurately describe how tissue responds to a force (tension,

compression), the elastic properties of the tissue must be known (see Chapter 9 for

an overview of stress and strain). Since the acquisition of these elastic properties

would require active measurements of live patients (an obvious major challenge),

most published results of this type replace unknown parameters in their elasticity

models by the mitral leaflets tissue properties quantified through in vivo experiments

with ovine or porcine animal models (see [29], [30]).
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In our study, which relies only on the non-invasive 3D-Echo ultrasound data

analysis of human mitral valves, we have deliberately avoided the need to compute

or simulate sophisticated elasticity models of the observed mitral valves. We have

focused instead on patient-specific computations of mitral leaflet strain distributions,

comparisons of strain distributions across patients, as well as strain comparisons

before and after mitral valve repair surgery.

The workflow of this project spans three major topics. Figure [1.1] below sum-

marizes the workflow and which chapters correspond to those steps in the thesis.

Static Modeling
Model valve at discrete times

Chapters 2,3

Valve Tracking
Find deformation of valve

between static models
Chapters 4,5,6,7,8,9

Strain Analysis
+Evaluate strain during deformation

+Statistical analysis of
strain values distributions

Chapters 10,11

Figure 1.1: Workflow for thesis

Chapter 2 is a brief overview of spline methods used to model static shapes in

R3. Chapter 3 is the direct application of these methods to compute patient-specific

static mitral valve models from tagged 3D-Echo image data. Two approaches are

discussed and the applicability of each approach is explored. Chapter 4 begins the

3



study of mitral valve tracking by first presenting a calculus of variations approach

for geometric shape matching. This variational approach is briefly explored and then

a numerical algorithm for diffeomorphic matching is presented in detail. Chapter 5

explores these ideas through some synthetic examples. Chapter 6 then introduces

some image registration concepts based on image intensities analysis and highlights

a few known techniques that have already been used to study 3D-Echo ultrasound

image data. Chapters 7 and 8 present the new approach developed in our study to

incorporate the 3D-Echo data used in our mitral valves static modeling into an effi-

cient technique for valve tracking. Chapter 9 gives a detailed study of the adequate

parameterizations of our diffeomorphic valve tracking algorithm and highlights the

performances of this algorithm. With the technique for valve tracking now finely-

tuned to 3D-Echo data, Chapter 10 attacks one of the main goals of our research

project: strain distribution analysis. The classical notion of strain is presented and

we discuss the methods implemented to derive the distributions of leaflet strain val-

ues from the dynamic leaflet deformations captured by our valve tracking. After

introducing the necessary statistical concepts and tests, strain distributions are com-

puted for each one of the 60 leaflets observed in our 3D-ultrasound data set. Strain

distributions are then compared across patient populations, both before and after

surgery. Chapter 11 then explores regional strain values for 8 natural leaflet regions;

specifically, we study which anatomical regions of the mitral valve exhibit high strain

concentrations. Finally, Chapter 12 outlines future research work to analyze shape

spaces of mitral valves.

Multiple researchers have contributed to this long-term team project; my own
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research is a culmination of the work laid before me. An earlier in-depth mathe-

matical and numerical analysis of diffeomorphic shape matching (see [3]) involved

professors Robert Azencott, Roland Glowinski, Jiwen He , and Ronald Hoppe, as

well as post-doctoral students Saurabh Jain, Aarti Jajoo, and Andrey Martynenko.

In particular, previous work on mitral valves by A. Jajoo and A. Martynenko paved

the way for the strain study presented here. Yue Qin and her two advisors, J. He and

R. Azencott, explored 2nd-order convergence methods to accelerate 1st-order varia-

tional approaches. Essential software tools for the mitral valve tagging interface and

static modeling were developed by the post-doctoral fellows Simon Alexander and

Saurabh Jain. On the cardiology side, the UH team interacted on a regular basis

with Dr. William Zoghbi and Dr. Stephen Little, who provided crucial guidance

about the mitral valve anatomy, the problems raised by mitral valve regurgitation

and prolapse, and the impacts of mitral valve repair surgery. The clinician Dr. Sagit

Ben Zekry worked tirelessly on interpreting the 3D echocardiographic data and pro-

vided the team with expertly tagged mitral valve data, a fundamental key to compute

accurate patient-specific mitral valve models. Finally, Dr. Gerald Lawrie, a world-

renowned surgeon specializing in mitral valve repair, provided invaluable insight into

the surgical NRD procedure.

The MATLAB codes that were written to support this thesis can be found on

my website:

http://math.uh.edu/∼jwf1
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Chapter 2

Spline Modeling of Smooth Shapes

in R3

Splines are an important tool in interpolation. Though they have been understood

since the late 1940s by Schoenberg (see [41]), their utility as computational tool was

not fully realized until the 1970s when stable numerical methods were introduced

to evaluate what have become known as B-splines. We begin with a brief overview

of splines and B-spline representations. Then we introduce smoothing splines and

show how these concepts generalize to arbitrary curves in R3. Then tensor product

splines are introduced, which allow for spline representations for arbitrary gridded

surfaces in R3.
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2.1 Splines, B-splines and Smoothing Splines

Consider a mesh of knots ∆ = {x0, x1, . . . , xm} ⊂ R with x0 < x1 < · · · < xm. For

some k ∈ N, the function s : [x0, xm]→ R such that

(a) The restriction s|[xi,xi+1] is a polynomial of degree d < k.

(b) s ∈ Ck−2[x0, xm] if k ≥ 2; otherwise s is piecewise constant

is called a spline function of order k for the mesh ∆. Denote by S∆,k the set of

all spline functions of order k on the mesh ∆. An immediate fact is that S∆,k is a

vector space of dimension k + m − 1. See [10] for details. The cubic B-spline basis

introduced by Schoenberg ([41]) allows for compact representation of s(x) in terms

of integer shifts of the central “bell” B(x) with

B(x) =



2/3− (1− |x|/2)x2 if 0 ≤ |x| < 1

(2− |x|)3/6 if 1 < |x| < 2

0 if 2 < x

Specifically in the case of uniform knot spacing h = xi+1 − xi, we have s(x) =∑
k∈K c(k)B(x/h − k) where the indices of the sum K ⊂ Z are chosen so that the

domain of knots [x0, xm] is supported by the shifted B-splines. See Figure [2.1] for

a visualization of the prototypical cubic B-spline B(x). The B-spline basis is most

useful in the construction of spline functions, while the piecewise polynomial (pp)

form implied in (a),(b) of the definition of the spline function is most useful for

evaluation and conceptual purposes.
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Figure 2.1: Cubic basis (B)-spline B(x) in R (central “hat” in black) along with
the 4 cubic polynomials that piecewise make up the curve (red, green, magenta, and
black). The knots are denoted by the blue vertical lines.

Spline functions are most often used in interpolation, and from this point forward

it is assumed that all mentioned splines are to be fit to some given data. Denote

by yi a set of arbitrary given values indexed by the knots xi of the spline grid. We

seek a spline function s such that s(xi) = yi , which will thus smoothly interpolate

the data (xi, yi). Moreover, the spline may be chosen so that both the first and

second derivatives s′(x), s′′(x) are continuous. Doing so requires the solution of an

underdetermined linear system; additional boundary constraints may be added to

uniquely determine the interpolating cubic spline.

But for interpolants on large datasets, one must be careful to avoid overfitting.

There are two general avenues to this end, both of which are described in de Boor’s

text (see [12]). The first is to require that the spline interpolant have much fewer

knots than available data. This leads to an overdetermined linear system that can be
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solved via least squares. The second involves smoothing splines. Namely, we consider

the minimization problem

min
s∈S∆,k

p
m∑
i=0

[yi − s(xi)]2 + (1− p)
∫ xm

x0

[s′′(t)]2dt

The smoothing parameter p offers a balance between data fit and smoothness. For

p = 1, the solution is the natural cubic spline interpolant of the data (“perfect” fit).

For p = 0, the solution is the traditional least-squares line fit to the data (“zero

curvature”). The transition region for the parameter p is data-dependent and can

be quite sensitive. See Figure [2.2].

Figure 2.2: Smoothing spline sensitivity to parameter p. Depending on the data
(black), small variations in p can have a large impact on the quality of fit for the
smoothing spline. Notice the difference between p = 0.99 and p = 1.

In general, to control the level of fit at different data sites, weights wi can be

introduced to the smoothing spline; namely the smoothing spline is the minimizer of
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the variational problem

min
s∈S∆,k

p
m∑
i=0

wi[yi − s(xi)]2 + (1− p)
∫ xm

x0

[s′′(t)]2dt

If all data sites are to be treated equally, weights wi = 1 suffice. The MATLAB

function csaps in the Curve Fitting Toolbox allows for easy computational access to

these smoothing splines.

2.2 Fitting Curves and Surfaces in R3

The extension of the smoothing spline to general curves in R3 is simple. Instead of

the knots xi being coordinates along a real axis, the knots can represent a parametric

description of the curve. An obvious example is the arc length of a curve. For ordered

sets of discrete R3 data, another choice for the knots would simply be the data label

or site. With this in mind, the smoothing spline problem becomes

min
s∈S∆,k

p
m∑
i=0

wi[yi − s(xi)]
2 + (1− p)

∫ xm

x0

|D2s(t)|2dt

where s : [x0, xm] → R3 is now a R3-valued spline function and S∆,k is the vector

space of R3-valued spline functions of order k on the mesh of data sites ∆. Different

weights wi can again be assigned to specific data sites. See Figure [2.3] for an

example. Once again, the MATLAB function csaps performs efficiently.

Surface fitting in R3 with smoothing splines is a slightly different question. When
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Figure 2.3: Smoothing splines of R3 scattered data (black). MATLAB Curve Fitting
Toolbox csaps makes these constructions simple and easy to visualize.

there is no underlying grid beneath the data z = f(x, y), one can opt for the thin-

plate smoothing spline, which is an extension of smoothing splines to multidimen-

sional data. The computational complexity increases; one can explore the MATLAB

documentation for tpaps for details. However, whenever data is given on defined grid,

say zij = f(xi, yj), then tensor product splines become a viable alternative to the

costly thin-plate splines. A tensor product spline s(x, y) is a member of the linear

space S∆1,k1 ⊗ S∆2,k2 . The B-spline representation takes the form

s(x, y) =
∑
i

∑
j

cijBi,∆1(x)Bj,∆2(y)

while the pp-form consists of multiple bivariate polynomials. Again, the MATLAB

function csaps is up to the task, as working with gridded data to produce a tensor
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product spline is simple and straightforward. See Figure [2.4]. As we will see in

the following chapter, tensor product splines play a fundamental role in the static

modeling of the mitral valve.

Figure 2.4: Tensor product spline of R3 scattered data (black). The smoothing
parameter p = 0.998 was chosen to display a smooth surface without overfitting.
MATLAB Curve Fitting Toolbox csaps allows for quick construction and evaluation
of tensor product splines.

12



Chapter 3

Static Modeling of the Mitral

Valve

The purpose of this chapter is to highlight the modeling procedures used to make

patient-specific static models of the mitral valve. First, background on the mitral

valve anatomy and mitral valve imaging is presented. Then, after describing the data

provided for the modeling process, the spline methods from Chapter 2 are applied to

generate models of the mitral valve. Smoothing splines are applied to the modeling

of annulus and coaptation data, while tensor product smoothing splines are used to

fit surfaces to the leaflet data. Two methods are presented for this surface modeling;

one (lofting) works in all cases but requires more work to execute while the other

(principal plane) is simpler in its approach but does not work for all mitral valves.

The details of mitral valve static modeling presented here form the first step to the

dynamic modeling presented in team’s published paper [5].
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3.1 Mitral Valve Anatomy

The mitral valve (MV) is a dual-flap valve in the heart that controls the flow of blood.

It is known as the left atrioventricular valve because it lies between the left atrium

and the left ventricle. A normal-functioning MV opens during diastole to allow

blood to flow from the left atrium into the left ventricle. It is opened by contracting

papillary muscles, which are pulling open the leaflets during diastole. Following

diastole (begin systole), the valve is closed via ventricular pressure to prevent blood

flowback (regurgitation) to the atrium.

The mitral valve’s central components are the anterior leaflet (AL), the posterior

leaflet (PL), the mitral annulus (MA) and the subvalvular apparatus (see Figure

[3.1]).

The MA is a ring-like fibrous entity with a 3D shape resembling a saddle. The

mitral commissures are the points where both leaflets free edges join–they do not

necessarily coincide with the mitral annulus. The subvalvular apparatus consists of

the chordae tendinae and the papillary muscles.

3.2 Mitral Valve Imaging

Mitral valve modeling begins with the imaging of a patient’s mitral valve via 3D

ultrasound echocardiography. Specifically, transesophageal 3D-Echo data sets were

acquired for all patients by mid-esophageal full volume echocardiography, with an

IE-33 Philips ultrasound system and X7-2t probe. The framerate for the acquisition

14



Figure 3.1: Figure from www.heart-valve-surgery.com

was approximately 25 fps, with each frame having resolution 208× 224× 208 voxels.

All 4D data sets conformed to the standard Digital Imaging and Communications

in Medicine (DICOM) format. Each 4D dataset was uploaded to SLICER3D, a

freeware 3D-display environment, for interactive tagging by the expert cardiology

clinician Dr. Sagit Ben Zekry. This tagging was facilitated through the use of a

tagging software module developed by a team at University of Houston. The team is

led by Dr. Robert Azencott, and in addition to myself, has included at one time or

another Dr. Aarti Jajoo, Dr. Jiwen He, Dr. Ronald Hoppe, Dr. Roland Glowinski,

Dr. Yue Qin, Dr. Andrey Martynenko, Dr. Saurabh Jain, Dr. Yipeng Li, and Dr.

Simon Alexander. Cardiologists Dr. William Zoghbi, Dr. Stephen Little, and Dr.

Gerald Lawrie have also contributed to the team.
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Figure 3.2: Schematic of tagging planes Pi, rotation axis A and anterior horn Ohorn.
This simple example shows three color-coded tagging planes and their corresponding
tags.

In order to tag (select) points for a MV model on any 3D image frame, a rotation

axis A is first visually identified. This axis is constrained to (a) be “roughly” or-

thogonal to the main principal components plane associated to the MV and (b) pass

through the tip Ohorn of the MA anterior horn. Next, numerous planes P1 . . . Pn, each

containing the axis A, are selected by small successive rotations around A, in order

to span the entire leaflets AL and PL (see Figures [3.2-3.3]). Within each plane Pi,

the set of tags included the intersection points of Pi with the coaptation line and the

annulus, as well as 5 to 10 points on each leaflet. For each tag x in Pi one defines the

“polar” coordinates (r, θ) of x as the node label r (determined by distance between

Ohorn and x), and the angle θ = θi between planes P1 and Pi. For certain tagging

sequences (see lofting section below) this representation required some care.
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Figure 3.3: (left) Interactive tagging in the SLICER 3D environment. (right) A
sample tagging plane Pi.

All tagging is performed at mid-systole (MS) and end-systole (ES) to give two

reliable reference positions for each component of the studied MV model. Four

components were of primary focus: the AL, the PL, the MA, and the coaptation line

(COAPT) along which the leaflets close during systole. It should be pointed out that

during these two tagging operations, one does not need to maintain any matching

between the tags at time MS and those at time ES; in other words, the models are

constructed independent of each other.

3.3 Mitral Valve Modeling

For each tagged MV, the tags recorded at MS and ES are exported to the MATLAB

environment in order to compute patient-specific smooth geometric models of the

four MV components. Let SAL (resp. SPL, SMA, SCO) denote the set of tags for the

AL (resp. PL, MA, COAPT). In all 60 cases studied, the set cardinalities typically
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work out to about

|SAL| ≈ 200, |SPL| ≈ 200, |SMA| ≈ 60, |SCO| ≈ 40

We now explain the modeling of each of the MV components. The smoothing spline

techniques introduced in Chapter 2 play a significant role.

3.3.1 Mitral Annulus and Coaptation Models

The methods described in Chapter 2 for fitting curves in R3 were applied to generate

models for the two curves MA and COAPT. Specifically, cubic smoothing splines

were obtained for each of the smooth parametric equations

x = a(s), y = b(s), z = c(s) (3.1)

where s denotes the curve arc-length. See Figure [3.4] for an visualization of these

models for a sample valve. Note the annulus is a closed curve, so periodic boundary

conditions are required in the spline fitting. Also, for models where the anterior

and posterior leaflets do not properly “seal” at systole (this is called regurgitation),

the COAPT must be modeled by the union of the two leaflet interior edges ALE

and PLE. These curves typically diverge from one another at the regurgitation zone.

Thus cubic smoothing splines are needed for each of the curves ALE and PLE, and

collection of these models can be designated COAPT. See Figure [3.5] for an example.
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Figure 3.4: Sample models for patient’s mitral annulus (yellow) and coaptation line
(blue). The tagged data sites are the black circles.

3.3.2 Principal Plane Leaflet Models

Principal Components Analysis (PCA) of SAL and SPL generates two new orthonor-

mal bases in R3, and thus two new coordinate systems (x, y, z) for the AL and

(X, Y, Z) for the PL. For notational brevity, we proceed to mention only a single

system (x, y, z) for an arbitrary leaflet. For the majority of MV models exhibit-

ing simple geometry, the leaflet surface can be fitted by a single cartesian equation,

denoted

z = f(x, y) (3.2)
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Figure 3.5: Patient-specific MV model (a regurgitation case)

Thus the tagged data has coordinates (x, y, f(x, y)) with respect to the principal

plane coordinate system. In this system, the tagged data is often scattered and not

on a regular grid. By using Delaunay tessellation (see [11]), this scattered data is

interpolated onto a regular grid in the (x, y)-plane. On this grid, the function f is

represented by a bi-cubic (tensor product) smoothing spline, which is a linear com-

bination of specific polynomials of x, y of degree 3 with compact support. Recalling

from Chapter 2, smoothing spline fitting of the equation z = f(x, y) minimizes the

sum of squared errors of fit of this equation to tagged data plus a quadratic term

controlling the “smoothness” (curvature) of f . In practice, principal plane leaflet

models are computed in two stages–the first is a preliminary smoothing spline con-

struction where equal weighting is applied to each tagged datum. This produces a

function s1(x, y) from which one can compute the errors of fit ||s1(xi, yi)−f(xi, yi)||.
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Using these errors of fits as weights wi in a second smoothing spline fit allows for

custom weighting of the tagged data and thus fine-tuned adjustments to the model’s

fit at the tagged locations. See Figure [3.6] for a sample AL model.

Figure 3.6: Sample principal plane leaflet model. The tagged data sites are the black
circles.

Principal plane modeling of leaflets works whenever a component of the tagged

data can be expressed as a function of the remaining two components. For select MV

models that exhibit large curvatures, exotic loops, folds, cusps, and other complicated

shapes, there are geometric obstructions to the preceding cartesian approach. See

Figure [3.7]. In the bottom figure, the bulbous prolapsed tissue is curved so that no

cartesian representation z = f(x, y) is possible. In layman’s terms, that surface does

not pass a vertical line test in any cartesian coordinate system.
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Figure 3.7: Limitations of principal plane modeling. The top figure gives a model
where the principal plane (black) allows for a cartesian expression z = f(x, y). The
bottom figure gives a model (lofting method, see next section) where no cartesian
expression z = f(x, y) is possible. Three candidate plane cross-sections (red) are are
displayed; each results in double values z1, z2 for certain (x, y) pairs.
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3.3.3 Lofting Leaflet Models

As the last section showed, whenever one is unable to find a coordinate system

(x, y, z) that uniquely expresses a leaflet point by its projected coordinates in the

principal planes (that is z = f(x, y)), another modeling approach is required. For

these cases, we model the leaflet S by 3 parametric equations

x = u(r, θ), y = v(r, θ), z = w(r, θ) (3.3)

where u, v, w are patient-specific bi-cubic smoothing splines functions of the polar

coordinates (r, θ) defined above in the tagging process. The construction of these

tensor product splines is as follows. First, for fixed θ = θn, the intersections of S with

the plane Pn are fitted by a planar smoothing spline curve Cn. The collection of these

planar spline curves Cn will informally be called the radial fit. Note that because of

the possible ambiguity in assigning knot labels based on Euclidean distance from the

anterior horn Ohorn, some knot re-ordering is often required to produce acceptable

spline functions (see below). Once cross-sectional curves Cn have been determined

for all θn, each spline function Cn is then sampled to produce a fixed N nodes per

curve. Then for each node r = rj, with 1 ≤ j ≤ N the collection of all nodes across

curves Cn are fitted by an additional smoothing spline curve Rj. The collection of all

radial cross-sectional curves Rj is informally called the angular fit. See Figure [3.8]

for a schematic illustrating this process. This so-called lofting technique (see [15])

has proved successful with modeling challenging mitral valve leaflets. See Figure [3.9]

for an example lofted leaflet. This modeling method, however, did present certain
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difficulties that we had to overcome.

Figure 3.8: Schematic illustrating the radial curves C1 (green), C2 (blue), and C3

(red), as well as the angular curves R1, R2, R3, R4 (black).

The first difficulty is the previously mentioned re-ordering of the knots required in

the radial fit. Most tagged data arrives in a “block” file with no record of the distinct

planes Pi used during data acquisition. During data processing, these planes (and

thus the angles θ between them) must be recovered. Using a recursive procedure,

recovery of these planes is simple. Denoting an arbitrary tag of S by x1, the points

Ohorn, x1 and a fixed point y on the rotation axis A determine a unique tag plane P1.

Remove all tags in S that are within the plane P1. Then proceed to choose another

tag x2 in S and consider the plane formed by Ohorn, y, and x2. Continue until the

tag list is exhausted.

Following recovery of the tagging planes, the tagged data within each recovered
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Figure 3.9: Sample lofting leaflet model. The tagged data sites are the black circles.

plane Pi must be ordered so that the fitting spline preserves the shape of the structure

that the tagging cardiologist identified. Although a “human-in-the-loop” is required

to make these adjustments, we have written several software tools to facilitate and

visualize this process. These tools allow for interactive reordering of the tags, visual-

ization of multiple tag planes, and synthetic tagging plane insertion for sparse data

sets. See Figure [3.10-3.11] for some snapshots of these tools in action.
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Figure 3.10: Human-in-the-loop tools for radial fit. (Top) Interactive spline knot
adjustment. Annular tags are yellow circles, anterior leaflet tags are green circles, and
posterior leaflet tags are blue circles. Whenever loops or irregularities are detected,
knots are re-ordered and re-checked. (Bottom) Once all tagged planes have been
processed, neighboring tagged planes are visualized concurrently. The color scheme:
previous AL–red, previous PL–magenta; current AL–green, current PL–blue; next
AL–cyan, next PL–black. These plots allow for preliminary “continuity” checks
before the angular fit is attempted.
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A second issue stems from sparse data during the angular fit. Typical models

arrive with approximately 30-50 tagging planes; whenever the number of tag planes

is small (< 10), or delivered tags are suspect and deemed inaccurate (even car-

diologists make mistakes!), existing tag planes must be “interpolated” to produce

synthetic “ghost planes”. These virtual planes ensure that large gaps in θ do not

generate ridges or almost planar surface patches to fill the gaps in θ in the resulting

model. Experience has shown that recursive insertion of virtual planes is sometimes

required; two given accurate radial curves C1, C2 can be “interpolated” to find the

profile C1.5. Specifically, each curve C1, C2 is sampled to an equal number of M

points. Then corresponding points xi ∈ C1 and yi ∈ C2 are interpolated. Linear in-

terpolation suffices for this first step. Naturally, the same methodology can be used

to compute C1.25 and C1.75. For small enough θ2 − θ1 these three planes may suffice.

Otherwise, the three curves C1, C1.5, C2 can be sampled and corresponding points

can be interpolated with a smoothing spline. This often yields smoother transitions

across large gaps θ2−θ1. But for the valves modeled with lofting, linear interpolation

often sufficed. See Figure [3.11] for a snapshot of the “ghost plane” tool in action.

A final problem is the “crease” problem for the angular fit: for knots very close

to the rotation axis A (i.e. points along the angular curves Rj close to A), there

will be abrupt ridges and visual roughness for the surface fitted to these knots.

Moreover reducing the smoothing parameter p in the smoothing spline fit does not

help eliminate this issue. One remedy is to pre-smooth the problem knots with a

polynomial least squares fit in spherical coordinates (ρ, θ, φ) relative to the origin

Ohorn. That is, for numerous fixed ranges ρi ≤ ρ ≤ ρi+1, determine the polynomial
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Figure 3.11: Ghost data (yellow) over-layed on sparse PL data. The previous PL
plane Ci−1 (magenta) and next PL plane Ci+1 (black) do not match the current
PL plane Ci (blue). By sampling these curves to M equal values and interpolating
corresponding points xj ∈ Ci−1, yj ∈ Ci, zj ∈ Ci+1, a smoother transition is achieved.
The current AL plane (green) is shown. It is expected that this valve be closed at
systole; this validates the position of the derived ghost data (yellow).

φ′ = pi(θ) that minimizes the error ||pi(θ)− φ||2. Polynomials of degree 2 or 3 have

shown to adequately smooth and preserve the desired AL geometry at the anterior

horn Ohorn. See Figure [3.12].

3.3.4 Computing Times and Quality of Fit

These procedures provide smooth, patient-specific smoothing spline models of the

four MVA components at tagged instances MS and ES. Moreover, for each model

generated, the statistics of the errors of fit are tracked. All models are constrained so
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Figure 3.12: Crease smoothing. (Left) Radial fits in tagging planes converge at an-
terior horn Ohorn. Minor changes in azimuthal angle φ greatly affect the smoothness
of the angular fit in the polar angle θ. This is apparent in the ridges and creases
that form near the anterior horn. (Right) Least-squares smoothing of the azimuthal
angle φ across the range of polar angles θ reduces these ridges. Provided smoothing
is restricted to small neighborhood of Ohorn, the resulting model does not deviate
from tagged data.

the individual errors of fit are on the order of 1 mm. As mentioned in Chapter 2, the

MATLAB curve fitting toolbox function csaps makes smoothing spline fits quick and

computationally accessible. Typical fits are obtained in the order of a few seconds

on a computer with a 2.53 GHz Intel Core i5 processor and 4 GB of RAM. The only

slow runtime component of the surface fitting process is the human-in-the-loop knot

checking that is required for lofting leaflets. This process takes, on average, the order

of 1 hour. See Figure [3.13] for some examples of completed MVA models.
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Figure 3.13: Patient-specific MVA models. The top row are two models for normal,
healthy patients, while the bottom row are models for diseased patients exhibiting
larger valves and leaflet regurgitation.
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Chapter 4

Diffeomorphic Shape Matching

4.1 Shape Matching Survey

Shape matching, or shape registration, is fundamental to the concept of image reg-

istration, which has many applications ranging from medical imaging to military

target recognition. The broad aim of shape tracking is to recover a transformation

of source or reference shape into a known target shape. Many methods exist to

tackle this problem. They vary in complexity, but can be differentiated in their

representations of the shapes and deformations.

4.1.1 Shape Representation in R3

We focus on shapes regularly embedded in R3, which are curves, surfaces, or volumes

with piecewise boundaries. More precisely, the set SHd of d-dimensional shapes in
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R3 will be the set such that any member S ∈ SHd satisfies

(a) S is open and connected

(b) S is compact

(c) ∂S is a piecewise smooth of class Cr with r ≥ 3

(d) S coincides with a whole connected component of R3 − ∂S

(e) for each x ∈ ∂S, there is an open neighborhood U of x in R3 and a local

r-smooth diffeomorphism φ of U onto an open ball Ũ ⊂ R3 mapping U ∩ ∂S

onto Ũ ∩ H, where H is the intersection of either one, two, or three closed

half-spaces of R3.

This definition is rather technical, but it rigorously specifies the intuitive notion of

a “smooth shape”.

Smooth shapes are often represented parametrically. The explicit representation

afforded by spline functions (see Chapter 2) often provide the computational acces-

sibility and utility that is optimum for numerical work. Such is the case for the

concrete models of anatomic shapes studied in this thesis. But a few implicit rep-

resentations of shapes are also employed in shape matching studies. For instance, a

shape can be represented as the set of all points x ∈ R3 such that f(x) > 0, where f

is any smooth function. These implicit representations have proven to be quite useful

when coupled with the free form deformation techniques (see [37] and [45]). Note

that these representations include shapes that do not belong to SHd–these types of

shapes are not considered henceforth.
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In numerical shape studies, one must inevitably discretize a shape into a finite

set of points, which we call a point grid, where each point is well-identified by a

finite set of its immediate neighbors (see Figure [4.1]). Point grids are often derived

from sampling/evaluating a continuous parametric representation (like B-splines) of

a shape. We denote a point grid for a curve in SH1 by xj, 1 ≤ j ≤ N and a point

grid for a surface in SH2 by xij, 1 ≤ i ≤ M , 1 ≤ j ≤ N . Here N (reps. M ×N) is

the cardinality of the point grid.

Figure 4.1: Point grid representation of various smooth shapes in R3.

4.1.2 Shape Deformations

Regardless of how a shape is represented, there are multiple options to how to trans-

form it into another shape. Two common circumstances warrant different techniques:

1. Shape A and Shape B represent the physical object at two different instants

2. Shape A and Shape B represent two different physical objects
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For case (1), rigid deformations and scalings may suffice if the object is not de-

formable. Rigid deformations include translations and rotations, and scaling means

homothetic scaling. A realistic example is target identification via satellite imagery.

A reference image (for instance, military jet) is compared against an extracted target

from the surveillance photographs. Thus the identification problem becomes deter-

mining the proper rigid transformation and scaling to identify and register the target

with the reference image. See Figure [4.2].

Most often in case (1) as well as (2), elastic deformations are needed. These

transformations allow for warping and deformation of the shape. Human organs are

typically deformable shapes, as is the case of many biological shapes. See Figure

[4.3] for 3 discrete instances of human mitral valve model. Here the registration

problem becomes determining the proper elastic transformation to deform the top

shape (begin-systole) into the middle shape (mid-systole) and then the bottom shape

(end-systole), thereby approximating the true motion of the mitral valve during the

systolic stage of the cardiac cycle. In general, mathematical methods to recover un-

known deformations matching two or more given shapes fall into two categories: free

form deformations (FFD) and landmark interpolation methods. In FFD, the defor-

mation of the shape is realized by deforming the enveloping space. Diffeomorphic

matching, which is explored below and is the main technique employed for studies

in this thesis, falls under this category. FFD techniques often go hand in hand with

implicit shape representations, as seen in [23] and [36]. For landmark interpolation

methods, sets of landmark points are identified (therefore known) on the reference
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and target shapes in order to capture the deformation between these sets. The de-

formation is constrained to map landmarks on the reference shape to corresponding

landmarks on the target shape. Interpolants, for instance thin-plate splines or ra-

dial basis functions (see [7]), are then used to determine the deformations at other

locations on the shapes.

4.2 Diffeomorphic Matching of Two Shapes

For the shape matching studies that follow, variational approaches are used to search

for “optimal” diffeomorphic transformations. Consider two shapes S0, S1 that mem-

bers of SHd for d ∈ {1, 2, 3}. The search for an R3 diffeomorphism F such that

F (S0) = S1 is an ill-posed problem which requires regularization to be numerically

solved by variational methods. These variational methods have been explored by

M. Miller, A. Trouve, L. Younes, J. Glaunes et.al. with applications to a quantified

comparison of images of human brains (see [4], [13], [20], [25]). In their studies, the

regularization is achieved by replacing the constraint F (S0) = S1 with a “softer”

constraint based on the geometric disparity dis(F (S0), S1) between the surfaces. For

more detail, see [3].

In our study, we follow this method; specifically, our optimal shape matching

transformation is formulated as a the solution to a minimization problem involving

actions of R3 diffeomorphisms. The objective functional to be minimized consists

of two parts: the kinetic energy of the deformations and the geometric matching

quality. For numerical computations, point grid representations of the shapes give
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rise to diffeomorphic point matching. Provided the deformation is sought at discrete

times, the search for the optimal transformation reduces to the solution of a finite-

dimensional minimization problem. Even then, the dimension of this problem is still

high, for two point grids with cardinalities N and a time discretization of cardinality

T means complete specification of all deformed trajectories at all times requires NT

data. A matching algorithm based on the first order necessary optimality conditions

is presented and supported by some basic examples from geometry and medical

imaging. The algorithm presented specifically mentions one target shape, but the

methods has been generalized to the matching of multiple target shapes (see [3]).

4.2.1 Objective Functional Formulation

Fundamental to the idea of diffeomorphic matching is the concept of a vector field

flow. Let V be any Hilbert space of vector fields on R3 and denote by L2([t0, t1], V )

the Hilbert space of vector field flows v : [t0, t1] → vt ∈ V with finite kinetic energy

E(v)

E(v) :=
1

2
||v||2L2([t0,t1],V ) :=

1

2

∫ t1

t0

||vt||2V dt

Define the R3 diffeomorphic flow Ft as the solution to the dynamics equation

∂Ft
∂t

= vt ◦ Ft, t ∈ (t0, t1] (4.1)

Ft0 = Id
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Assuming that our Hilbert space V is continuously embedded in an appropriate

Sobolev space of smooth functions, there is a unique solution Ft to the above equation

(see [17]).

Denote the solution to (4.1) for a given v by F v
t and define Diff(R3) to be the

collection of R3 diffeomorphisms endowed with the topology of uniform convergence

on bounded subsets of R3. Furthermore, define D(V ) to be the space of all dis-

parity functionals Disp : L2([t0, t1], V ) → R+ which are of the form Disp(v) =

φ(F v
t0
, F v

t1
), where φ : Diff(R3)2 → R+ is continuous with respect to the product

topology on Diff(R3)2. With these notions, we can define the objective functional

J : L2([t0, t1], V )→ R by

J(v) := E(v) + φ(F v
t0
, F v

t1
)

This function φ is a necessary regularizing term, as without it the minimization

problem is ill-posed ([3]). To enforce a good fit between shapes S0, S1 ∈ SHd

(d ∈ {1, 2, 3}), φ should return a measure of geometric disparity between the shapes.

There are a few choices used in practice. The first is the pointwise disparity func-

tional. Identifying reference points x1, . . . , xN on reference shape S0 and correspond-

ing points y1, . . . , yN on the target shape S1, define

φ(F v
t0
, F v

t1
) =

N∑
j=1

||F v
t1

(xj)− yj||2

Another commonly used disparity functional is the Hausdorff distance. Recalling

the notation of a distance from point x to a set S by d(x, S) = miny∈S d(x, y), the
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classical Hausdorff disparities h(S0, S1) are defined as

h(S0, S1) = max
x∈S0

d(x, S1)

These disparities determine the Hausdorff distance Dh

Dh(S0, S1) = max(h(S0, S1), h(S1, S0))

With these concepts defined, the Hausdorff disparity functional takes the form

φ(F v
t0
, F v

t1
) = Dh(F

v
t1

(S0), S1)

Regardless of which disparity functional is chosen, the following result is useful. For

any φ ∈ D(V ), the minimization problem

inf
v∈L2([t0,t1],V )

E(v) + φ(F v
t0
, F v

t1
)

subject to the constraint (4.1) has a solution v∗. For proof, refer to [3].

This variational approach allows for the recovery of a diffeomorphic transforma-

tion of shape S0 ∈ SHd at time t0 into shape S1 ∈ SHd at time t1 via the warping

of the enveloping 3D space. Specifically the deformations of shapes are modeled by

a flow of time-dependent R3 diffeomorphisms Ft , determined by a vector field flow

vt on R3. See Figure [4.4] for a two-dimensional example.
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4.2.1.1 Self-Reproducing Kernel Hilbert Spaces

In applications, it helps to specify more concretely the Hilbert space V . Consider

the radial Gaussian kernel

Kσ(x, y) =
1

(2π)3/2σ3
exp

(
−||x− y||2

2σ2

)
, x, y ∈ R3

This choice of Kσ has demonstrated good performance for the applications that

follow. The kernel Kσ is smooth, symmetric, bounded, and is known to be positive

definite. Recall that a symmetric kernel K : R3 × R3 → C is positive definite if and

only if for any finite set of points {x1, . . . , xn} ⊂ R3 and scalars {λ1, . . . λn} ⊂ C

n∑
i=1

n∑
j=1

λiK(xi, xj)λj ≥ 0

Moreover a kernel K is said to be reproducing kernel of a Hilbert space H of functions

on R3 if

(a) For every x ∈ R3, the function Kx : R3 → C is a member of H, where

Kx(y) = K(y, x)

(b) For every x ∈ R3 and every f ∈ H, there holds f(x) = (f,Kx)H

where (·, ·)H denotes the inner product on H. A Hilbert space H is said to be a

reproducing kernel Hilbert space (RKHS) when there exists a reproducing kernel K
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of H. Notice, for a symmetric reproducing kernel, that

K(x, y) = K(y, x) = Kx(y) = (Kx, Ky)H

An important result (see [2]) is that any positive definite kernel K : R3×R3 → C

uniquely determines a RKHS H of functions on R3 with reproducing kernel K. In

particular, since Kσ is known to be positive definite, we may identify the Hilbert

space V of vector fields on R3 with the RKHS VKσ of R3 vector fields defined by the

kernel Kσ. In particular, for vt ∈ VKσ , z ∈ R3, and any fixed finite set of points

{x1, . . . , xn} ⊂ R3, we have the representation

vt(z) = (vt, Kz)VKσ

= (
n∑
i=1

αiKxi , Kz)VKσ

=
n∑
i=1

αi(Kxi , Kz)VKσ

vt(z) =
n∑
i=1

αiKσ(xi, z) (4.2)

4.2.2 Diffeomorphic Point Matching of Two Shapes

Consider point grid representations X0, X1 of shapes S0, S1 ∈ SH3. Then we have

X0 = {x1, . . . , xN0} and X1 = {y1, . . . , yN}. Under the action of a diffeomorphism

F v
t , define the point set X̂1 = F v

t1
(X0) = {F v

t1
(x0), . . . , F v

t1
(xN0)}. This flow of dif-

feomorphisms actually defines N0 trajectories xi(t) = F v
t (xi) with 1 ≤ i ≤ N0 and
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t ∈ [t0, t1]. Moreover, by equation (4.2), the assumed self-reproducing structure of V

means these N0 trajectories completely determine the vector field flow at any point

z ∈ R3:

vt(z) =

N0∑
n=1

Kσ(z, xi(t))αi(t), αi(t) ∈ R3

In particular, the reproducing property implies the norm expression

||vt||2V =

N0∑
i=1

N0∑
j=1

αTi (t)Kσ(xi(t), xj(t))αj(t)

Before proceeding further, introduce the following notation:

x(0) = (x1, . . . , xN0)T ∈ R3N0

x(t) = (x1(t), . . . , xN0(t))T ∈ R3N0

α(t) = (α1(t), . . . , αN0(t))T ∈ R3N0

A(x(t)) = [Aij(x(t)]N0
i,j=1 ∈ R3N0×3N0

Aij(x(t)) = Kσ(xi(t), xj(t))I3 ∈ R3×3

I3 =


1 0 0

0 1 0

0 0 1


With these definitions and SRKHS structure, our minimization problem transforms

from a search for vector field flows vt to the search for the “kernel coefficient tra-

jectories” α(t). Symbolically, we seek α∗ (and corresponding trajectory x∗) such
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that

J(α∗) = min
α∈L2([t0,t1],V )

J(α)

= min
α∈L2([t0,t1],V )

1

2

∫ t1

t0

α(t)TA(x(t))α(t)dt+ λφ(Fα
t0
, Fα

t1
)

subject to the constraint

dx∗(t)

dt
= A(x∗(t))α∗(t), t ∈ (t0, t1]

x∗(0) = x(0)

Here λ > 0 is a regularization parameter meant to adjust the balance between a

minimum energy solution (λ→ 0) and the ideal geometric fit (λ→∞). The method

of Lagrange Multipliers imply the existence of p∗(t) = (p1(t), . . . , pN0(t))T ∈ R3N0 ,

called the adjoint state such that

−dp
∗(t)

dt
= B(x∗(t), α∗(t))T

[
p∗(t) +

1

2
α∗(t)

]
, t ∈ (t0, t1)

lim
t→t+1

p∗(t) = 0

lim
t→t−1

p∗(t) = lim
t→t+1

p∗(t) +∇x∗φ(F v
t0
, F v

t1
)

A(x∗(t))(α∗(t) + p∗(t)) = 0, t ∈ (t0, t1]
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where B(x∗(t), α∗(t)) = ∇x[A(x∗(t))α∗(t)]. To see this consider the Lagrangian

L(x, α, p) = J(α)−
∫ t1

t0

p(t) ·
(
dx

dt
− A(x(t))α(t)

)
dt

= −
∫ t1

t0

p(t) · dx
dt

dt+

∫ t1

t0

(
p(t) +

1

2
α(t)

)
· A(x(t))α(t) dt+ λφ(F v

t0
, F v

t1
)

Suppose (x∗, α∗, p∗) is a stationary point of the Lagrangian. Then all partial deriva-

tives of L must vanish, leading to the above equations as first order necessary opti-

mality conditions.

4.2.3 Numerical Algorithm for Diffeomorphic Matching of

Two Shapes

Introduce the mesh/partition ∆I = {τ l} of I = [t0, t1]

∆I = {t0 = τL0 < τL0+1 < . . . τL1−1 < τL1 = t1}

Let L = card(∆I). Introduce the discrete control space U∆I = RL·3N0 equipped with

the inner product

(α, β)∆I
=

L−1∑
l=0

∆τ l(αl · βl)R3N0 =
L−1∑
l=0

N0∑
j=1

∆τ l(αln · βln)R3

Introduce J∆I (α), the discrete objective functional, as

J∆I (α) =
L−1∑
l=0

∆τ l

2
(αl)TA(xl)αl + λφ(Fα

t0
, Fα

t1
)
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In particular, for all subsequent analysis, φ is fixed to be the Hausdorff disparity

(see below). Discretizing the state equation via the forward Euler method and the

adjoint (optimality conditions) equations by the backward Euler method gives

xl+1 − xl

∆τ l
= A(xl)αl

x0 = x(0)

pl−1 − pl

∆τ l
= B(xl, αl)T

[
pl +

1

2
αl
]

pL1+ = 0 (4.3)

pL1− = pL1+ + λ∇xlDh(Ft1(X0), X1)

A(xl)(αl + pl) = 0

It turns out these equations are first order optimality conditions for the finite dimen-

sional minimization problem

min
α∈U∆I

J∆I (α)

subject to the constraint

xl+1 − xl

∆τ l
= A(xl)αl

x0 = x(0)

In the evaluation of the jump discontinuities for the adjoint pl, we must evaluate

the gradient of the geometric disparity function with respect to the variable xl. For

Hausdorff matching, this presents difficulties since Hausdorff distance is not a smooth
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functional of these surfaces. To remedy this, a smooth Hausdorff disparity is adopted.

First some notation. For our two point grids X̂1, X1 (recall X̂1 is the deformed point

grid X0), define functions φ : X̂1 → X1 and ψ : X1 → X̂1 by

φ(x) = argminy∈X1 ||x− y||

ψ(y) = argminx∈X̂1
||y − x||

Next inductively define the functions φn : X → Y and ψn : Y → X by

φn(x) = argminy∈X1−
⋃n−1
j=1 {φj(x)}||x− y||

ψn(y) = argminx∈X̂1−
⋃n−1
j=1 {ψj(y)}||y − x||

With these concepts, the smooth Hausdorff disparity Ds(Ft1(S0), S1) between the

deformed reference shape Ft1(S0) and the target shape S1 is given by

Ds(Ft1(S0), S1) =
1

rN0

N0∑
i=1

r∑
n=1

||xL1
i − φn(xL1

i )||2 +
1

rN

N∑
j=1

r∑
n=1

||yj − ψn(yj)||2

Introducing more notation, let Jk =
{
j : xL1

k ∈
⋃r
m=1{ψm(yj)}

}
and Njk = {n :

xL1
k = ψn(yj)}. From this, we see that the gradient can be computed as

∂Ds

∂xL1
k

=
2

rN0

r∑
n=1

[xL1
k − φ

n(xL1
k )]− 2

rN

∑
j∈Jk

∑
n∈Njk

[yj − ψn(yj)]

It should be mentioned that the parameter r determines how many points are in

the computed neighborhoods of the pull-back functions φ and ψ. When matching
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curves in SH1 (e.g. boundaries of surfaces in SH2), the value r = 3 has proven

successful. For interiors of SH2, the value r = 5 is taken. Thus to use correctly this

smoothed Hausdorff term for general diffeomorphic matching of surfaces in SH2,

one must systematically impose a “boundary to boundary” and “interior to interior”

matching assignment. Denote by ∂X0 the subset of grid points in X0 corresponding

to the boundary of the shape S0. Likewise, let int(X0) denote the grid points in X0

corresponding to the interior of the shape S0. Letting similar notations hold for the

deformed point grid X̂1 and target point grid X1, we can express this “boundary-to-

boundary” and “interior-to-interior” constraint with the cost functional

J∆I (α) =
L−1∑
l=0

∆τ l

2
(αl)TA(xl)αl + . . .

λ
1

5|int(X̂1)|

∑
{i:xL1

i ∈int(X̂1)}

5∑
n=1

||xL1
i − φn(xL1

i )||2 + . . .

λ
1

5|int(X1)|
∑

{j:yj∈int(X1)}

5∑
n=1

||yj − ψn(yj)||2 + . . .

λ
1

3|int(X̂1)|

∑
{i:xL1

i ∈∂X̂1}

3∑
n=1

||xL1
i − φn(xL1

i )||2 + . . .

λ
1

3|int(X1)|
∑

{j:yj∈∂X1}

3∑
n=1

||yj − ψn(yj)||2

Without this restriction, matching quality is poor. Selection of the regularization

parameter λ follows the continuation methodology laid out in [3], which we now

outline.

For a fixed initial value of λ, a gradient descent in α is performed. In all concrete
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implementations considered here, as well as in [3], [8], an Armijo line search is em-

ployed to guarantee sufficient convergence with ill-conditioned data. Recall that an

Armijo line search ensures that the step-length chosen in the gradient descent results

in a decrease of the objective functional by at least as much as a fraction β of that

guaranteed by the first-order Taylor approximation to the objective functional at the

current iterate. Symbolically, if the current iterate is denoted αk, we select αk+1 by

αk+1 = αk − ξ∇J(αk)

where ξ is chosen (often by bisection) so that

J(αk+1) <= J(αk)− ξβ||∇J(αk)||2

Small values of β (< 0.0001) result in slower but more stable decreases in the objective

functional. This gradient descent technique proceeds until the norm of the gradient

has sufficiently decreased. At this point, the “inner” loop terminates, the value

of λ is increased in the “outer” loop, and another gradient descent inner loop is

performed. The whole algorithm terminates when sufficient geometric accuracy has

been achieved. Oftentimes, this is when some fixed quantile of the geometric errors of

fit (say 90%) fall below a predetermined threshold. For our shape matching studies,

a threshold on the order of 1 mm often sufficed.
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4.3 Numerical Algorithm for Diffeomorphic Match-

ing with Multiple Target Shapes

The above algorithm and underlying theory easily generalizes to sequences of shapes

S0, S1, S2, . . . Sq. Specifically, given q+1 shape snapshots Si, each shot being indexed

by the time ti with ti < ti+1, we seek a diffeomorphic deformation flow Ft, fully

characterized by its associated vector field flow v ∈ L2([t0, tq], V ), that minimizes

J(v) = E(v) +

q∑
i=1

λiDh(F
v
ti

(S0), Si)

subject to the constraint

∂Ft
∂t

= vt ◦ Ft, t ∈ (t0, tq]

Ft0 = Id

Numerically, the algorithm becomes

xl+1 − xl

∆τ l
= A(xl)αl

x0 = x(0)

pl−1 − pl

∆τ l
= B(xl, αl)T

[
pl +

1

2
αl
]

pLq+ = 0

pLi− = pLi+ + λ∇xlDh(Fti(X0), Si)

A(xl)(αl + pl) = 0
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An example of this technique is given in the next chapter. For the majority of the

mitral valve dynamic diffeomorphic modeling cases studied in this thesis, however,

only two pairs of static surfaces (or curves) are matched by diffeomorphisms, as the

echocardiographic tagging was restricted to mitral valves observed at mid and end-

systole. Thus the added generality of this approach was only needed in very few of

our concrete mitral valve dynamic modeling studies and the methods of the previous

section suffice.
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Figure 4.2: The reference F4 Phantom can be identified via overhead satellite imagery
through the use of global rigid transformations. Top image: www.eliteday.com.
Bottom image: ngm.nationalgeographic.com.
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Figure 4.3: A human mitral valve at three different instants. The static models were
created using the techniques of Chapter 3.

Figure 4.4: The deformation of the rectangle (black) is modeled by a flow of time-
dependent R2 diffeomorphisms Ft, determined by a vector field flow vt on R2. The
vector field flow is shown at three different times (blue, green, red).
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Chapter 5

Examples of Diffeomorphic Point

Matching

In this chapter, we briefly discuss the code implementation of the diffeomorphic

point matching methods presented in Chapter 4. Then we present some examples

to illustrate these techniques. We follow the same notation introduced there. All

computations were performed on a Macbook Pro with an 2.53 GHz Intel Core i5

CPU with 4 GB of 1067 MHz DDR3 RAM.

5.1 Diffeomorphic Point Matching Implementation

All numerical modeling was done in the MATLAB environment. The curve fitting

toolbox was augmented to the core functionality to access the modeling methods

established in Chapter 3 (smoothing spline representation of curves and surfaces).
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The prototype class used for all diffeomorphic point matching studies is titled Diffeo-

morphicPointMatcher.m. This is a simulation class; it takes a reference 3d point set

and constructs a flow of diffeomorphisms that transforms the point set into another

provided target set(s). Its main properties are summarized below. Properties are

marked (input) if they are required by the user instantiating an object of the class

and (calc) if they are derived from the users input.

• (input) The reference 3d point set is the array ’S0’ – N0 points, divided up into

S0.int (interior) and S0.bd (boundary).

• (input) The target 3d point sets is the array ’S’ – N points each, divided up

into S().int (interior) and S().bd (boundary)

• (input) t – Frames at which geometry info is provided

• (input) tscale – Time scale (secs/frame)

• (input) sigma – Smoothing parameter in Gaussian Kernel

• (input) theta – Termination criterion in inner loop

• (input) gamma – Multiplicative criterion in outer loop

• (input) lambda – Array of weights for each disparity term in the cost functional

• (input) THR – Termination criterion in outer loop

• (input) DispG – Function handle to geometry disparity term

• (input) maxnu – Max number of iterations allowed for outer loop
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• (input) maxmu – Max number of iterations allowed for inner loop

• (input) gsf – Gradient scale factor in gradient descent (not armijo)

• (input) aalph0 – Armijo initial step length

• (input) armit – Max number of armijo iterations in gradient descent

• (input) armbeta – Armijo parameter

• (calc) N0 – Number of points on reference set

• (calc) N – Number of points on target sets

• (calc) q – Number of times at which geometry is given

• (calc) tau – Total times at which positions of deformation trajectories are

sought

• (calc) L – Cardinality of the discretized time tau

• (calc) tauindex – Indexes tau (for sequencing, array calls, etc)

• (calc) tmap – Maps between tau and tauindex for easy spotchecks

• (calc) dtauF – Array of time intervals between each point in tau

• (calc) dtauS – dtauF converted to seconds via tscale (input)

• (calc) bdidx – Boundary index for trajectories

• The history of the transformation is stored in:

54



– x – trajectories of points

– alpha – “coefficients” of vector field expansion with RKHS structure

– p – adjoint state, “momentum” vectors

– ker – kernel A(xl) for current iteration

– kergrad – gradient of A(xl)alphal for current iteration

– KI – value of energy term for current iteration

– valDG – value of geometry disparities for current iteration

– ctr – Iteration counter

The main method of the class (after required properties have been set) is the run

method. It performs the aforementioned continuation method in Chapter 4. Specifi-

cally, it runs “outer” loops that slowly increase lambda until a desired geometric fit is

achieved. For each outer loop iteration, lambda is fixed and an “inner” loop Armijo

gradient descent minimizes the cost functional. The method terminates when either

acceptable geometric convergence has occurred (driven by THR), if the maximum

number of iterations is reached (determined by maxmu and maxnu), or if the armijo

algorithm fails (determined by aalph0, admit, and armbeta). We now explore a few

examples.

5.2 Synthetic Construction of R3 vector field flow

Here we opt to directly construct an R3 vector field flow. Doing so allows us to check

a) how a simple shape embedded in the space deforms with time and b) how well
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the recovered diffeomorphic flow matches the known flow.

With X = [−1, 1], define the mesh

Xh = {xj : xj = −1 + j/h, 0 ≤ j ≤ 2h}

and define the kernel nodal points by

NK = X2 ×X2 × {−0.5}

Adopting the SRKHS mentioned in Chapter 4 (radial Gaussian kernel Kσ with σ =

0.3), we select our αxy : [0, 1]→ R3 by

αxy(t) =


0.05

0.05

0.1


We choose the reference surface S0 to be a point grid sampling of the lower half of

the unit sphere S3,−

S0 = [X10 ×X10 ×X10]
⋂

S3,−

When accounting for the boundary of S3,−, we have N0 = 331 points xi(0) on S0.

See Figure [5.1].

Obviously, any point on the trajectory xj(t) at time t ∈ [0, 1] is subjected to a
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velocity governed by

vt(xj(t)) =

N0∑
n=1

Kσ(xj(t), xn(t))αn(t)

Thus each of the N0 trajectories can be evolved forward in time with the forward

Euler approximation

xj(ti+1) = xj(ti) + vt(xj(ti))[ti+1 − ti]

Taking the time partition {0, 0.25, 0.5, 0.75, 1} of [0, 1], we find at time t = 1 the

evolved trajectories can be viewed as a point grid representation of a surface S1.

Anticipating the future smooth Hausdorff matching term in diffeomorphic matching,

a much finer grid can be evolved to time t = 1, which results in a denser point grid

representation of the target surface with N > N0 points. For this example N = 1354.

See Figure [5.2].

With the reference and target shapes S0, S1 defined, DiffeomorphicPointMatcher.m

can be applied. Taking our time partition ∆I = {0, 0.25, 0.5, 0.75, 1}, we find that

with an initial guess of λ = 6000, the continuation algorithm runs for 3 outer itera-

tions (3-8 inner iterations each) and produces a result such that 90% of the trajecto-

ries are within 0.03 of the target S1 (well within the tolerance of our sampled target

surface). The total runtime for this example is 30 seconds. See Figure [5.3]. The

choice of λ may seem arbitrary but it is often determined through quick successive

simulation attempts. In particular, an experienced human-in-the-loop can easily find

“via bisection” a good starting value of λ (i.e. one that will actually get trajectories
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to move) in the order of a few minutes; after which, the continuation algorithm is able

to take over and proceed to finely increase λ until a satisfactory match is achieved.

At this point, the question remains: how well does the recovered deformation

match the actual deformation? The plot in Figure [5.4] gives an insight into the

question. We notice that the trajectories recovered via diffeomorphic point matching,

although matching the target endpoints, can deviate from the actual vector field flow

at intermediary times. This is not all that surprising, as the cost functional J only

accounts for vector field energy and geometric disparity at the ending time. Moreover,

the numerical scheme terminates once “acceptable” geometric performance has been

achieved; further iterations would reduce the extra kinetic energy and trajectories

would begin to “straighten out”. However, for general vector field flows vt, there is

no reason to expect the diffeomorphic matching solution to match. The latter tends

to be smooth and “even” in time (reduce kinetic energy) whereas general flows can

be impulsive and possibly nonuniform in time. This discussion will be revisited in

subsequent chapters once we add new terms to the cost function J to help reduce

this phenomenon.

5.3 Mitral Valve Leaflet (One Target)

An example we briefly mention now, but will explore extensively in Chapter 8, in-

volves the matching of a mitral valve leaflet model (Chapter 3) at two different

instants (namely, mid-systole MS and end-systole ES). In this example, we have

N0 = 259, N = 1189, ∆I = {1, 2, 3, 4}, and an initial λ = 5× 105. Again, this choice
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of λ comes from experience with working with the tools and models (more will be

said in Chapter 8). The kernel parameter σ was chosen to be half of the smallest

distance between all points on the sampled reference leaflet. For this choice of N0,

σ = 3.3. With this particular choice of parameters, the continuation algorithm runs

for two outer iterations (3-4 inner iterations each for a total of 7 iterations) and

produces a result such that 90% of the trajectories are within 0.7 mm of the target.

This is well within the acceptable bounds given the ≈ 1 mm uncertainties associated

with the tagged points from which we generated the models of leaflet surfaces at MS

and ES. The total runtime for this example is 8 seconds. See Figure [5.5].

As for the scaling of runtime with the the number of reference points N0, the

results can be found in Table [5.1]. Note a fixed number of 10 iterations is performed.

We see that the compute time is definitely non-linear in the number of points N0

on the reference shape. This is not too surprising given that operations with the

kernel involve 3N0 × 3N0 matrices. But still ≈ 2 minutes to evaluate a 1000 point-

sampled shape match is acceptable. Also, with this method, as long as N0 ≈ 1000,

the methods can used to match larger shapes with larger mesh sizes or on smaller

shapes with finer mesh sizes and one can still expect a runtime of about 2 minutes.

5.4 Mitral Valve Leaflet (Two Targets)

In the data base of tagged mitral valve echocardiographies prepared by our collabora-

tors at by Methodist Hospital Cardiology, only a few patient echocardiographies were

tagged at begin-systole (BS) as well. These cases provide perfect opportunities to
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N0 σ Runtime (s)
97 4.85 4.4
259 3.30 6.1
385 3.00 11.2
540 2.55 28.9
724 2.05 78.2
940 1.95 140.1

Table 5.1: The runtime for DiffeomorphicPointMatcher.run() with 10 iterations for
different values of N0. Notice that the computing time is definitely non-linear with
N0. This is not too surprising given the kernel operations involve 3N0×3N0 matrices.

test the diffeomorphic point matching algorithm in the case of multiple target shapes

(see last section of Chapter 4). Specifically, with N0 = 264, N1, N2 ≈ N = 700,

∆I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and an initial guess of λ = 5 × 105, the algorithm

runs for 2 outer iterations (10-13 inner iterations each) and produces a result such

that 90% of the trajectories are within 0.9 mm of the targets. The total runtime is

2 minutes. See Figure [5.6].

It should be briefly mentioned that with the current framework laid out in Chap-

ter 4, diffeomorphic matching with multiple target snapshots yields trajectories that

are not smooth. Particularly, there are corners at the times τLi = ti where targets

are provided. This is not surprising, as the vector field flow was not constrained to

be 2nd-order smooth. This problem is avoidable through adequate cost functional

adjustment. Aarti Jajoo has done some work in this area with successful results [24].

However, for the remainder of the bio-medical applications to mitral valves consid-

ered in this thesis, these corners do not present a problem, as all shape matching

consists of one target (valve at end-systole) and one reference (valve at mid-systole).
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Figure 5.1: The reference shape S0 (black) and the kernel nodal points NK (green)
shown from two different perspectives.

61



Figure 5.2: The reference shape S0 (left) and target shape S1 (right).

Figure 5.3: The bottom unit sphere is evolved under the action of a vector field flow.
The reference shape is discretized to a point grid (black) and deformed to match the
target shape. The deformed point grid recovered from diffeomorphic matching (red)
coincides well with the target surface (blue).
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Figure 5.4: Comparison of recovered deformation trajectories (green) with actual
trajectories (black). Only two trajectories shown for ease of viewing. The recovered
trajectories, although matching well the beginning and ending points of the actual
trajectories, can deviate in different manners at intermediate times. The distances
between the actual and recovered trajectories never exceed 0.05 units.
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Figure 5.5: The top surface (black points/blue mesh) is deformed into the bottom
surface (blue points/red mesh).

64



Figure 5.6: The reference leaflet at begin-systole (red) is deformed throughout sys-
tole. At times mid-systole (blue) and end-systole (orange), the deformed trajectories
(black) match quite well (< 1 mm disparity).
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Chapter 6

Image Registration

6.1 Overview

The goal of image registration is to determine an optimal spatial transformation or

deformation that will register (i.e bring into correspondence) pairs of homologous

points in two given images [38]. As with shape tracking discussed in Chapter 4, the

mathematical form of the transformation may vary from simple to complex based on

a set of physical assumptions. For example, when registering images of a static body,

the spatial transformation is rigid and can be constructed by applying successively a

translation, a rotation, and a possible dilation. At the other extreme, registration of

images of soft organs often requires nonlinear effects that violate rigid body assump-

tions. Moreover, images acquired from different subjects further complicate matters,

as developmental factors including genetics, environment, and random influences all

contribute to the complex shape differences inherent to the images. For an excellent
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survey of modern image registration techniques, see [16],[34].

6.2 Elements of Image Registration

Existing registration algorithms can be classified by three elements: the feature space,

the deformation model and the similarity metric. We briefly explore each of these,

noting how each ties in with the established shape tracking methodology given in

Chapter 4.

6.2.1 Feature space

Before any registration problem can begin, data must be extracted from the two

images to be registered. The extracted image data, whether they are pixel-based or

feature-based, belong to a set we call the feature space.

Pixel-based data stems directly from the pixel intensity values of the images be-

ing registered. Preprocessing is often necessary to suppress the adverse effects of

noise and possible differences in acquisition techniques. While it is possible to work

directly with pixel values on a discrete coordinate grid (machine limited), it is often

advantageous to cast the registration problem into a continuous framework. Specifi-

cally, the images are considered as continuous functions of the pixel coordinates. The

correspondence between the discrete and continuous versions of the image is estab-

lished by interpolation. Interpolation methods vary widely in their fidelity and ease

of computation, ranging from nearest-neighbor to linear to cubic spline interpolation
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(see Chapter 2).

Feature-based data derive from a set of characteristic features extracted from the

images. The dimensionality of the features is usually smaller than the dimensionality

of the original image data, resulting in a simpler problem description. However, the

data extraction process is highly non-linear and often hard to automate. For instance,

the static modeling of the mitral valve (see Chapter 3) requires the hand-selection of

landmark points from 3D ultrasound images by experienced cardiology experts. The

image registration of this type of data by geometric diffeomorphic matching (Chapter

4) accounts for the matching of these features.

6.2.2 Deformation Model

The deformation model used in image registration determines how one accomplishes

the correspondence between the two images. The methods summarized for shape

tracking in Chapter 4 are applicable here. For example, an image registration prob-

lem can be cast as a sequence of shape tracking problems, each of which can be

approached via diffeomorphic shape tracking outlined in Chapter 4. Alternatively,

rigid deformations can be used to track the landmark points which then allows the

use of global interpolation methods like thin-plate splines to determine the local elas-

tic deformation. This is discussed in the SURE algorithm for 3D echocardiography

below [27].
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6.2.3 Similarity metrics

The similarity metric determines the quality of registration; in other words, how

“good” the correspondence is established by the registration. Consider two images

Jref , Jtar. Denote the deformed reference image by F (Jref ). For pixel-based data, a

common similarity metric is the pixel difference in l1 or l2 norms, that is

||F (Jref )− Jtar||1 =
∑

pixels x

|F (Jref (x))− Jtar(x)|

||F (Jref )− Jtar||2 =
∑

pixels x

|F (Jref (x))− Jtar(x)|2

Other similarity metrics are the correlation coefficient

r =

∑
pixels x[F (Jref (x))− F (Jref (x))][Jtar(x)− Jtar(x)]√(∑

pixels x

[
F (Jref (x))− F (Jref (x))

]2
)(∑

pixels x

[
Jtar(x)− Jtar(x)

]2
)

or the mutual information [27]. For feature-based data, a satisfactory choice is the

mean distance between corresponding landmarks in the deformed reference image

Jref and target image Jtar. When the feature-based data are interpolated onto point

grids and the reference points and target points are no longer in a 1-1 correspondence,

the Hausdorff matching term (Chapter 4) is used.
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6.3 Image Registration for 3D Echocardiography

Image registration for 3D Echocardiography cannot be discussed without mention-

ing prior studies in that area. Shekhar et al [43] have devised a voxel-based scheme

that allows for the registration of 3D ultrasound image volumes provided by 3D

echocardiography. The algorithm does so by global rigid transformations (transla-

tions, rotations, dilations). This scheme effectively accounts for varying sonography

angles during ECG acquisition and facilitates accurate diagnosis during standard

echocardiographic stress testing. See Figure [6.1] for an example.

Figure 6.1: Side-by-side prestress and poststress long-axis views before (left column)
and after (right column) registration. White arrows point to the free wall for the
left-ventricle. The marked wall segments in the poststress views are tilted and shifted
with respect to the same segments in the prestress views before registration. Note
that these segments specifically and the entire left-ventricle in general are better
aligned following registration. (Caption and figure from [43])

A more general elastic approach can be found with algorithm called SURE, which

was introduced by Krucker [27]. SURE, which stands for Subvolume-based algorithm

for elastic Ultrasound REgistration, is a divide-and-conquer method of registering

3D ultrasound images. It works on the principle that global elastic deformations

can be achieved by a superposition of local rigid deformations. It functions in the

following four steps:
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(a) Subvolume division: Divide image volume into a grid of subvolumes.

(b) Subvolume selection: Compute the volumetric overlap, entropy, and pixel sim-

ilarity measure of each subvolume and discard subvolumes that do not satisfy

the minimum criteria for each of these variables. The X in Figure [6.2](b)

indicates one such subvolume.

(c) Subvolume registration: For each remaining subvolume, find the translation

vector that maximizes the pixel similarity measure within a search window.

(d) Global interpolation: The original and translated center coordinates of the

remaining subvolumes define two sets of control points, which are used to com-

pute the thin-plate spline transformation from the original to the new homol-

ogous volume.

Figure 6.2: Illustration of one iteration of the SURE algorithm registering the light
gray circle (homologous volume) onto the darker shape (reference). The images (a)-
(d) correspond to the four steps described above in the text. (Caption and figure
from [27]).

Both of these methods are for the global (large volume) registration of ultrasound

images. But for registration of the mitral valve, which involves a specific, small

region of 3D Echocardiography image volume which is difficult to identify accurately
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by classical segmentation algorithms, these large-scale techniques prove to be too

coarse to be of immediate use. Moreover, as we saw in Chapters 3, cardiologists

and mathematicians have already allowed for the mitral valve shape to be described

independently of the underlying image sequence.
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Chapter 7

Combining Diffeomorphic Shape

Matching with Image Registration

In many applications, the shapes matched by diffeomorphic deformations are ex-

tracted from sequences of images. These images often contain additional information

which may be used when registering the shapes. A good voxel-to-voxel transforma-

tion of shapes included in successive 3D-images acquired at high frame rates should

approximately preserve voxel intensity values to increase confidence that accurate

shape deformations are actually recovered. A natural starting point for an imple-

mentation of this technique is to to add an intensity matching cost to the geometric

matching cost. We propose an equivalent formulation and solution of this problem

involving an iterative scheme which alternates between geometric matching and im-

age registration. We also study several concrete examples in details to validate the

performances of our approach.
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7.1 Geometric Matching: The need for voxel in-

tensity data

As we saw in Chapters 4 and 5, geometric matching provides an excellent method

for the matching of smooth 3D shapes. Incorporating the language of chapter 6, the

geometric matching of static mitral valve models is a feature-based method of image

registration of 3D ultrasound images.

Consider the last example given in Chapter 5. Here an anterior leaflet model,

after being statically modeled at the three instants BS, MS , ES, is dynamically

registered by a diffeomorphic flow matching these three static surfaces. However,

the plot in Figure [7.1] gives the intensity vs. time of 5 specific voxel trajectories

located throughout the anterior leaflet.

This plot shows that after purely geometric matching, voxel trajectory intensities

can vary wildly, exhibiting multiple oscillations and large ranges. For this reason, we

seek to linearly combine the geometric matching cost function with a term incorpo-

rating voxel intensity data provided by the 3D ultrasound images in order to control

these intensity fluctuations during the diffeomorphic tracking.
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Figure 7.1: Voxel intensities along 5 specific voxel deformation trajectories for a ge-
ometric matching case. Notice the large ranges of intensities, as well as the large
oscillations present on some of the trajectories. This is not that surprising, as ge-
ometric matching, being a feature-based method of registration, does not consider
the voxel intensities information present in the ultrasound movie when the diffeo-
morphism between two 3D-shapes is computed.

7.2 Geometric Matching + Intensity Registration

7.2.1 Background

Recall that in the typical geometric matching of shapes S0, S1 ∈ SHd, the cost func-

tional consists of an “energy term” E(v) proportional to the square of the L2 norm

of an R3 vector field flow vt and a “disparity” term that quantifies the amount of

geometric error in the matching (for instance, Hausdorff matching Dh). Specifically,
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with the notation already introduced in Chapter 1, we solve the minimization prob-

lem

inf
v∈L2([t0,t1],V )

E(v) + λDh(Ft1(S0), S1), λ > 0

subject to the constraint

∂Ft
∂t

= vt ◦ Ft, t ∈ (t0, t1]

Ft0 = Id

in order to compute an approximate solution v∗.

But often the shapes S0, S1 ∈ SHd are derived from extracted from a sequence

of 3D images. Thus at intermediary times t0 < t < t1, there is potential information

(namely, the flow of intensities) to exploit, and this information is not used by purely

geometric diffeomorphic matching. For this reason, a new disparity term will be

introduced below. But first let us define some notations.

Consider a 3D image sequence IS. This image sequence involves successive 3D

images Ji of the bounded region Ω ⊂ R3 captured at image frame i ∈ N. Thus

IS = {J0, J1, . . . }. We define the intensity mappings It : Ω → R so that It(x) is

the intensity of the image Jt at voxel x ∈ Ω. Typical values of It are 8-bit; namely

rng(It) ⊂ {0, 1, . . . , 255}. Moreover, the definition of It generalizes to multi-channel

(color) images (unique It for each channel). In reality, intensities It are not continuous

in space. There is always a finite resolution determined by the number of voxels in

the image Jt. However, spatial interpolation of the values It(x) involves assuming

the existence of a piecewise continuous intensity function It ∈ C(Ω).
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Now consider an image sequence IS = {J0, . . . , JQ} from which two shapes

S0, S1 ∈ SHk (k ∈ {1, 2, 3}) are extracted. Let S0 come from image J0 and S1

come from JQ. Consider a point grid of size N0 discretizing S0 and the geometric

matching of shapes S0, S1 (see Chapter 4). Along each one, the N0 voxel intensities

are going to vary between successive image frames. We define the intensity disparity

between frames i− 1 and i by the sum of squared differences (SSD)

Di
I =

1

N0

N0∑
j=1

[Ii(FTi(xj))− Ii−1(FTi−1
(xj))]

2

This term seeks to enforce small relative changes in intensity along each trajectory.

Moreover, this function is a well defined disparity functional provided Ii ∈ C(Ω).

Thus we now introduce a new cost function to formulate the geometric matching +

intensity registration problem

inf
v∈L2([t0,t1],V )

E(v) + λDh(Ft1(S0), S1) + µ

Q∑
i=1

Di
I , λ, µ > 0

subject to (7.1)

∂Ft
∂t

= vt ◦ Ft, t ∈ (t0, t1]

Ft0 = Id

By satisfactory weighting via a parameter µ between the geometry term and

this term, we seek to improve the quality of the deformation reconstruction from

the image data. However, determining the two regularization parameters λ, µ that

provide a good balance between geometric fitting and image optical flow proves
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challenging. A generalization of the continuation method has been explored, with

little success to this point. We now outline our alternative approach. In the case of

geometric matching + image registration, it is far simpler if the registration happens

not concurrently but after the geometric matching. Namely, the trajectories of the

computed geometric match are fixed at the times t0, t1 but perturbed at intermediary

times in order to reduce the intensity disparity. We formalize this idea below.

7.2.2 Alternative Formulation

The geometric matching + intensity registration problem could alternatively be for-

mulated as a two-step procedure. Namely, we introduce the following two vector

field flows v∗ and v∗∗ verifying,

Jgeo(v
∗) = inf

v∈L2([t0,t1],V )
E(v) + λDh(Ft1(S0), S1), λ > 0

Jint(v
∗∗) = inf

v∈L2([t0,t1],V )
µ

Q∑
i=1

Di
I , µ > 0

subject to the constraints (7.2)

E(v∗∗)+λDh(F
∗∗
t1

(S0), S1) ≤ Jgeo(v
∗) + ε, ε > 0

Solutions v∗∗ to (2) are not guaranteed to be the same as solutions v to (1), but both

intuitively capture the goal of balancing geometric matching and image registration.

The second formulation has a distinct advantage in the possible approaches that

78



are immediately viable. Specifically, the α(t) for the vector field v∗ are already ini-

tialized to “good” values; we expect small perturbations of the α∗(t) can result in

a solution v∗∗ whose intensity disparities will be lower than that for v∗. Intuitively,

perturbing the α∗ is a difficult matter. After all, in the language of optimization

and optimal control theory, the α(t) are the controls and the x(t) (physical trajec-

tories) are the observable states. Our understanding of geometric matching involves

the states and the derived constraint in (2) is inherently a state space constraint.

Moreover, the states x(t) directly determine the intensity disparities Di
I . Intuitively,

then, it is ideal to work with perturbations x̂∗(t) of the states x∗(t) that arise from

geometric matching. The velocities v̂∗ give rise, via inversion of the kernel, to con-

trols α̂∗(t). These controls can then be supplied as inputs to another geometric

matching matching problem. Thus we see an iterative scheme developing, one that

alternates between a diffeomorphic point matching problem (geometric matching)

and a perturbation problem (intensity registration).

79



Chapter 8

Numerical Methods for Intensity

Registration

8.1 Intensity Registration Loop

Recall the intensity registration problem is the sub-problem to (7.2) given by

Jint(v
∗∗) = inf

v∈L2([t0,t1],V )
µ

Q∑
i=1

Di
I , µ > 0

subject to

E(v∗∗)+λDh(F
∗∗
t1

(S0), S1) ≤ Jgeo(v
∗) + ε, ε > 0

Below, we present a computationally efficient algorithm that offers an approximate

solution to the problem while preserving the properties of the already-computed
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minimum energy geometric matching solution v∗ in (7.2). Our algorithm is called

the intensity registration loop (IRL) and we explore its components in the workflow

below.

Geometric
Matching

Trajectory
Perturbation

Compute Velocities

Invert Kernel

Recover
Diffeomorphism

Monitor
Performance

Done?

x∗

x̂∗

v̂∗

α̂∗

x∗∗

no

8.1.1 Geometric Matching

Trajectories x∗(t) of the geometric diffeomorphic matching (Chapter 4) problem are

computed for two shapes S0, S1 ∈ SHd with d ∈ {1, 2, 3}. These shapes are assumed

to be extracted from an image sequence {Ji} consisting of Q + 1 3D image frames.

Recall from Chapter 4 that geometric diffeomorphic matching involves a discretiza-

tion of the reference shape into a N0 ∈ N point grid and in time defined by the time

grid ∆I = {t0 = τL0 < τL0+1 < · · · < τL1−1 < τL1 = t1}. Denote by Ti the times

in ∆I corresponding to the image frames Ji with 0 ≤ i ≤ Q. Obviously T0 = τL0 ,
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TQ = τL1 , and card(∆I) ≥ Q+ 1.

8.1.2 Trajectory Perturbation

The perturbation of trajectories x∗(t) is handled in the following manner:

FOR all j with 1 ≤ j ≤ N0

1. Initialize new perturbed trajectory x̂∗j(t) at known starting and ending points.

1a) Set x̂∗j(T0) = x∗j(T0).

1b) Set x̂∗j(TQ) = x∗j(TQ).

1c) Calculate Istart = I0(x̂∗j(T0) and Iend = IQ(x̂∗j(TQ)).

2. FOR all Ti with 1 ≤ i ≤ Q− 1

2a) Compute intensities Ii = Ii(x
∗
j(Ti)).

2b) Calculate desired intensity Îi = f(i, Istart, Iend). Here f is a user-defined

function of the discrete time index i. The simplest choice for f is the

linear interpolation

Îi = f(i, Istart, Iend) = Istart + (Iend − Istart)
i

Q

Notice that f(0, Istart, Iend) = Istart and f(Q, Istart, Iend) = Iend.

2c) In the box (of width 2ε) Bε around x∗j(Ti), find the point ỹ whose intensity

is closest to Îi (that is, argminy∈Bε|Îi − Ii(y)|). Define x̂∗j(Ti) = ỹ.
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3. The new trajectory x̂∗j(t) has now been defined at the frame times Ti. The

positions x̂∗j(t) at intermediary times between these Ti can then be computed

by simple interpolation in R3.

Though the algorithm seems complicated in pseudo-code, it is actually straight-

forward in principle. The voxel trajectory x̂∗j(t) within a thin tube around a given

voxel trajectory x∗j(t) (generated by diffeomorphic flow) are constructed so that in-

tensity changes smoothly along x̂∗j(t), with all perturbations of trajectories x∗j(t)

being implemented at image sequence frame times t = Ti. See Figure [8.1].

Figure 8.1: Perturbed trajectories (green) of geometric trajectories (black). The
boxes Bε (red) are displayed on a single trajectory to illustrate the procedure.
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For step 1b, we remark that sometimes an alternative approach is needed. Be-

cause intensity registration at intermediary frames Ti is completely dependent upon

the intensities recorded at the initial and final times, large mismatches in intensities

will demand large corrections and prevent the intensity registration quality (see Per-

formance Monitoring section) from decreasing. A good remedy is to allow the final

node the freedom to move, transforming the early stages of trajectory perturbation

to a box search problem (analogous to that of step 2c). For instance, the perturbed

trajectory at frame index Q is initialized so as to minimize the difference in intensity

|IQ(x̂∗j(TQ))− Istart|. Whenever the intensity mismatch between initial voxel x∗j(T0)

and final voxel x∗j(TQ) is not an issue, it is simplest to proceed by step 1b.

For step 2b, a simple choice (linear interpolation) is proposed for the intensity

interpolating function f(i, Istart, Iend). Any polynomial interpolating function, either

in true or least-squares sense, is also a valid option. The linear option for f(i, a, b)

is often the simplest approach and gives satisfactory results.

Throughout this algorithm, it should be noted that each perturbation x̂∗(t) of

the initial voxel trajectories x∗(t) generally requires more kinetic energy than the

kinetic energy of the initial trajectories x∗(t). Moreover, this increase in kinetic

energy clearly forces larger values of ε in the box search. It becomes important to

track the net increase in kinetic energy of the trajectories ∆K to make sure that

trajectories do not wildly deviate from their approximately minimum energy state

(see Performance Monitoring section).

84



8.1.3 Velocities, Kernel Inversion, and Diffeomorphism Re-

covery

With perturbed trajectories x̂(t) now computed at all times t = τ l, it remains to be

seen if these trajectories do indeed result from a new flow of diffeomorphisms. For

ease of notation, denote all quantities computed on this time grid ∆I by superscript

l (e.g. x̂∗(τ l) ≡ x̂∗l). Letting v̂∗l represent the velocities of the perturbed trajectories

(computed by v̂∗lj =
∆x̂∗lj
∆τ l

), we desire α̂∗l so that

v̂∗lj =

N0∑
i=1

Kσ(x̂∗lj , x̂
∗l
i )α̂∗li

or with the block notations introduced in Chapter 4

v̂∗l = Alα̂∗l (8.1)

where Al = (Alij) and Alij = Kσ(x̂∗lj , x̂
∗l
i )I3 and I3 is the 3 × 3 identity matrix.

Inverting the matrix Al in (8.1) gives

α̂∗l = A−1
l v̂∗l (8.2)

These computed values of α̂ are used to determine trajectories x∗∗ that will be close

to trajectories x̂∗ but are indeed generated by a time dependent vector field flow v∗∗

of diffeomorphisms described by α̂∗.
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8.1.4 Performance Monitoring

Once a single iteration of the Intensity Registration Loop (IRL) has been performed,

we are in a position to repeat the process. Specifically, the trajectories x∗∗ could

be further perturbed in order to improve the quality of registration. As previously

mentioned, we have to remain conscious of the increasing cost in kinetic energy as well

as the possible deviations of our solutions from target shape S1. We quantify these

concepts below. Assume N0 ∈ N voxel trajectories x(t) have just been computed by

applying a finite number of successive IRL iterations.

Definition 8.1.4.1. (Geometric Matching Quality) For each voxel trajectory x(t),

the geometric matching quality (GMQ) is the distance

GMQ(x(t)) = d(x(TQ), S1)

Here d(x, Y ) denotes the standard Euclidean distance from a point x to a set Y .

Definition 8.1.4.2. (Intensity Registration Quality) For each voxel trajectory x(t),

the intensity registration quality (IRQ) is the mean oscillation in intensity for that

trajectory. That is,

IRQ(x(t)) =
1

Q

Q−1∑
i=0

|Ii+1(x(Ti+1))− Ii(x(Ti))|

This is precisely the average absolute change in voxel intensity along each trajectory

x(t).

Definition 8.1.4.3. (Kinetic Energy Quality) For each voxel trajectory x(t), the
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kinetic energy quality (KEQ) is the kinetic energy of the trajectory computed on the

time grid ∆I . That is

KEQ(x(t)) =

card(∆I)∑
l=0

[
xl+1 − xl

τ l+1 − τ l

]2

Note that this quantity is the approximate kinetic energy of an individual trajectory,

while the preceding kinetic energy E(v) concerned a whole vector field flow v.

These three criteria can be monitored for all N0 trajectories throughout the iterations

of the IRL. Statistical plots (quantile curves, histograms) as well as 2D or 3D plots

displaying simultaneously history 2 or 3 performance criteria can be used to facilitate

performance monitoring for the iterated IRL algorithm. See Figure [8.2] for examples.

These monitoring data come from the example given below in section 4.2. The

2D displays allow us to visualize how the initial voxel trajectories generated by

the diffeomorphic flow respond to the IRL. Specifically, a history of GMQ, IRQ,

and KEQ is stored for each successive IRL iteration. When 2 of the criteria, for

instance IRQ and KEQ, are plotted in the (KEQ,IRQ) plane (as in Figure [8.2]),

these histories trace out paths for each voxel trajectory processed with the IRL. In

the simple example given in Figure [8.2], we see that 8 of the 9 displayed paths in the

(KEQ,IRQ) plane behave as expected; these paths correspond to voxel trajectories

that exhibit a slight increase in kinetic energy in order to also exhibit smoother image

intensity profiles, thus fitting better the ultrasound image sequence data. Visually,

this is seen in the (KEQ,IRQ) plane by paths that slope downward to the right.
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However, this example also demonstrates that the successive perturbations of a given

voxel trajectory generated by iterated IRL may simultaneously increase in kinetic

energy and degrade in registration quality (slopes upward to right in (KEQ,IRQ)

plane); this can be explained by the kernel inversion in equation (8.2) in the IRL

that slightly alters the perturbed trajectories constructed to reduce IRQ.

Figure 8.2: Sample displays used in performance monitoring of IRL. (Left) A plot
of IRQ vs. KEQ for 9 voxel trajectories. (Right) Quantile curve of KEQ for all
computed trajectories in IRL. Initial geometric matching quantities are in black,
while the cyan values are after 1 iteration of the IRL.

Deciding how to use these performance monitors to develop an automatic stopping

criteria is a complex problem. Using a fixed number of IRL iterations is the simplest

strategy. Another termination criterion is if a high percent of the GMQ and KEQ

increase above a certain threshold (exact values are problem specific). Also, if enough

IRL iterations are performed, the iterated IRQ will eventually bottom out at the noise

floor inherent to the ultrasound image sequence under study, yielding yet another

possible stopping criterion. As the next section shows, the first few iterations of IRL
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might yield trajectories with decreasing IRQ and stable GMQ and KEQ but the next

IRL iteration could cause an increase of GMQ and KEQ with no IRQ improvement.

To handle these situations, histories of all 3 performance indicators are tracked. If

large jumps are detected in GMQ or KEQ, the trajectory can be reset to an earlier

iteration.

8.2 Examples

Let us return to a few examples given in Chapter 5.

8.2.1 Example 5.1 – Direct Construction

We come back to the situation in Chapter 5 Example 1. First, we generate two

artificial intensity sequences, one with noise and one without, to overlay on the

space being deformed by the vector field flow v. We then test the performance of the

IRL for each of these image sequences. In both cases, image sequences are 5 frames

on a 53x53x53 voxel grid with voxel size (0.05)3. Physically, this is a partition of the

cube [−1.3, 1.3]3 into 148877 equally sized voxels. This grid encompasses the spatial

region (deformed unit sphere) studied by geometric diffeomorphic matching.

a) (White on Black) For the first case, we generate an artificial intensity model

where the background intensity is given by

Ib(x, y, z, t) = max{0,min[260, 100|1− x2 − y2 − z2|+ 10 sin(x+ y)]}.
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while the foreground (points interior to deformed lower sphere) intensity is

given by

If (x, y, z, t) = 240 + 5 sin(t)

See Figure [8.3] for a visualization of this image sequence at fixed time. We

Figure 8.3: 3D time slice of case a). White on black image sequence.

expect that the IRL will perform well because any voxel trajectories that are

not aligned with the foreground intensity should be perturbed by IRL within

the first iteration. We proceed to run the IRL algorithm for 3 total iterations

before terminating it due to high-energy trajectories. Quantile curves for the

intensity oscillations along each trajectory (IRQ) as well as the kinetic energy
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of each trajectory (KEQ) are displayed in Figure [8.4]. The GMQ is not shown

as all iterations remain stable and close to geometric trajectories. Notice that

with only 1 iteration of IRL (blue curves), the 90% quantile of IRQ reduces

from approximately 0.32 to approximately 0.22, a decrease of almost 50%,

while the next two iterations (cyan and yellow) only further reduces the IRQ

to approximately 0.2. This validates our hypothesis stated before regarding the

quick action of the IRL to white-on-black image sequences. The 90% quantile

of KEQ, on the other hand, remains approximately constant at about 0.052

for the first 2 IRL iterations before jumping to a value of about 0.06 on the

third IRL iteration. This can be interpreted by voxel trajectories that are

vary close to the foreground/background interface needing very little energy in

order to be properly perturbed. A few trajectories, however, must be further

from the interface so that the “step” observed in the KEQ quantile curve

corresponds to these trajectories finally having enough energy to transition

from the background to the foreground.

In order to find a balance in performance between these two criteria, the high

energy trajectories (greater than 85% quantile) of the 3rd IRL iteration are reset

to their values from the 2nd IRL iteration. This final solution is represented

by the grey curve on both quantile plots and maintains the 90% quantile IRQ

reduction to 0.2 while preserving the 90% quantile KEQ of 0.052.

b) (Spatially Varying + Noise) In this example the background intensity is given
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Figure 8.4: Quantile curves of intensity oscillations (IRQ) and voxel trajectory kinetic
energy (KEQ) for case a). The black curve represents the values from geometric
matching that are input into the IRL. The blue, cyan, and yellow are successive
iterations of the IRL algorithm. Notice the decrease in intensity oscillation and
increase in kinetic energy with each iteration. The grey curve is the result of resetting
high energy trajectories to more stable, earlier iteration trajectories.

by

Ib(x, y, z, t) = max{0,min[260, 100|1−x2−y2−z2|+70rxyzt]}, rxyzt ∈ N(0, 70).

while the foreground (points interior to deformed lower sphere) intensity is

given by

If (x, y, z, t) = 150 + 40 sin(t) + 70rxyzt, rxyzt ∈ N(0, 70)

Much like case a), the IRL runs for 3 iterations, again terminating due to high

energy. Even in the presence of this Gaussian noise, the IRL algorithm main-

tains the GMQ provided by the input geometric matching trajectories and is
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able to adjust the voxel trajectories in this image sequence so that the 90%

quantile IRQ reduces by 40% in the first iteration while maintaining an ap-

proximately constant 90% quantile KEQ. The quantile curve analysis presents

the same conclusions as in a) and is consequently omitted here. See Figure

[8.5] for snapshot of the image sequence. Notice the foreground/background

interface still appears to be easily identifiable, validating the analysis done in

a) applies to this case as well.

Figure 8.5: 3D time slice of case b). Noisy image sequence.
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8.2.2 Example 5.2 – Mitral Valve Leaflet

As explained in Chapters 2-3, all patient-specific static mitral valve models were

derived from 3D Echocardiographic image sequences. These image sequences had

a resolution of 208 × 224 × 208 voxels with an average voxel size of approximately

0.5 mm3. This particular example comes from a sequence of 6 frames, with suc-

cessive frames separated by real-time 2/27 seconds. Ultrasound echocardiography

is a noisy image modality; for this example the data is smoothed by 3 × 3 × 3 box

kernel 3 separate times before the IRL iterations begin. Once the simulation began,

the aforementioned performance criteria were monitored. See Figure [8.6]. Here the

quantile curve of IRQ shows that the IRQ decreased steadily with each successive

IRL iteration (blue to orange). The planar display of IRQ vs. KEQ histories demon-

strates that approximately 5% of the trajectories began varying wildly in KEQ while

demonstrating marginal IRQ gains. The IRL iterations were terminated after 5 iter-

ations due to these large KEQ increases (> 100%). At this point, trajectories that

were consistently exhibiting high energy (top 25%) were reset to earlier, more stable

iterations (either geometric matching or IRL iteration 1). The next chapter more

carefully explores how the IRL applies to the dynamic modeling study of 30 human

mitral valves in vivo which constitute the backbone of our exploration of biomedical

applications.
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Figure 8.6: Performance criteria tracked during successive IRL iterations applied
to the dynamic modeling of an anterior leaflet. The black curve corresponds to
the values from geometric matching (chapter 5) that are input to the IRL, while
the colored trajectories correspond to successive IRL iterations. The grey curve
gives the values after trajectories are reset from high-energy, unstable values. The
planar display of IRQ vs. KEQ histories demonstrates that approximately 5% of
the trajectories began varying wildly in KEQ while demonstrating marginal IRQ
gains, seen by the nearly horizontal slopes in the (KEQ,IRQ) plane. However, a
large majority of the paths in the (KEQ,IRQ) plane remain bounded in KEQ during
the iteration, seen by the large multi-colored “fuzzball” at the lower left of the cloud
plot and confirmed by the KEQ quantile plot which shows that about 80% of the
trajectories remain bounded above by 5000 KEQ after 5 iterations while beginning
the IRL at a 80%-quantile of 3000 KEQ.
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Chapter 9

Exploration of Geometric

Matching + IRL

9.1 Overview

The previous chapter highlighted a method of diffeomorphic matching that combines

geometric matching with voxel intensity registration. This methodology was applied

to the 20 patients study (30 patient specific dynamic models of mitral valve deforma-

tions) that formed the backbone of the motivation for work in this thesis. But before

proceeding with this study, we evaluated and tested our iterated IRL algorithmics

extensively. This chapter highlights some of these validation studies.
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9.2 Performance Impact Analysis for the main pa-

rameters of the IRL algorithm

9.2.1 Impact of the IRL parameter ε

Recall that the parameter ε directly determined the width of the box in the box-

search algorithm (step 2c) of the IRL trajectory perturbation stage (Chapter 7).

This subsection gives the results for 18 dynamic modeling cases (6 normal leaflets

+ 6 organic pre-surgery leaflets + 6 post-surgery leaflets) when a fixed number of

IRL iterations are run for varying values of the ε in the voxel trajectory perturbation

stage. All solutions are forced to have geometric matching quality (GMQ) on the

order of 1 mm (0.5 - 1.5 mm range). We expect that smaller values of ε will yield

smaller relative changes in kinetic energy quality (KEQ) and intensity registration

quality (IRQ) than will larger values of ε, as this parameter directly controls the

“wiggle room” for trajectory perturbation. As we see in Tables [9.1] and [9.2], this

trend holds true. Also, for 4 IRL iterations, it appears that ε = 0.2 provides a better

balance between KEQ gains and IRQ reduction than does ε = 0.8. For all normal

and organic cases tested, when ε = 0.2 we see approximately a 20% increase of voxel

trajectories kinetic energy generates voxel trajectories with at least 30% less intensity

fluctuations. Contrast this with ε = 0.8; here an increase of approximately 70% in

trajectory kinetic energy is necessary to generate voxel trajectories with at least 40%

less intensity fluctuations. There is a a threshold value above which further increases

of epsilon yield only small IRQ reduction and only serves to substantially increase
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the KEQ. We have also noted rather large kinetic energies for the post-surgery cases.

This difference stems from the fact that, for the post-surgery mitral valves at mid and

end-systole, the valve remains roughly in the same spatial location and orientation.

Thus, the voxel trajectories computed by diffeomorphic matching have small kinetic

energy and the intensities computed at mid and end-systole are very similar. When

any slight adjustment is made to these trajectories at the IRL perturbation stage,

these two points explain both the smaller relative IRQ reduction and higher relative

KEQ increase.

On the basis of similar detailed evaluations conducted on 18 mitral leaflets, we

have concluded that whenever a small number of IRL iterations (2-4) are to be run,

a small value of ε (0.2-0.3) should be chosen to yield balanced results that maintain

the GMQ at a pre-assigned, physically-acceptable value, reduce the IRQ, and only

slightly increase the KEQ.

9.2.2 Impact of Number of IRL Iterations

This subsection gives the results for 3 dynamic modeling cases (1 normal leaflet +

1 organic pre-surgery leaflet + 1 post-surgery leaflet) as the we increase the number

of iterations of IRL for a fixed value of ε. Keeping with the previous findings, we

fix ε = 0.2 for our evaluation study presented here. As reported in Table [9.3] and

Figure [9.1], this study demonstrates a stabilization of the geometric matching + IRL

algorithm; namely, our iterated IRL algorithm converges to a solution where there
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Patient Model # IRL Iterations Q0.9[∆(KEQ)
KEQ

] Q0.9[∆(IRQ)
IRQ

]

Normal 1 AL 4 0.27 -0.23
Normal 1 PL 4 0.22 -0.22
Normal 8 AL 4 0.14 -0.24
Normal 8 PL 4 0.19 -0.38

Normal 42 AL 4 0.22 -0.34
Normal 42 PL 4 0.22 -0.36
Organic 28 AL 4 0.33 -0.22
Organic 28 PL 4 0.29 -0.27
Organic 49 AL 4 0.19 -0.29
Organic 49 PL 4 0.20 -0.38
Organic 76 AL 4 0.22 -0.22
Organic 76 PL 4 0.25 -0.30
PostOp 27 AL 4 0.69 -0.13
PostOp 27 PL 4 0.74 -0.12
PostOp 48 AL 4 0.62 -0.11
PostOp 48 PL 4 0.49 -0.13
PostOp 61 AL 4 0.78 -0.17
PostOp 61 PL 4 0.80 -0.09

Table 9.1: Results for ε = 0.2. For a fixed number of 4 IRL iterations a 20% increase
in the kinetic energy of voxel trajectories generates trajectories with at least 30%
less intensity fluctuations

is nearly minimal intensity fluctuations on the trajectories and the constraints im-

posed by the encompassing 3D ultrasound image sequence data do not allow further

decreases in intensity fluctuations without greatly increasing the available energy

budget. This behavior is intuitively desirable, because it indirectly validates the fact

that the purely geometric diffeomorphic solution approximately matched the true

mitral valve position at each image frame of the ultrasound image sequence. Nu-

merical evidence of this stabilization can be seen in Table[9.3] by viewing the ratio

of successive row differences. For instance, consider the normal 42 AL data. The
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Patient Model # IRL Iterations Q0.9[∆(KEQ)
KEQ

] Q0.9[∆(IRQ)
IRQ

]

Normal 1 AL 4 0.97 -0.38
Normal 1 PL 4 1.21 -0.52
Normal 8 AL 4 0.57 -0.41
Normal 8 PL 4 0.55 -0.60

Normal 42 AL 4 0.72 -0.54
Normal 42 PL 4 0.88 -0.38
Organic 28 AL 4 1.08 -0.40
Organic 28 PL 4 1.18 -0.39
Organic 49 AL 4 0.76 -0.50
Organic 49 PL 4 0.73 -0.32
Organic 76 AL 4 0.69 -0.31
Organic 76 PL 4 0.86 -0.49
PostOp 27 AL 4 2.88 -0.23
PostOp 27 PL 4 2.57 -0.27
PostOp 48 AL 4 2.68 -0.25
PostOp 48 PL 4 2.06 -0.36
PostOp 61 AL 4 2.13 -0.41
PostOp 61 PL 4 2.81 -0.26

Table 9.2: Results for ε = 0.8. For a fixed number of 4 IRL iterations a 70% increase
in the kinetic energy of voxel trajectories is necessary to generate trajectories with
at least 40% less intensity fluctuations.

second iteration requires 4% more energy for a 13% reduction of intensity oscilla-

tions, giving a quality ratio QR1 = 22/4 = 3.5. Contrast this with the fifth iteration

and tenth iterations, which respectively require 4% and 2% more energy and only

yield a 6% and 1% reduction in intensity oscillations, so that QR5 = 6/4 = 1.5 and

QR10 = 1/4 = 0.25. Tracking these quality ratios during IRL offers a good potential

stopping criterion for the IRL; once calculated QR values begin to decrease (after

at least 2-3 iterations), it is a good time to stop the loop and proceed to the voxel

trajectory post-processing to fix any errant trajectories.
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9.3 Conclusion

We have just outlined the main results of our detailed evaluation study for the links

between the parameters of the IRL algorithm and their impact on our 3 matching

quality criteria. These results have directly influenced our IRL parameter choices for

the study of our 30 cases of dynamic mitral valve modeling. All geometric matching

+ IRL were implemented with small ε (0.2-0.3) and a small number of fixed IRL

iterations (2-4). The exact values depended upon each individual model, but the

precise numbers were chosen so that at the end of our IRL iterations, more than 90%

of voxel trajectories exhibited a decrease of at least 15% in intensity fluctuations

(IRQ), without requiring more than a 20% increase in kinetic energy (KEQ). We

also imposed that the geometric matching quality (GMQ) had to remain close to

1mm, which was the known precision of our initial patient-specific static models.

As mentioned in Chapter 8, trajectory histories were stored so that any particular

trajectory for which one of our 3 criteria (IRQ,KEQ, GMQ) suddenly “blew up”

could be reset to a previous stable state. Most often, these “difficult to improve ”

trajectories were consistently in the higher percentiles of kinetic energies KEQ, so

their status as “difficult to improve” can be traced throughout the IRL iterations

history. But the ultimate decision comes down to a human-in-the-loop who monitors

the performance of the algorithm and decides if the 2-4 iterations are sufficient and

if any trajectories need to be reset.

In summary, the geometric matching + IRL method has proven to be a successful

in its application to the UH/Methodist Hospital mitral valve study, as well as to some
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synthetic shape matching examples (Chapter 7). But the algorithm is far away from

being “automatic”, as each application to a new image registration problem requires

a careful study of the underlying image sequence. The good news is that if the

UH/Methodist study expands its patient roster, the necessary tools to continue the

study are in place for a quicker turnaround.
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Patient Model # IRL Iterations Q0.9[∆(KEQ)
KEQ

] Q0.9[∆(IRQ)
IRQ

]

Normal 42 AL 1 0.08 -0.19
Normal 42 AL 2 0.12 -0.32
Normal 42 AL 3 0.17 -0.41
Normal 42 AL 4 0.23 -0.50
Normal 42 AL 5 0.27 -0.56
Normal 42 AL 6 0.32 -0.59
Normal 42 AL 7 0.36 -0.62
Normal 42 AL 8 0.40 -0.65
Normal 42 AL 9 0.44 -0.67
Normal 42 AL 10 0.46 -0.68
Organic 76 PL 1 0.16 -0.11
Organic 76 PL 2 0.14 -0.25
Organic 76 PL 3 0.34 -0.29
Organic 76 PL 4 0.29 -0.36
Organic 76 PL 5 0.50 -0.42
Organic 76 PL 6 0.47 -0.47
Organic 76 PL 7 0.67 -0.49
Organic 76 PL 8 0.66 -0.56
Organic 76 PL 9 0.90 -0.48
Organic 76 PL 10 0.80 -0.53
PostOp 48 AL 1 0.13 -0.05
PostOp 48 AL 2 0.30 -0.08
PostOp 48 AL 3 0.47 -0.11
PostOp 48 AL 4 0.64 -0.13
PostOp 48 AL 5 0.79 -0.16
PostOp 48 AL 6 0.92 -0.18
PostOp 48 AL 7 1.03 -0.20
PostOp 48 AL 8 1.21 -0.21
PostOp 48 AL 9 1.37 -0.23
PostOp 48 AL 10 1.51 -0.25

Table 9.3: IRL Iteration Trade Results. The successive row difference method given
in the text can be used to find the “sweet spot” where we get maximum reductions
in IRQ for minimal increases in KEQ. For Normal 42 and Organic 76, we see this
occurs at iteration 2. For PostOp48, we see this occurs at iteration 2 or 3.
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Figure 9.1: The IRQ and KEQ quantile curves monitoring of quality criteria are
displayed here for three cases of mitral leaflets dynamic modeling: (top) Normal 42
AL, (middle) Organic 28 PL, (bottom) PostOp 48AL. Notice the marginal gains in
IRQ reduction and KEQ increase for higher IRL iterations. This is an indicator of
a good solution. For these cases, a small number of IRL iterations (2-4) yields the
majority of the benefits with minimal increases in kinetic energy cost.
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Chapter 10

Mitral Valve Strain Analysis

10.1 Motivation

The previous chapter showed that our algorithmic combination of geometric matching

with iterated intensity registration yielded smooth deformations of the mitral valve

between mid and end-systole for the 30 patient specific sequences of 3D-ultrasound

images (10 normal, 10 pre-surgery, 10 post-surgery). The next step in the joint

UH/Methodist project was to evaluate these deformations in terms of the strain

exhibited by the mitral valve apparatus during the deformation occurring at each

heart cycle. In this chapter, we first review the concepts of stress and strain. Next,

we present the statistical methods needed to compare and quantify the distribution of

strain values on mitral leaflets. Finally, we explore how the 3 groups of mitral valves

(normal, pre-surgery, post-surgery) compare in terms of strain values distributions.

These results have been outlined in our published joint paper [5].
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10.2 Stress/Strain Overview

There exist numerous texts on stress and strain in a variety of applied settings; see

[42] and [28] for treatments with a respective geoscience and fluid mechanical flavor.

At its core, the concept of strain quantifies the relative modification of local lengths

and surfaces for a somewhat elastic material undergoing a dynamic deformation. This

dynamic deformation is linked to the ongoing stress of the material (often generated

by a load or other external forces, as well as by internal forces generated by local

geometric deformations). One of the earliest relations involving these ideas of stress

and strain is due to Robert Hooke, whose legacy to introductory mechanics can be

summarized with the famous Hooke’s law

F = −kx

where F is an applied force on a ideal spring and x is the displacement of the spring

from the neutral position. For more complex settings, this linear relationship between

stress and strain can be summarized with the elastic tensor equation

τij = cijklεkl

where τ is the stress tensor, c is the elastic tensor, and ε is the strain tensor. This

constitutive relation, along with Newton’s Second Law, are the fundamental equa-

tions of continuum mechanics. But as we see below, the material strain tensor is a

kinematic quantity that can be computed simply once the material displacement field

106



is known. Stress, on the other hand, depends on the elastic tensor and given values

of strain; without well-known elastic parameters, stress computations lose reliable

physical interpretation.

10.3 Strain Tensor and Mitral Leaflets Strain

Let us consider how to describe changes in the positions of points within a continuum.

The position of a specific particle at time t relative to its position at a reference time

t0 can be expressed as a vector field, namely the displacement field u given by

u = u(t, t0) = r(t)− r(t0)

where r(t) is the position of the point at time t and r0 = r(t0) is the reference location

of the point. When the final time t is implicitly understood, the displacement field can

be written u(r0). This approach of following the displacements of particles specified

by their original positions at some reference time is called the Lagrangian description

of motion in a continuum (the other is approach is the Eulerian description which

considers what happens at a fixed location in space). Now at initial time t0, consider

a reference point x0 and a nearby point x1 = x0 + δ for some small vector δ. We

have by Taylor expansion that at time t

u(x1) = u(x0) + Jδ
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where

J =


∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z


is the spatial Jacobian of the displacement field. This first order approximation

neglecting higher order terms is the basis of infinitesimal strain theory [42]. The

strain tensor ε is the symmetric part of the Jacobian; that is

ε =


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]
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]
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]
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
or in index form εij = 1

2
[∂iuj + ∂jui]. Diagonalization of this tensor gives the princi-

pal strains (eigenvalues) which are the multiplicative factors modeling local lengths

change along the directions specified by the principal axes (eigenvectors of ε). For

the study of strain on a smooth surface S imbedded in R3, the strain tensor expressed

in local coordinates X and Y on a plane tangent to S at the point p ∈ S is the 2 x

2 matrix

η(p) =

 ∂wX
∂X

1
2

[
∂wX
∂Y

+ ∂wY
∂X

]
1
2

[
∂wY
∂X

+ ∂wX
∂Y

]
∂wY
∂Y


Here w is any vector expressed in tangent plane coordinates (X, Y ). Numerical

evaluation of the strain tensor is straightforward with finite difference techniques.
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For instance, consider a densely packed finite point grid Λ ⊂ R3 representing some

smooth surface S ⊂ R3. Assume this surface undergoes some deformation u to

a surface u(S), meaning our point grid is now u(Λ). For some p ∈ Λ, consider

the intersection B(p, γ) of the point grid Λ with the ball of center p and radius

γ. A least-squares fit to B(p, γ) can determine an approximate tangent plane to S

at the point p (if γ is sufficiently small and the grid size |Λ| is sufficiently large).

This approximate tangent plane is denoted T (p). Within this tangent plane, finite

difference techniques can be applied to estimate the partial derivatives in the strain

tensor. Higher order finite differences can be used to ensure that more points in the

tangent plane T (p) are used in the derivative estimates.

Mitral leaflets tissue elasticity has been studied experimentally by direct observa-

tion in open heart experiments performed with ovine and porcine animal subjects, as

well as after autopsies of human patients. The elasticity models of mitral leaflets de-

rived from these experimental data are hyper-linear and non isotropic (see [26]). For

our live human mitral valve dynamics recorded by 3D-Echo data, in vivo validation of

parameterized elasticity models is obviously not an option, which precludes direct pa-

rameterization of tissue elasticity models. This has led us to avoid leaflet stress com-

putations, and to focus instead on computing patient-specific leaflets strain, which

require no tissue elasticity assumption. Each one of our 30 mitral valve apparatus

(MVA) deformation models generates the dynamic trajectories of several thousands

of mitral leaflets points x between the times mid-systole (MS) and end-systole (ES).

For each initial leaflet point x, and any small tissue patch P (x) around x, the de-

formation of P (x) between times MS and ES approximately multiplies small lengths
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by a factor g(x) > 0, called the geometric strain at x. Technically, we compute the

classical 2 x 2 surface strain tensor η at x and the moduli |λ|, |µ| of its two eigen-

values, which are the smallest and largest length dilating (or contracting) factors of

deformations around x. Then g(x) is the harmonic mean of these two factors, given

by g(x) =
√
|λ||µ|. Tissue deformations around x are roughly dilating if g(x) > 1,

and contracting if g(x) < 1.

The leaflet Strain Intensity SI(x) at x is then defined as the rough percentage of

length dilation (or contraction) around x, given by SI(x) = |g(x)−1|. Large values of

SI(x) are clearly indicative of high leaflet tissue fatigue around x. Strain intensities

SI(x) are computed at several thousand points x of each leaflet to characterize

the distribution of strain intensity values on the leaflet surface. These strain maps

are then displayed in color code on our patient specific 3D leaflet models (see Figure

[10.1]). The statistical distributions of strain values are comparatively studied across

patients groups in section 4 below. But first, we outline a quantitative method well-

adapted to these specific comparisons.

10.4 Statistical Analysis via Kolmogorov-Smirnov

For each patient-specific mitral valve deformation model computed as described in

our preceding chapters, strain intensity was computed for several thousand leaflet

points. When one compares two large sets of numerical data {X1, X2, . . . XN} and

{Y1, Y2, . . . YM}, with N,M > 1000, one classically says (see [33]) that the X values

“are stochastically smaller than” the Y values if each quantile QX(z) of the X values,
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with 0% < z < 100%, is inferior or equal to the corresponding quantile QY (z) of the

Y values. This can be verified visually by plotting the two quantile curves QX(z)

and QY (z) to check if the curve QX indeed lies below the curve QY . Reliability of

the statement “X is stochastically smaller than Y ” is evaluated by its p-value, given

by one-sided Kolmogorov-Smirnov (KS) test, which is described below.

If the numerical values {X1, X2, . . . , XN} are drawn at random from a distribution

F and {Y1, Y2, . . . YM} are drawn at random from a distribution G, then the two-

sided KS test is a simple empirical test to the hypothesis F = G. It does so through

the use of the empirical cdfs FN and GM ; specifically, the test statistic

DMN =

√
MN

M +N
sup
z
|FN(z)−GM(z)|

is computed for the data sets and compared to a reference threshold from the

Kolmogorov-Smirnov distribution

H(z) = 1− 2
∞∑
i=1

(−1)i−1e−2i2z

Analogously, the one-sided KS test, used to test the hypothesis F > G proceeds by

the computation of the test statistic

D′MN =

√
MN

M +N
sup
z

[FN(z)−GM(z)]

before comparison to H(z). Both procedures works because a) the statistics DMN

and D′MN are independent of the underlying distributions F,G and b) one has the
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convergence

P[
√
n sup

z
|Fn(z)− F (z)| ≤ z]→ H(z)

in distribution. See [35] for details.

Through the use of quantile curves and the one-sided KS test, we are able to assign

precise statistical meaning to such statements “sample A exhibits higher values than

sample B”. These comparisons are a valuable metric when comparing the strain

intensities derived from the patient-specific mitral valve model deformations from

Chapter 9.

10.5 Global Strain Intensity Comparison

In this section, results are presented that compare the 3 populations: normal, organic

pre-surgery (pre-op), and organic post-surgery (post-op).

Leaflet Normal Organic Pre-Op Organic Post-Op
Anterior 0.10 ± 0.02 0.13 ± 0.02 0.09 ± 0.02
Posterior 0.13 ± 0.03 0.19 ± 0.05 0.10 ± 0.03

Table 10.1: Group averages of mean strain intensities. Strain intensities are higher
for the organic group than the normal group (KS test p value = 0.05) for both
leaflets.
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10.5.1 Normal/Organic Pre-Surgery Comparison

Table [10.1] indicates that the mean strain intensities for the anterior leaflets AL

have a higher group average for pre-op patients than for normal patients, and that

this effect is even stronger for the posterior leaflets PL. This strain severity observed

in the pre-op group is confirmed by the KS test as significant (p value = 0.05). A

good visualization of this is given by Figures [10.2] and [10.3], which demonstrates

higher strains for pre-surgery MR patients than for normal patients by respective

quantile curve and histogram comparisons.

10.5.2 Organic Pre-Surgery/Post-Surgery Comparison

For each regurgitation case, graphic displays of color-coded leaflets stain intensities

on our patient specific 3D-models of the MVA enable an immediate visual comparison

of these color strain maps before and after non-resectional dynamic (NRD) repair

surgery. Recall that this surgery involves the insertion of an artificial annular ring to

the valve, thereby tightening the tissue and restoring elasticity to the valve. As seen

on two typical such cases (Figure [10.4] below), a striking impact of NRD surgery

is the clear reduction of the high leaflets strain intensities initially present in all

regurgitation cases.

To validate the strain reduction achieved by NRD surgery, for each mitral valve

regurgitation case, we have computed the pre-surgery strain quantile curves QAL.pre

and QPL.pre, and compared them to the corresponding two post-surgery strain quan-

tile curves QAL.post and QPL.post. Figure [10.5] displays these quantile curves for two
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regurgitation cases, and clearly shows that QAL.post ≤ QAL.pre and QPL.post ≤ QPL.pre.

This is visually confirmed by similar graphic displays for our 10 regurgitation cases.

To quantify the validity of statistical strain reduction achieved by NRD surgery, we

have implemented 20 KS tests (2 per regurgitation case), which showed that stochas-

tic strain reduction was valid for 9 of 10 posterior leaflets, and for 8 of 10 anterior

leaflets. We thus conclude that in our 10 regurgitation cases, for 17 of the 20 mitral

leaflets (2 leaflets per case), post-surgery leaflets strain intensities were stochasti-

cally smaller than pre-surgery strain intensities. This strain reduction effect of NRD

surgery was validated by KS tests p-values inferior to 0.05 for each leaflet.

For each fixed percentile q and each regurgitation case, we have computed the

reduction ratio r(q) = QAL.post(q)/QAL.pre(q) between post-surgery and pre-surgery

strain quantiles. To quantify the strain reduction achieved by NRD surgery on

anterior leaflets, we compute for each percentile q, the average StrRedAL(q) of

reduction ratios r(q) over our 10 regurgitation cases. A similar operation provides

the analogous strain reduction coefficients StrRedPL(q) for the posterior leaflets of

regurgitation cases. These strain reduction coefficients are displayed in Table [10.2].

Percentile q 10% 20% 30% 40% 50% 60% 70% 80% 90%
StrRedAL 0.74 0.76 0.75 0.76 0.77 0.78 0.80 0.80 0.77
StrRedPL 0.62 0.60 0.60 0.60 0.60 0.59 0.59 0.60 0.61

Table 10.2: Multiplicative strain shrinking factors due to NRD repair surgery for
the posterior leaflets and the anterior leaflets, after averaging over all regurgitation
cases.

These strain quantiles reduction factors depend remarkably little on the percentile

value q, which shows that NRD surgery roughly multiplies strain intensities by 0.60
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for the posterior leaflet and by 0.77 for the anterior leaflet. We further validate

this result in Figure [10.6], which displays the pooled post-surgery strain quantile

curve QAL.post, the pooled pre-surgery strain quantile curve QAL.pre, and the rescaled

quantile curve 0.77 × QPL.pre. It is visually clear that QAL.post practically coincides

with the rescaled QAL.pre obtained by multiplying all observed pre-surgery PL strain

intensities by 0.77. This is confirmed by a KS-test with p-value 0.01. A similar display

for NRD surgery reduction of PL intensities by a factor of 0.60 is also presented in

Figure [10.6] (and validated with p-value 0.01). For a histogram comparison, see

Figure [10.7].

10.5.3 Normal/Organic Post-Operation Comparison

Due to the strong leaflets strain reduction effect achieved by NRD surgery, the mi-

tral valve leaflets of post-surgery patients overwhelmingly exhibit strain intensities

distributions which are either stochastically similar or slightly smaller than those of

typical normal patients. This result can be visualized in Figure [10.8] below, which

displays two nearly superimposed AL strain quantile curves: one strain quantile

curve QAL.post for our pool of 10 post-surgery cases, and one strain quantile QAL.norm

for our pool of 10 normal patients. The KS-test confirms with p-value 0.01 what we

see visually: the post-surgery strain is less than or equal to typical norma patient

strain. A similar comparison for normal and post-surgery PL strain validates the

same conclusion for posterior leaflets. For a histogram comparison, see Figure [10.9].
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Figure 10.1: Two sample strain maps corresponding to a normal patient (top) and
a diseased, pre-surgery patient (bottom). The high strain intensities are colored in
orange, while low strain intensities are colored blue.
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Figure 10.2: Quantiles curves NAL and NPL for the average normal strain intensity
(shown above in black) demonstrate strain severity for pre-surgery MR patients;
we in fact observe that strain is stochastically higher for pre-surgery cases than for
average normal cases. This is quite clear graphically since the 10 pre-surgery strain
quantiles curves displayed in green (AL) and blue (PL) are essentially above the
black normal strain quantile curves.
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Figure 10.3: Histograms of strain intensities across both leaflets for all 10 normal
patients (black) and 10 pre-surgery organic MR patients (red). Notice the clear
shift in the red organic data towards higher values of leaflet strain intensity (LSI)
compared to the black normal patient data.

118



Figure 10.4: Leaflets Strain Intensities: color-coded maps at MS for two regurgitation
cases. View is top-down, with AL towards the left. All axes have units of mm.
Coaptation line is shown in dark green. Notice the reduction in strain after NRD
surgery, evident in the increase in blue on the strain maps.
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Figure 10.5: Quantiles curves for two regurgitation patients emphasize a strain re-
duction due to the NRD surgical repair. The two figures on the left represent the
AL strain quantiles, while those in the right represent the PL strain quantiles.
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Figure 10.6: Quantile curves displaying the reduction of strain intensities due to
NRD surgery. (Top) For the AL, our figure shows that, after multiplying the pre-
surgery strain quantile curve by a shrinking factor of 0.77, the rescaled curve nearly
coincides with the post-surgery strain quantile curve. (Bottom) For the PL, our right
picture displays a similar result, with a multiplicative strain shrinking factor of 0.60.
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Figure 10.7: Histograms of strain intensities across both leaflets for all 10 organic MR
patients, both pre-surgery (red) and post-surgery (green). Notice the clear shift in
the green post-op data towards lower values of leaflet strain intensity (LSI) compared
to the red pre-surgery patient data.
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Figure 10.8: For the normal and post-surgery populations, strain quantile curves are
nearly identical (as validated by KS-tests with p-values 0.01).
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Figure 10.9: Histograms of strain intensities across both leaflets for all 10 normal
patients (black) and 10 post-surgery organic MR patients (green). Notice the data
for the two populations appear identical, illustrating the reduction of leaflet strain
intensity (LSI) back to “normal” levels following the NRD surgery.
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Chapter 11

Mitral Valve Strain–High Strain

Localization Analysis

Most of the material presented in this chapter is extracted from a joint paper we are

currently finalizing for submission to the journal Cardiovascular Engineering and

Technology [6].

11.1 Motivation

The previous chapter explored the global distribution of strain across all 3 model

populations. There it was showed that NRD mitral valve repair surgery reduced the

high strain seen in organic in mitral valves exhibiting mitral regurgitation and/or

prolapse back to or below strain values seen in normal mitral valves. These results

are promising. Methodist Hospital cardiologists collaborating with our research team
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also raised the question of characterizing how strain was distributed across individual

mitral leaflets. The purpose of this chapter is to outline our methodologies for the

study of high strain localization, and to present our main results in this direction.

11.2 Computerized Generation of Leaflet Scallops

Anatomical markers were interactively tagged by cardiologists for each one of our

MVA models in order to identify the three “scallops” A1, A2, and A3 of the anterior

leaflet AL and scallops P1, P2 and P3 of the posterior leaflet PL. For a general leaflet,

the three scallops are denoted Sc1, Sc2, Sc3 below. Specifically, clinicians studied each

patient model and selected two sets S1, S2 of tags. Each set Si consisted of a point

Oi near the anterior horn of the mitral annulus MA, a point Yi on the coaptation line

COAPT, and a point Xi on the posterior side of the MA. Then, planes Qi were fit to

the three points in Si = {Oi, Yi, Xi}. The two intersections Qi∩MVA of the planes

Qi with the mitral leaflets determined the boundaries of the classical anatomical

subdivision of each leaflet into three scallops. See Figure [11.1] for an example.

11.3 Other Leaflet Zones

To study the distribution of strain on both the anterior and posterior leaflets, we

defined 8 regions of interest (see Figure [11.2] which displays the 8 zones for the PL).

The three scallops Sc1, Sc2, Sc3 were identified by the computerized procedure just

described above. This procedure automatically generated scallops Sc1, Sc2, Sc3 with
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areas respectively equal to 25%± 2%, 50%± 2%, 25%± 2% of the whole leaflet area,

for all the 60 mitral leaflets we had modeled in our patient groups.

The remaining 5 zones were constructed as follows. The annulus band Zann and

the coaptation band Zcoapt are resp. the sets of all leaflet points within a distance r

of the annulus (resp. a distance s of the coaptation line) so that the areas of Zann

and Zcoapt were both equal to 20% of total leaflet area. The boundary zone Zbound

is then the union of Zann and Zcoapt. The center zone Zcenter is the complement of

Zbound within the leaflet. Finally, define two “commissure points” cp1 and cp2 as the

virtual intersections of the MA and the coaptation line. The set of all leaflet points

which are within a small distance u of either cp1 or cp2 defines the commissure zone

Zcomm. The distance u was selected so the area of Zcomm was equal to 8% of total

leaflet area. All geometric zones were computed at mid-systole.

11.4 High Strain Concentration

The high strain zone ZHS is defined as the set of all leaflet points where strain

intensity is larger than the patient specific 75% quantile of strain intensities. The

area of ZHS is then always equal to 25% of total leaflet area. For each leaflet and

each zone Z, the high strain concentration in zone Z is the ratio

HSC(Z) = Area (ZHS ∩ Z)/Area (ZHS)
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Values of HSC(Z) markedly close to 1 do indicate stronger concentrations of high

strain points within Z; the highest possible value of HSC(Z) is 1 and can only be

reached when Z contains ZHS.

11.5 Regional Strain Analysis

Analysis of regional strain (see Table [11.1]) revealed high strain concentration on

the commissures Zcomm (with the highest concentration) and also on boundary zones

Zann and Zcoapt. However, there were no distinguishable differences between high

strain concentrations on Zann and Zcoapt. The union Zbound of Zann and Zcoapt is

thus a fairly homogeneous zone where strain concentration is higher than on Zcenter.

These high strain concentration inequalities

HSC(Zcomm) ≥ [HSC(Zbound) ∼ HSC(Zann) ∼ HSC(Zcoapt)] ≥ HSC(Zcenter)

hold for both the organic MR and normal group, and for both leaflets AL and PL.

These inequalities are confirmed by the KS test as significant (p-value = 0.04).

As for the scallops, scallop Sc1 exhibited the highest strain concentration, and

the high strain inequalities

HSC(Sc1) ≥ HSC(Sc3) ≥ HSC(Sc2)

hold for both groups and both leaflets (p-value = 0.05).
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Normal Group HSC Organic MR Group HSC
Zone AL PL AL PL
Zcomm 0.44 ± 0.20 0.37 ± 0.20 0.44 ± 0.16 0.37 ± 0.15
Zann 0.36 ± 0.06 0.31 ± 0.08 0.31± 0.15 0.35 ± 0.17
Zcoapt 0.35 ± 0.10 0.32 ± 0.05 0.36 ± 0.10 0.37 ± 0.12
Zbound 0.35 ± 0.03 0.31 ± 0.05 0.32 ± 0.09 0.35 ± 0.10
Zcenter 0.19 ± 0.02 0.21 ± 0.03 0.21 ± 0.05 0.19 ± 0.07
Sc1 0.42 ± 0.11 0.35 ± 0.14 0.34 ± 0.12 0.32 ± 0.10
Sc2 0.15 ± 0.07 0.24 ± 0.07 0.16 ± 0.06 0.24 ± 0.06
Sc3 0.29 ± 0.07 0.18 ± 0.09 0.33 ± 0.11 0.20 ± 0.06

Table 11.1: Comparison of high strain concentrations HSC(Z) fo 8 leaflets zones Z.

11.6 Anatomical Interpretation and Analysis of

Strain Localization Results

Regional analysis of High Strain Concentration (HSC) revealed interesting results.

The highest mean HSC was noted near the commissures Zcomm and in the scallop

Sc1, followed by the boundary zone Zbound. The lowest values of HSC were seen in

the center zone Zcenter. As could be expected, regional analysis in the organic PL

has shown elevated mean HSC in all zones but the center zone. In general, any

leaflets edge presented higher deformation, and hence higher strain values. This is

consistent with previous report by Stevanella et al [44] who studied anterior mitral

leaflet on sheep hearts showing high strain values in leaflets edge. Logically, an-

nulus deformation influences the annulus zone. The coaptation zone is influenced

by annulus dynamics, the pressure gradient across the valve (left ventricle and left

atrium pressure), as well as papillary muscle relaxation and reduced chordae stress.
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In organic patients, tissue properties and size is crucial; since coaptation is not com-

plete, any tissue that is floppy and weak as well as reduced chordae forces, allow for

more deformation. This result agrees with those reported from simulations of the

central zone alone ([21], [39]), where the authors demonstrate more irregularity in

PL collagen fiber, and suggest that collagen fibers are designed to allow leaflets coap-

tation but guard against any further deformation and possible regurgitation. Higher

strain observed near the commissures requires special interest; these two small zones

overlap with both the annulus and coaptation zone (combined boundary zone). In

both normal and organic patients, annular enlargement, especially at the anterior

posterior dimension, accompanied by reduction in leaflet coaptation, allows for more

deformation in those zones. A reduced HSC was noted in the Sc2 scallop on AL while

an elevated HSC was noted in the Sc2 scallop on PL for both organic and normal

models. The AL middle scallop Sc2 is attached to the aortic mitral continuity and

is characterized by fibrotic tissue that probably doesnt allow for much deformation.
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Figure 11.1: Computerized scallop generation process.
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Figure 11.2: Computed geometric zones on one typical posterior leaflet PL. The left
figure displays the 3 Posterior Leaflet scallops, while the right figure displays our 5
other geometric PL zones: Zcoapt (magenta), Zcenter (cyan), Zann (red), and the two
commissures Zcomm (blue).
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Chapter 12

Outline of Future Work: The

Shape Space of Human Mitral

Valves

12.1 Motivation

The human mitral valves deformations and strain study and the analysis of how

NRD mitral valve surgery impacts mitral leaflets strain was undertaken in 2008-

2014 by a joint team gathering UH mathematicians led by Prof. R. Azencott and

Methodist Hospital cardiologists led by Dr W. Zoghbi, MD. This has provided the

scientific context and main motivation for the research work presented in my PhD

thesis. The purpose of this chapter is to introduce the notion of metric shapes spaces

in anatomy that has been intensively explored for the past 15 years by the research
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teams of L. Younes and M. Miller at John Hopkins University and A. Trouve at

Ecole Normale Superieure, Cachan, France. We briefly review the notions of metric

distances between shapes in the spirit of the techniques used for instance at Johns

Hopkins for the study of human brains, and we explore how these methods might be

applied to our set of 60 dynamic models of mitral leaflets.

12.2 Geometric Traits as Markers of a Population

The 30 patient-specific models varied greatly in their size, shape, and features. Com-

pared to the standards set by the normal models, the pre-operation organic models

tend to exhibit larger areas, bulbous prolapsed tissues, and exotic folds and creases

associated with leaflet flail. The post-operation models are much smaller in area (due

to insertion of the artificial mitral ring) and the mitral annulus horn is flat. Even

within populations, each mitral valve model is distinct. Certain normal models, for

instance, have a high curvature mitral annulus horn while others may have a flatter,

wider horn. See Figures [12.1]-[12.3] for some various patient-specific MVA models.

The previous chapters characterized the distributions of strain values on mitral

leaflets for three different populations of mitral valves (normal, organic MR pre-

surgery, organic post-surgery). There we saw that strain was statistically higher

for the organic MR population than for the normal population. Moreover, we saw

that NRD surgery reduced strain on the MVA back to levels comparable to that of

the normal population. But a natural question follows: are there specific shape and

deformations characteristics on the mitral valve that could indicate whether a patient
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is at risk for future mitral valve disease? If so, are these characteristics linked at all

to the visible geometry of the mitral valve? Similar questions have been asked by a

team of computer scientists, mathematicians, and brain specialists at Johns Hopkins

in their study of large sets of 3D-images of human brains and early detection of

neurological disease [4], [13], [18], [19], [46]. The key idea is to widen the scope from

merely looking at static landmarks on the mitral valve and instead compute “how

far” mitral valves are from one another in the sense of the diffeomorphic matching

(Chapter 4) required to map one valve to another valve.

12.3 Energy of Diffeomorphism as a Metric

The definition of adequate ”distances” between diffeomorphisms of smooth shapes

has a robust mathematical underpinning [46]. The methodology can be described

heuristically using Figure [12.4] below. Suppose that D1 is a diffeomorphism recon-

structed by optimized geometric matching that deforms the left blue shape into the

right blue shape. An intermediary shape snapshot (middle blue shape) is also shown.

Suppose that D2 is a separate diffeomorphism reconstructed by optimized geometric

matching of the left red shape to the right red shape (the middle red shape is at

the some intermediary time). Then a geometric matching can be performed between

blue and red snapshots at each pair of corresponding instants. This yields diffeo-

morphisms F1 that matches the left blue snapshot to the left red snapshot, F2 that

matches the middle blue snapshot to the middle red snapshot, and F3 that matches

the right blue snapshot to the right red snapshot. We could then define a distance
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between these diffeomorphisms as

d(D1, D2) =
1

3

3∑
i=1

E(Fi)

where E(Fi) =
∫ 1

0
1
2
||v(t)||2dt is the kinetic energy of the diffeomorphism Fi (recall

that the diffeomorphism Ft is determined by a vector field flow vt of R3 as explained

in Chapter 4). Technically, to be precise, the distance d(D1, D2) would have to be in

the limit of averages of kinetic energies E(Ftk) as the number of intermediary instants

tk tends to infinity. However, for practical numerical shape matching studies, a small

finite number of intermediary instants tk is sufficient.

12.4 Distance between Mitral Valve Models

We apply these ideas to our patient-specific mitral valve dynamic deformation mod-

els. For simplicity, only geometric matching is optimized when the intermediary

diffeomorphisms Fi are constructed. Consider a mitral valve model M1 with defor-

mation diffeomorphisms D1 that deforms the model M1 between mid-systole (MS)

and end-systole (ES). Analogously, consider another mitral valve model M2 with

deformation diffeomorphisms D2 that deforms the model M2 between MS and ES.

We seek diffeomorphisms F1 and F2 that respectively map M1 to M2 at MS and M1

to M2 at ES. But before any matching is done, these valve models M1,M2 must be

aligned to a common center-point and rotationally aligned. For the studies here, the

geometric centroids of the models were aligned. Next the orientations were fixed by
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aligning first the principal planes of each model and then the vectors from the cen-

troids to the anterior horns. Moreover, a constant value of σ = 9 and reference point

grids of cardinality N0 = 200 to N0 = 300 were used in determining each F1 and F2.

The constant value of σ ensured that a consistent version of the kinetic energy (thus

distance) was used for each pair of models M1,M2. Once F1 and F2 were determined,

we defined the distance between the two diffeomorphic deformations D1 and D2 by

d(D1, D2) = 1
2
(E(F1) + E(F2)).

It is important to point out that this d(D1, D2) is not simply the distance be-

tween two static mitral valves M1,M2 at a single instant. For instance, at MS, the

distance given by E(F1) is the energy of the diffeomorphism F1, and it accounts for

specific geometric differences in the shapes of the models M1,M2 at MS. The distance

d(D1, D2) accounts for differences between M1,M2 at both MS and ES. Thus the ac-

tual systolic phase of the cardiac cycle affects the distance d(D1, D2) between valve

models M1,M2. For instance, two valves could have a very similar size and shape at

MS but through any number of biological factors exhibit far different geometric sim-

ilarity at ES. These valves, when viewed at the snapshot MS, would appear visually

similar and the corresponding distance E(F1) would be relatively small. However,

the distance d(D1, D2) would account for the dissimilarity at ES, meaning that we

would have E(F1) ≤ d(D1, D2), which might be unintuitive if one solely looks at

static snapshots of the valve. The dynamic deformation of the valve must be ex-

amined when interpreting the distance results given for mitral valve diffeomorphic

deformation models.
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12.5 Example for Normal Population

These techniques were applied to the 10 anterior leaflets in the normal population.

Specifically, the distance d(D1, D2) between each pair of anterior leaflet diffeomor-

phisms D1, D2 was computed for the entire 10 patient population. This results in

10 × 10 array given in Table [12.1]. Here we see that Patient 8 has the lowest

mean distance to the other 9 patients. We designate this model as the center of the

population.

Patient 1 2 3 4 5 6 7 8 9 10
1 0.00 4.74 3.51 5.92 6.56 8.25 4.64 3.69 5.75 7.07
2 4.74 0.00 5.40 5.36 4.70 4.29 2.71 2.13 3.59 1.00
3 3.51 5.40 0.00 4.68 4.35 7.54 2.80 2.91 3.10 5.02
4 5.92 5.36 4.68 0.00 7.30 5.57 3.91 3.00 4.03 3.07
5 6.56 4.70 4.35 7.30 0.00 9.87 6.15 2.97 7.95 9.17
6 8.25 4.29 7.54 5.57 9.87 0.00 7.61 4.32 6.52 5.32
7 4.64 2.71 2.80 3.91 6.15 7.61 0.00 3.93 2.18 2.02
8 3.69 2.13 2.91 3.00 2.97 4.32 3.93 0.00 5.17 4.41
9 5.75 3.59 3.10 4.03 7.95 6.52 2.18 5.17 0.00 4.69
10 7.07 1.00 5.02 3.07 9.17 5.32 2.02 4.41 4.69 0.00

Mean µ 5.01 3.39 3.93 4.28 5.90 5.93 3.59 3.25 4.30 4.18

Table 12.1: Distances d(D1, D2) between normal patient anterior leaflets. Notice
patient 8 has the lowest computed mean distance to all other patients. Contrast this
to patient 6, which exhibits the largest mean distance to other patients.

To attempt to view these 10 leaflets in 3D Euclidean space, we adopt a principal

component analysis (PCA) of the data presented in Table [12.1]. Specifically, denote

the top section of data in Table [12.1] by the 10 × 10 matrix M . This data is centered

by subtracting the mean value (row µ in Table) of each column; that is

U = M − µT ⊗ [1 1 1 1 1 1 1 1 1 1]
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where ⊗ denotes the Kronecker product. The covariance K of this centered data is

computed at K = UTU and PCA proceeds by finding the spectrum of eigenvalues

and eigenvectors of K. Denote the 3 eigenvalues largest magnitude by λ1, λ2, λ3 with

corresponding eigenvectors v1, v2, v3 ∈ R10. Finally, the columns kj of the matrix K

are projected onto the vectors vi; this yields a 3 × 10 matrix S with entries sij = kTj vi.

The plots of these 10 columns as points in R3 is given in Figure [12.5]. Note the

quality of this projection of 10 dimensional data onto the 3 principal components

can be quantified by the ratio

Q =
λ1 + λ2 + λ3∑10

i=1 λi

In the case of these 10 normal anterior leaflets, we have Q = 0.8. Also, neighboring

points in Figure [12.5] can be connected by colored lines. For instance, the closest

leaflet to patient 8 (yellow) is patient 2, and this is marked by yellow connecting

line between patient 2 and patient 8. Proceeding in this manner reveals that there

are two apparent clusters of normal leaflets: the first consists of patients 1,3,5,7,9

and the second consists of patients 2,4,6,8,10. Notice also that the center (patient 8)

appears central to the point cloud; this is not surprising as it is our computed center

of the population in Table [12.1].
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12.6 Further Work

A similar analysis of the 10 diseased pre-surgery anterior leaflets will be completed.

This involves computation of another 10 × 10 table of squared deformation dis-

tances between each pre-surgery anterior leaflet, as well as the above procedure to

display these leaflets in R3. Finally, we will attempt to generate a kernel-based non-

linear separator to automatically distinguish between normal and abnormal anterior

leaflets.
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Figure 12.1: Two examples of normal patient mitral valve models.
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Figure 12.2: Two examples of organic pre-surgery mitral valve models
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Figure 12.3: Two examples of post-surgery mitral valve models
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Figure 12.4: Distance between two diffeomorphisms D1, D2 given by the average of
the kinetic energies E(Fi) of the intermediary diffeomorphisms Fi.
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Figure 12.5: The 10 normal anterior leaflets are displayed in 3D Euclidean space via
principal component analysis. Neighboring leaflets are connected by colored lines.
For instance, the closest leaflet to patient 8 (yellow) is patient 2, and this is marked
by yellow connecting line between patient 2 and patient 8.
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