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Abstract

Under certain conditions on the codimension and curvature, the image of
a Cauchy-Riemann (CR) hypersurface of revolution under a CR embedding is
proved to be totally geodesic. We also prove a similar statement for the image

of a Kéahler manifold under a holomorphic conformal embedding.
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1 Introduction

The invariant properties under biholomorphic mappings of a real hypersurface
into complex spaces are one of the primary objectives in Cauchy-Riemann (CR)
geometry. These manifolds possess an integrable, non-degenerate subbundle of
the tangent bundle, known simply as its CR structure bundle.

The study of CR geometry originated from a paper by H. Poincaré (cf.
[14]), who showed that certain non-constant holomorphic maps dB? — OB?
must be automorphisms. N. Tanaka (cf. [16]) later extended this result to
higher dimensional cases. By the works of E. Cartan (cf. [1]) and S. S. Chern-J.
Moser (cf. [2]), complete sets of invariants were constructed for local Levi non-
degenerate real hypersurfaces. S. M. Webster, [17], later gave formulas for the
fourth-order curvature tensor of Chern-Moser by use of a real, non-vanishing
one-form which annihilates the CR bundle on the hypersurface.

More recently, the study of CR geometry has concentrated towards the em-
beddability of CR manifolds, which continues to be an outstanding challenge.
S.-Y. Kim and J.-W. Oh, (cf. [15]) gave necessary and sufficient conditions for
local embeddability into a sphere of a strictly pseudoconvex pseudohermitian
CR manifold in terms of its pseudoconformal curvature tensors. The studies of
P. Ebenfelt, X. Huang, and D. Zaitsev (see [5]) found rigidity results of CR em-
beddings of CR manifolds, with CR codimension of less than n/2, into spheres,
which generalized the result of S. M. Webster’s of codimension one (cf. [18]). S.
Ji and Y. Yuan, [13], recently showed that if the CR second fundamental form
is zero, then a CR hypersurface is the image of a sphere by a linear map. In
addition, around the same time as [5], F. Forstneric’s argument (cf. [8]) has
shown that most analytic CR manifolds are not holomorphically embeddable
into algebraic ones of the same CR codimension.

We will concentrate on a particular kind of CR manifold - those hypersurfaces



admitting unitary symmetry, or real hypersurfaces of revolution. Formally, we

will focus on hypersurfaces of the form

M ={(z,w) e C" xC:r(z,z,w,w) = 0}, (1.1)

where the defining function r satisfies

r= p(Z,Z) + Q(w7@)7

p=7z'Hz,q=q,

with the n x n matrix H being (constant) hermitian positive definite. Examples
of these types of hypersurfaces include spheres and ellipsoids.

Associated to each hypersurface M is the domain Dy, defined by

Dy ={w e C: g(w,w) < 0}. (1.2)

Here, we will need to assume that ¢z # 0 and dg # 0 whenever ¢ = 0. As it

turns out, the function
h = Guwlw _2 q9ww
q
defines a hermitian metric on Dy.

In [19], S. M. Webster studied the case when the Gaussian curvature K of

h is equal to -2, proving the following:

Theorem 1.1 (Webster; [19], Theorem 1). Let w € Dy and (z,w) € M. Then,
at points where dq # 0, S(z,w) = 0 if and only if K(w) = —2.

Here, S is the pseudoconformal curvature of M. In addition, if we assume
this case, then the result of Chern-Moser (see [2]) shows that M is spherical;

that is, it is locally embeddable into the sphere S™.



By making use of the pseudoconformal Gauss equation, we can extend this

result:

Theorem 1.2. Let M be a real hypersurface of C**! defined by (1.1). Let
(Do, h) be the associated domain of M. If1 < n < < 2n — 1 and the
Gaussian curvature of h satisfies K > —2, then there does not exists a smooth

CR embedding of M into the sphere S™.
By combining the two theorems, we obtain the following corollary:

Corollary 1.3. Let M be a real hypersurface of C™*1 defined by (1.1) and
(Do, h) its associated domain. Let 1 <n < < 2n—1 and f: M — S™ be
a smooth CR embedding. If the Gaussian curvature K of h satisfies K > —2,

then f is totally geodesic and K = —2.

This joint work of Huang-Ji-Lee has been accepted and will appear soon in [11].
The K > —2 condition in Theorem 1.2 is needed because of the following

example. Let € > 0 and

q(w, @) = [w|* + elw]* — 1.

By (5.33) and direct calculation, the Gaussian curvature K is given by

K=-2—4e+o0(1) < —2.

The mapping given by

F: M —S" (z,w) — (z,w, Vew?)

is a CR embedding that is not totally geodesic by the pseudoconformal Gauss

equation (4.7).



In addition to the above, by using similar techniques from the CR case, we

will also prove the Kéahler version of Theorem 1.2:

Theorem 1.4. Let f : (X,wx) — (Y,wy) be a holomorphic conformal em-
bedding between Kdhler manifolds. Let dimg X = n and dim¢cY = n, and
suppose that the curvature tensors of X and Y are pseudoconformally flat. If

l<n<n<2n-—1, then f(X) is a totally geodesic submanifold of Y.

2 Preliminaries

2.1 CR Manifolds

If M is a real submanifold of C™, the tangent space of M may then inherit some
of the complex structure from the larger space C". The idea of a CR structure
is based on the real hypersurface case, which we will review briefly.

2.1.1 Tangent Bundles

Let us denote by TC™ to be the (real) tangent bundle of C™ and by
CITC"=TC"®C

to denote the complexification of TC™.
A smooth section X of CT'C" is called a complex vector field on C". Lo-
cally, a complex vector field can be written as a linear combination of the basis

operators 9/0z7 and 9/0z*:

- 0 - 0

where the coefficient functions are assumed to be smooth and complex-valued.

Here, we write z = (2%, ..., z") for the local coordinates of C". (2.1) shows that



we may write CT'C™ as a direct sum:
CTC™ = T+°C™ 4+ 17%'C™, (2.2)

where T1°C" denotes the subbundle whose sections are linear combinations of

the 9/027 and T%'C"™ denotes its complex conjugate bundle.

2.1.2 Real Hypersurfaces and CR Manifolds

A primary interest in CR geometry is in the boundaries of domains in C™. If
such a boundary is a smooth manifold, then it is a real hypersurface; that is, it
can be considered as a real submanifold with real codimension one.

Let us first suppose that M is a smooth real hypersurface in C". For any
point p € M, let us define T)° M, which we will call the bundle of (1,0)-vectors

of M over p, to be the intersection
T)°M = CT,M NT,°C". (2.3)

We define its complex conjugate bundle by TI(,MM = T;’OM.
For any point p € M, T, I}’OM is a complex vector space with complex dimen-
sion

dime 7,°M =n — 1.
In addition, the subbundle T1°M satisfies the following properties:

o TUOM is integrable; that is, it is closed under the Lie bracket operation,

[TLOM, Tl,OM] g Tl’OM;

o TLOM NTOIM = {0};



o HM =TVOM + T%1 M is a subbundle of codimension one in CTM; that
is, at each point p € M, the complex vector space H,M has codimension

one in CT,M.

A CR manifold is a real differentiable manifold together with a geometric
structure modeled on that of a real hypersurface in C™. More precisely, we make

the following definition:

Definition 2.1. A CR manifold is a real differentiable manifold M whose com-

plezified tangent bundle CTM contains a subbundle TV°M that satisfies:
(i) THOM is integrable; that is, it is closed under the Lie bracket operation;
(ii) TOM NT%1M = {0}.

Here, we define the conjugate subbundle by TO'M = T1OM. We call such a
subbundle T*°M the CR structure (bundle) of M.

The complezx dimension dimc TV°M, which is independent of p, is called
the CR dimension of M. The CR codimension of the CR structure is the
codimension of HM = TYOM + TOYM in CTM. In the case that the CR
codimension is one, we say that the CR manifold is of hypersurface type, or
that it is a CR hypersurface.

A smooth section of T*OM is called a CR vector field over M. A C'-smooth
function f is called a CR function if it is locally annihilated by any CR wvector
field. A CR mapping is a smooth mapping F between CR manifolds M and N
whose differential satisfies dF(T*OM) C TON.

2.1.3 Contact Forms

A real, non-vanishing smooth one-form 6 over a CR manifold M is called a
contact form if

0 A (dO)™ # 0.



Equivalently, a contact form is a real, non-vanishing smooth section of
T°M := HM™*.

Associated with any contact form 6 over M, one has the uniquely defined

characteristic, or Reeb, vector field T. T is a real vector field defined by
T.d0 =0,(0,T) =1, (2.4)

where J denotes contraction (or interior multiplication). Since df is a degenerate
two-form on T'M, but non-degenerate on the hyperplane defined by 6 = 0 in

TM, we can always find such a T in the kernel of df.

2.1.4 Levi Form

For a CR manifold M, and for any point p € M, the Levi form at p is a mapping
hy : Ty°M — (CT,M)/(Hp,M), v, — %w,,([v,m), (2.5)
where v is any vector field in 71°M that equals v, at p and
mp : CT,M — (CT,M)/(H,M)

is the natural projection. This definition of h, is independent of the choice of

.

2.1.5 Levi and Contact Forms

The Levi form of a CR manifold can be defined in terms of a given contact form.

By fixing a contact form 6 on a CR manifold M, we define the Levi form of



(M,0) by
ho(v,w) := —db(v,w) = 6([v, w)]), (2.6)

for all v,w € HM. Here, we used Cartan’s formula

(d0,v ANw) = v{f,w) — w(l,v) — (0, [v,w]) (2.7)

and the fact that (0,V) =0 for all V. € HM, which implies

(0,v) = (0,7) = 0.

Observe that the Levi form of M can be regarded as a hermitian metric on

the subbundle T*9M. This metric can be defined by

ho : T*°M @ T*°M — C, (v,7) + ho(v,0) = 0([v,7]) = (0, [v,7]).

Definition 2.2. We say that (M, 0) is Levi non-degenerate at p if

ho(vp, wp) =0

for all w, implies v, = 0. (M,0) is Levi non-degenerate if M is Levi non-
degenerate at every point p € M.
(M, 0) is called pseudoconvex if hg is (positive) semidefinite. It is called

strongly pseudoconvex if hy is (positive) definite.

2.1.6 Levi Form of Hypersurfaces

Let M be a smooth real hypersurface of C*. Then, around any point p € M,

there exists a neighborhood U, of p in C" and a smooth real-valued function p



defined in U, such that
MNU,={(z,w) eUN(C"* xC): p(z,w,z,w) = 0}

with dp # 0 in U,. The function p is called a defining function of M at p.' In

this case, the one-form 6 = —idp is a contact form of M. From (2.6), we obtain
ho(v, @) = —(db, v A\ wW);
that is, the Levi form with respect to 0 satisfies

hy = —df = —iddp = i0Dp.

2.2 Pseudohermitian Structures

Throughout this section, we follow the summation convention laid out in [5]. In
particular, lowercase Greek indices will run over the set {1,...,n}. A general
tensor will be written as T,” uw» wWhere the indices without conjugation will
indicate C-linear dependence in the corresponding argument and indices with
conjugation will indicate C-antilinear dependence. Recall that such a tensor
T,” uw can be considered as an R-multilinear complex-valued function on V' x
V*xV xV.

We will not assume that a tensor is symmetric in its indices. Hence, the
ordering of the indices may carry important information. Simultaneous conju-
gation of all the indices of a given tensor will correspond to conjugation of that

tensor. For example,

Taﬁﬁy = Taﬁuﬂ'

INote that the defining function p is not unique. For any non-zero smooth function h, hp
is also a defining function for the manifold.



The Levi form matrix (g,5) of M (with respect to a given contact form ),
and its inverse (gﬁo‘), will be used to raise and lower indices (without changing
their ordering):

0o = 950", A% = g™ Ayp.

2.2.1 Admissible Coframes

Let M be a CR manifold and 6 a given contact form on M. Let us suppose that
{Lo}a=1...n is a basis of (1,0)-vector fields on TH°M such that (T, L, L) is
a frame on CTM. Here, T' will be the characteristic vector field associated to

0. Then, the first equation in (2.4) is equivalent to
df = ig,50% N 6°, (2.8)

where (g,3) is the Levi form matrix and (6,0%,6%) is the coframe dual to
(T, Ly, L) (for convenience of notation, we will usually say that (6,60%) is the
coframe dual to the frame (T, Ly)). Note that 6 and T are real, whereas 6% and
L, always have non-trivial real and imaginary parts.

In general, (2.8) will not always be the case. Hence, we define:

Definition 2.3. If 0 is a contact form on M, we call a coframe (6,0%) (and its

dual frame (T, L)) admissible if
do = ig,50° N7,

holds; or equivalently, if T is the characteristic vector field for 6 with respect to

(2.4).

10



2.2.2 Pseudohermitian Structures

A choice of contact form 6 on a CR manifold M is referred to as a pseudoher-
mitian structure. This defines a hermitian metric on TH°M via the (positive
definite) Levi form.

For every pseudohermitian structure 6, [5] (and [17]) defines a pseudohermi-
tian connection V on TH°M (and also on CTM) which is expressed relative to

an admissible coframe (6,60%) by
Vi :=was’ ® Lg, (2.9)

where the one-forms w,? on M are uniquely determined by the following equa-

tions:

df® = 0% A wo” (mod 8 A 6%),

dg,5 = Wog + W5, (2.10)
The first equation of (2.10) can be rewritten as
d0P = 0% Nwo? +ONTP 7P = APLO7 A°P = AP~ (2.11)
for a suitable, uniquely determined, torsion matrix (A%%) (cf. [17], [5]).

2.2.3 Pseudohermitian Curvature

The curvature of the pseudohermitian connection V is given by

dwe” — wa " Aw? = RoP 0" N7+ WLP 0" N6

— WP as” NO+ il AT — T N O, (2.12)

11



where the functions R,” uo and w,p , represent the pseudohermitian curvature
of (M, 6).

As can be seen in [5], the components W, A, can be obtained as covariant

o
derivatives of the torsion matrix A%, (see (2.11)). Following [5], we denote the
covariant differentiation operator with respect to the pseudohermitian connec-
tion V also by V, and its components by indices preceeded by a semicolon. An

index of 0 will be used to denote the covariant derivative with respect to T

Thus, for example,

AN

VAB@ = dA’B@ + A”@wuﬁ — Aﬁpw(}

= AP o000 + AP, 0" + AP L.07. (2.13)
In this notation, the above mentioned relation reads (see [5]):

Wﬂ

ap

= AOt,u;B7 Wﬂaf/ = ABD;(x~ (214)

2.2.4 Pseudoconformal Connection

Recall (see [2], [17], and [5]) that the Chern-Moser coframe bundle Y over M
is defined as the bundle of the coframes (w,w®,w®, ) on the real line bundle

g B — M of all contact forms that satisfies
dw = ig,zw™ AwP +wA ®,

where w? is in 75 (T’ M)? and w is the canonical form on F given by w(#)(X) :=
O((rg)«X), for 6 € E, X € TyE. The canonical forms w, w*, w®, ¢ are similarly
defined on Y (following [5], the same notation is also used for this coframe).

It was shown in [2] and [5] that these forms can be completed to a natural

2Note that T’ M := (T M)~L will be used later in the second fundamental form.

12



parallelism on Y given by the coframe of 1-forms

(Wawaawaasoa‘pﬁavcpi)[v(p&aqﬁ) (215)

defining the pseudoconformal connection on Y and satisfying the following equa-

tions:

9aBP = Pap T PBas
dw = iw" + w, +w A @,
dw®™ = W' N p* +w A,
do = iwy AN 9" +ips Aw” +w AP,
dpg®™ = " AN, ~ +iwg A 9™ —ipg Aw®
—i8a” #,ﬁ o
10870, A w 21/1/\w+<1>5,
1
dg&a:gp/\g@a‘F@#/\@Ma—i?b/\wa“r‘I)a,

dy =@ AN+ 20" N, + U, (2.16)
where the curvature two-forms ®3%, &, ¥ can be decomposed as

D = S5 Lwh Aw” + V5 W Aw+ Vg0 AW,
P =V pwh Aw” + PAwt Aw + Qpw” Aw,

U= —2iP, 0" Aw” + R,w' Aw + Rpw” Aw. (2.17)

The functions Slgaw, Vgo‘#, P,%, Qz", R, together represent the pseudoconfor-
mal curvature of M.

As in [2] and [5], we will restrict our attention to coframes (6,0%) for which
the Levi form (g,3) is constant. The one-forms ¢®, %, @g®, 1 are uniquely

determined by requiring the coefficients in (2.17) to satisfy certain symmetry

13



and trace condition; for example,

S

QB/,LD =

S =S

poaB =

,uBat? SD;LBOU

St 5=Va" =P} =0. (2.18)

af

2.2.5 Pseudoconformal Formula

Let us fix any contact form 6 on M. Then, any admissible coframe (6,60%)
defines a unique section M — Y for which the pull-backs of (w,w®) coincide
with (0,6%), and the pull-back of ¢ vanishes. As in [17] and [5], this section is
used to pull back the forms in (2.15) to M. Following [5], the same notation is
used for the pulled-back forms on M (however, these forms will now depend on

the choice of the admissible coframe (6,0%)). With this convention, we have
0 =w,0%=wp=0, (2.19)

on M.

In view of [17] (cf. [5]), the (pulled-back tangential) pseudoconformal cur-
vature tensor Su” uv can then be obtained from the tangential pseudohermitian
curvature tensor R,” up in (2.12) by

 Rogur + Ryggar + Ravgyp + Ruvgas
aBuv n+2

R(90p9ur + 9av9,p3)
(n+1)(n+2)

S,

a,@uﬁ = R

, (2.20)

where
R.p =R, 5, R:= R, (2.21)

are, respectively, the pseudohermitian Ricci and scalar curvature of (M, 0).

14



2.2.6 Traceless Components

~ as the

v

Equation (2.20) expresses the pseudoconformal curvature tensor Sz,

traceless component of the pseudohermitian curvature tensor R, with re-

aBuvs

spect to the decomposition of the space of all tensors T, with the symmetry

QBMD
condition in (2.18) into the direct sum of the subspace of such tensors of trace
zero (i.e., those tensors such that T," .5 = 0) and the subspace of tensors of the
form

TaBy,f/ = Haﬁgﬂﬁ + HMBgOéD + HaDgHB + H#Dgaﬁv (222)

where (H,z), (H,3), (Haz), and (H,;) are hermitian matrices.

We will call two tensors, as above, conformally equivalent if their difference
is of the form (2.22). In this terminology, the right-hand side of (2.20) (together
with (2.21)) gives, for any tensor T, 5,, with the symmetry relation (2.18), its

traceless component, which is the unique tensor of trace zero that is conformally

equivalent to T, 3,,5-

Proposition 2.4. (Webster, [17]; [5], Proposition 8.1.) Let M be a stricty
pseudoconvex CR manifold of hypersurface type of CR dimensionn. Let wg®, ™
be defined by (2.10)-(2.11) with respect to an admissible coframe (6,0%), and,
let ™, ™, 1 be the forms in (2.15), pulled back to M wusing (6,0%) as above.

Then we have the following relations:

9% = 7%+ D, 0" + B4,

Y =1iE,0" —iE0” + B0, (2.23)

15



where

iR,5 iRg,p3
D5 = — ,
n+2 2n+1)(n+2)
2i .
Ea __ Aozp,_ _ l)u(x‘l7 ,
2n + 1( " )
1 _ _
B:= —(E", + E", —2AP" Ay, +2D"*Dy,,). (2.24)
n

Proof. The formulas for ¢g* and D5 were proved in [17]. The formula for ¢
follows from the third equation in (2.16) and (2.11). Indeed, these two equations
yield

0% Awa?® +ONTP =09 N +0 AP,

Substituting the formula for ¢z in (2.23), we obtain
ONT? =D, O NO+0 NP, (2.25)

which implies the formula for ¢ in (2.23), with some E®. Similarly, the formula
for ¢ in (2.23), with some B, follows from equating the coefficients of 6 in the
pulled-back fourth equation of (2.16) and using (2.19) (whence dp = 0 on M).

To obtain the formula for E in (2.24), we substitute the formulas (2.23)
for pg®, ¢, and ¢ in the pulled-back sixth equation of (2.16) and use (2.8),
(2.11), the covariant derivative (2.13), the analogues for Dg”, and the formula

for ®* in (2.17):
_ _ 1 _
VASA0" +V D NP +ig, E“OH N7 = —57,/1/\96‘+V0‘W€“/\0” mod 6. (2.26)

By identifying the coefficient in front of ## A 6” in (2.26), and using the formula

16



for ¢ in (2.23), we obtain
(0% [e3 N (03 1 N « (0%
A Tip T ‘D# T + ZngE = —§ZE§5H + 1% Hw-

The formula for E% in (2.24) is now obtained by summing over y and 7 and
using the trace condition V*,* = 0. Similarly, the formula for B follows by
substituting the formula for ¢ in the pulled-back last equation of (2.16) (mod

0) and using the trace condition P,” = 0. O

3 CR Second Fundamental Form

In this section, we will let M be a strictly pseudoconvex CR manifold of (real)
dimension 2n + 1 and f: M — M a CR embedding of M into another strictly
pseudoconvex CR manifold M of (real) dimension 27+1 with rank # CR bundle.
We will also use the * symbol to denote objects associated to M.

We continue to use the summation convention from the previous section. In

addition, capital Latin indices A, B, ..., will run over the set {1,...,n} whereas
lowercase Greek indices «, 3,..., will run over {1,2,...,n}. Lowercase Latin
indices a, b, ..., will run over the complementary set {n +1,...,7}.

3.1 Admissible for the Pair

Since M is strictly pseudoconvex and f an embedding, according to [5], for every
contact form 6 on M , the pull-back f *0 is non-vanishing, and hence, a contact
form on M. In general, f *0 may vanish (an example is when f(M) is contained
in a complex-analytic subvariety of M ). Hence, we follow [5] by always choosing
the coframe (6,64) on M such that the pull-back of (6,0%) is a coframe for M.
Because of this, the * will sometimes be dropped over the frames and coframes.

We also follow [5] by identifying M with the submanifold f(M) of M, and

17



write M C M. Hence, T1'°M becomes a rank n subbundle of TYON along
M. Tt then follows that the (real) codimension of M in M is 2(f — n) and that
there is a rank 7 — n subbundle N'M of T/ M along M consisting of one-forms
on M whose pull-backs to M (under f) vanish. N'M is called the holomorphic

conormal bundle of M in M.

Definition 3.1. We say that the pseudohermitian structure (M, é) (or simply
that of é) is admissible for the pair (M, M) if the characteristic vector field T
ofé is tangent to M, and hence, coincides with the characteristic vector field of

the pull-back of 6.

3.2 Adapted Coframes

It can easily be seen that not all contact forms 6 on M are admissible for the

pair (M, M ). However, we do have the following:

Lemma 3.2 ([5], Lemma 4.1). Let M C M be as above. Then any contact form
on M can be extended to a contact form 6 in a neighborhood M in M such that

0 is admissible for (M, M).

Proof. Let 0 be any fixed extension of the given contact form on M to a neigh-
borhood of M in M. Any other extension is clearly of the form 6 = uf, where
u is a smooth function on M near M with u|pr = 1. Let T be the characteristic
vector field of the restriction of @ to M. Then 0 is admissible for (M, M) if and
only if T.df = 0. That is, if Tudf — du = 0 along M. By the assumptions, the
latter identity holds when pulled back to M. Now it is clear that there exists
a unique choice of du along M for which it holds also in the normal direction.
The required function u can now be constructed in local coordinate charts and

glued together via a partition of unity, completing the proof. O

By taking admissible coframes and using the Gram-Schmidt algorithm, we
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can obtain the following corollary:

Corollary 3.3 ([5], Corollary 4.2). Let M and M be strictly pseudoconvex CR
manifolds of dimension 2n + 1 and 2n + 1, respectively, and suppose that f :
M — M is a CR embedding. If (0,0%) is any admissible coframe on M, then in
a neighborhood of any point p € f(M) in M, there exists an admissible coframe
(é,éA) on M with f*(é,éo‘,é“) = (6,0%,0). In particular, 0 is admissible for
the pair (f(M), M), that is, the characteristic vector field T is tangent to f(M).
If the Levi form of M with respect to (0,0%) is (0,5), then (0,04) can be chosen
such that the Levi form of M relative to it is also (045). With this additional
property, the coframe (é,éA) is uniquely determined along M wup to unitary

transformations in U(n) x U(A — n).

Definition 3.4. If we fiz an admissible coframe (6,0%) on M, and let (0,04)
be an admissible coframe on M near f(M), we say that (é,éA) s adapted to
(0,0%) on M (or simply to M if the coframe on M is understood) if it satisfies

the conclusion of Corollary 3.3, with the requirement for the Levi form.

3.3 CR Second Fundamental Form - Intrinsic Version

The fact that (6,64) (here, we omit the ) is adapted to M implies, in view of
(2.10), that if the pseudohermitian connection matrix of (M, ) is &%, then that
of (M, 0) is the pull-back of wj. A similar statement holds for the pulled-back

torsion matrix 7%. Hence, we follow [5] by omitting the * over these pull-backs.

Theorem 3.5 (Webster, [17]). Let (M?"*1 0) be a strictly pseudoconver pseu-
dohermitian manifold and let (0,0%) be an admissible coframe. Then there exists

a unique way to write

0™ =07 Nwd + 0 AT, (3.1)

y=1
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where 7 are (0,1)-forms over M that are linear combinations of 6% = 0, and

w? are one-forms over M such that
(3.2)

a

0= dgaB - g’wag - goﬁywﬁp

We may write w,5 = g,3w] and Wgs = ga;,wg by lowering the indices via
the Levi matrix. In particular, by the normalization of the Levi form (that is,
gap = 0ap) the second equation in (2.10) reduces to

wpitwip =0, (3.3)

where wip = W45-
Now, if (é,éA) is adapted to (6,60%), by (3.3), we have 6 = 1*0, 0o = f*o~,

n

dé)a:ZHVAw$‘+9/\TO‘,0:w§+w%,1Sa,ﬁgn,

v=1

and )
Aot =3 09 NoG+OnT0=08 + o 1< A B<N.
Cc=1

For simplicity, we will denote f*@7 by wa. We also denote f*@& 45 by wag,

where w5 = wh.
Let us write w,® = wa“/ﬂﬂ. The matrix (wa®s), 1 < o, f < n,n+1 <a <1,

defines the (intrinsic) CR second fundamental form of M, or, more precisely, of

the embedding f. It was used in [18] and [7].
Note that, since #° is 0 on M, we deduce by using (2.11) that, on M,

WP AN+ 7PN 0 =0, (3.4)
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which implies that
wa? = wabﬁé)ﬁ,wabﬁ = L:J5ba,7'b =0. (3.5)

3.4 CR Second Fundamental Form - Extrinsic Version

This version of the CR second fundamental form was used in [5]. Let M be a
CR hypersurface of dimension 2n + 1, and we denote by V = T%'M c CTM
its (0,1)-vector bundle and 7'M = V* C CT*M. Recall that a mapping

f=f1, . fu): M —CF

is called a CR mapping if f.(T"' M) C T]?&;)(Ck, for all p € M. This is equivalent
to saying that Lf; =0, for all j =1,...,k, and every (0, 1)-vector field L.

Let M C C*! be another real hypersurface (and hence, a CR manifold)
and f: M — C**! a CR mapping sending M into M. We let d = 7 — n be the
codimension of f. Thus, M is a real hypersurface in Cd+1,

Let p € M and j a local defining function for M near p := f(p) € M.
Define an increasing sequence of subspaces Ej(p) of the space TZ’,(C”“‘d‘|r1 of

(1,0)-covectors as follows. Let L1,..., Lz be a basis of (0, 1)-vector fields on M

near p and define

Ex(p) := spanC{Lj([)Z/ of)p):Je(Zy)",0<|J| <k}

d+1
c T,Crtett (3.6)
where pz = 0p is represented by vectors in C"*4*+! in some local coordinate
system Z’ near p. Here, we used multi-index notation L7 = Lij1 L,—{" and

[J| :=J1+...4+ Jp. It was shown in [5] that Ex(p) is independent of the choice

of local defining function p and coordinates Z’, as well as the choice of basis
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The (extrinsic) CR second fundamental form for a CR mapping f : M — M
between real hypersurfaces M c C"*! and M c C""4*1 can be defined (up to

a scalar factor) by

(X, Y,) = n(XY (pz' o f)(p)) € T)M/E:(p), (3.7)

where 7 : TZQM — T;M/El (p) is the projection and X,Y are any (1,0)-vector
fields on M extending given vectors X, Y, € T" M.

In the case when M (and hence also M) is strictly pseudoconvex, the Levi
form of M (at p) with respect to p defines an isomorphism TIQM /E1(p) =

Tﬁ1 O / f*Tpl’OM , and hence, the second fundamental form can be viewed as

a C-bilinear symmetric form
I, : Ty M x Ty°M — T M/ f,T,° M (3.8)

that does not depend on the choice of p. We say that the second fundamental

form of f is nondegenerate at p if its values span the target space.

3.5 Relationship Between Extrinsic and Intrinsic

We now want to relate the (intrinsic) second fundamental form (w,’3) with the

(extrinsic) second fundamental form II,;, in the case that M is embedded as a

real hypersurface in C**1. This calculation is due to [5], which we review here.

Given any admissible contact form 6 for the pair (M, M ), and a point p € M,

let us choose a defining function p of M near a point p = f(p) € M such that

6 = idp on M. That is, in local coordinates Z’ in C**! vanishing at p, we have
i1

=iy an,dZ;, (3.9)
k=1 k
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where we pull back the forms dzll, cey dZ; 11 to M. Given further a coframe

(0,64) on M near p adapted to M and its dual frame (T, L4), we have
Lg(pz o f) = —iLgadf = gset = gpz07. (3.10)

Recall that we are assuming that the Levi form matrix has been normalized,
ie., (gap) = (d453). Following [5], we will continue to use the notation g, 5.
After conjugating (3.10), we see that the subspace Ei(p) C T;C"** in (3.6) is
spanned by (6,6%), where we use the standard identification T ;M ~ T;(Cﬁ‘*‘l.
Applying L, to both sides of (3.10), and using the analogue of (2.10) for M

and (3.5), we conclude that
LoLg(pm o f) = 985 La1d0) = —wa5a0" = waapd®, modd, 0%, (3.11)

where we have used (3.3) for the last identity. Comparing with the extrinsic
definition of the second fundamental form (3.7), and identifying the spaces in

(3.7) and (3.8) via the Levi form of M, we conclude that
I(La, L) = wa“gLa, (3.12)

where we have identified L, with its equivalence class in Tﬁ1 ON/THOM. By
conjugating (3.11) and comparing with (3.6), we see that the space Ey = E5(p)

is spanned (via the identification above) by the forms
0,0%, waa50” (3.13)

By this relation, the second fundamental form can now be viewed as a bilin-
ear mapping

I, : T M x T0OM — T"M /T30 M,
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defined by (wa®s). It is independent of the choice of adapted coframe when M
is locally CR embeddable in C?*+1,

4 Gauss Equations and Applications

The Gauss equation of Riemannian geometry relates the Riemannian curvature
tensors of a manifold and its submanifold with the second fundamental form
of a function composed with the Riemannian metric. In this section, we will
review the process laid out in [5] in order to establish pseudohermitian and

pseudoconformal analogues of the Gauss equation.

4.1 Pseudohermitian Gauss Equation

Let M C M be as in the previous section. Let us fix a coframe (0,04) on
M and we suppose that this coframe is adapted to M. We first compare the
pseudohermitian curvature tensors RQBM—, and RABcD of (M,6) and (M,0),
respectively.

By comparing (2.12), and the corresponding equation for RABcD pulled
back to M, and using wg = wy?, 7 =7, and WQBH = Waﬁu, as a consequence

of (2.14), we conclude that, on M,
5 B 1% a 1%
Ry o' NO” 4w Aw,® = R, 0" N0 (4.1)

By using the symmetry (3.3), we conclude that, on M, we have

RQBIU—,QM N — wa® N Wi = RQBHDQH NG (4.2)

This can also be written, in view of (3.5), after equating the coefficients of
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O N 67 as

RQBMD = Ragu,; + gagwa“#wgbﬁ. (4.3)

The identity (4.3) relates the pseudohermitian curvature tensors of M and
M with the second fundamental form of the embedding f of M into M, and
hence, this equation can be considered as a pseudohermitian analogue of the
Gauss equation. As in [5], we state it in an invariant form using the previously
established relation (3.12) between the extrinsic and intrinsic second fundamen-
tal forms II and (wa“g), given respectively by (3.7)-(3.8) and (3.5). For this, we

view the pseudohermitian curvature tensors as R-multilinear functions
R,R:TYOM x TYOM x T"°M x T*°M — C.

We further identify the quotient space T]}*OM /Ty°M for p € M with the or-
thogonal complement of TPI*OM in TI}*OM with respect to the Levi form of M
relative to 0, and then use this Levi form to define a canonical hermitian scalar

product (-,-) on THOM /TOM. The identity (4.3) now yields the following:

Proposition 4.1 (Pseudohermitian Gauss Equation; [5], Proposition 5.1). Let
M C M be as above and 0 be a contact form on M that is admissible for the

pair (M, M) Then, for all p € M, the following holds:

R(X,)Y,Z,V)=R(X,Y,Z,V) + (I(X, Z),II(Y, V)), (4.4)
Jor XY, Z,V € T)°M.

4.2 Pseudoconformal Gauss Equation

The pseudoconformal analogue of the Gauss equation follows immediately from

(4.3) and (4.4) by taking traceless components (see [5]). Let us denote by [T, 5,,5]

v
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to be the traceless component of a tensor T, that can be computed by the

Buw>

analogue of the equations (2.20)-(2.21). Hence, (2.20) can be rewritten as

Sz = IR

aBuv (45)

aB;LD]'

By taking traceless components of both sides in (4.3), and using (4.5) we now

obtain

[éaﬁ/tﬂ] = Saﬁ/tf/ + [gaf)waauw,éb;,]' (46)

As noted in [5], the left-hand side of (4.6) may not be, in general, equal to

S

aBui» Which is the (restriction to M of the) traceless component of RAch

However, [5] showed that

[RQB[LD] = [SQB;LD]'

Indeed, by the decomposition into trace zero components and multiples of the
Levi form matrix (g,5) on M, the tensors R4 pcp and Sy 505 are conformally
equivalent with respect to the Levi form (g,5); that is, their difference is of
the form similar to (2.22), with lowercase Greek indices replaced by capital

Latin indices. Since the Levi form of M restricts to that of M, the restrictions

Rz, and S are conformally equivalent with respect to (g,3). Hence, the

aBu afup

claim holds. Now (4.6) immediately yields the desired relation between the

pseudoconformal curvature tensors of M and M and the second fundamental

form:

[Sa,é/,u?] = SaE/,u? + [gaf)waa#wﬁi)p]a (47)

or using formulas (2.20)-(2.21) for the traceless part,

A - - -
N Sy a,@gul7+sv Mggaf/'i‘sv avduf T 5 uvdap
San? = S(xﬂ_uﬁ - n+2

A’Y(s
S’Y& b

o _ a b
T Dt  Jae wE
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wvaawryaﬁguﬁ + W“/a“w’yaﬁgaﬁ + Wyaawryaﬁguﬁ + w'yauwyaﬁgaﬁ
n -+ 2
5
Wy 5w (9apgur + Gorgus)
(n+1)(n+2)

+

(4.8)

As for the pseudohermitian curvature, we follow [5] by viewing the pseu-
doconformal curvature tensors, as well as their trace zero components, as R-

multilinear functions
S, 8 THOM x TYOM x TVOM x TYOM — C,

but now they are independent of §. Then, with the above notation, (4.7) yields

the following:

Proposition 4.2 (Pseudoconformal Gauss Equation; [5], Proposition 5.2). For

M C M as above and every p € M, the following holds:
[S(X.,Y,2,V)] = S(X,Y, Z,V) + [(TI(X, Z), (Y, V))], (4.9)
for X,Y, Z,V € Tpl’OM.

4.3 Rigidity Lemmas
We now state the rigidity lemmas needed for the proof of Theorem 1.2:

Lemma 4.3 ([10], Lemma 3.2). Let {1, ;?:1 and {x; ;?:1 be holomorphic func-
tions in z € C™ near the origin. Assume that ¢,;(0) = x;(0) = 0. Let H(z,%)

be a real analytic function for z =~ 0 such that
k [
> wi(2)x;(2) = |21*H (2, 7). (4.10)
j=1
Then when k <n—1, H(z,Z) =0.
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Proof. By complexifying (4.10), we have

k
S v = (D H (=),

where z, £ are treated as independent variables. Without loss of generality, we
may assume that v; # 0 for every j. Hence, we can find a point 2 sufficiently
close to the origin such that 9;(zy) = €; # 0, for each j. By the assumption on

k, we see that

VZO = {Z : ¢J(Z) = '(/)j(ZO)7j = 17"'7k}

defines a complex analytic variety of dimension at least one near z;. By the
choice of zp, and by ;(0) = 0, V,, cannot contain a complex line passing
through the origin. Hence, there exists a point 2’ € V., such that V,, contains

a complex curve C near 2z’ parametrized by an equation of the form
2(t) = 2" + vt + o(t), (4.11)

where {z’,v} are independent vectors, and |t| < 1. Note that for each z € C

and a ¢ close to 0 with (z,&) = 0, we have

> Gx(é) =0.

Also, we note that a direction computation based on (4.11) shows that all such &
fill in an open subset of C". Hence, we conclude that > €x,(§) = 0. Therefore,

(4.10) can be reduced to

S

-1

W%@-%W@W%@»Z@am%ﬂ

=1

<
Il

Applying an induction argument, it follows that ) ;x; =0 and H = 0. O
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Now, we show the tensor version that will be used. For the sake of readability,

we define

Hl

ol ol R
aBuv Haﬁg v+ Huﬁg ov + Hopg,5 + Hip9a5-

Corollary 4.4 ([11], Lemma 2.1). Let A,"s and B,"s be complex numbers,
where 1 < a,8 <n,n+1<a<n, andn < n. Let (gag) and (G ;) be
hermitian matrices with (g,5) positive definite. Let (HLB), (ﬁiﬁ)’ (ﬁiﬁ)’ and
(HLB) be hermitian matrices where 1 <1 < k. Suppose that n —n <n — 1 and

that

n k L L
Y GuAapX°XPB, XXV =y H 5 XOXOXNXY (4.12)
a,b=n+1 =1

holds for any X = (X®) = (XP) = (X*) = (X¥) € C". Then
> GgA X XPB, XFX7 =0
a,b=n+1
for all X € C™.

Proof. Note that the right-hand side of (4.12) is equal to

k k
l o 727 1 @ 2 agl m 2
S H 5 XOXIXXY =) (HQBX XPIX P + A5 XHXP|X| )
=1 =1

+ i: (ngxaﬁmz + HL;X"W|X|2)
k R— PR
= X2 (1 XX+ XX
k
+1xPY (ﬁfﬁxaﬁ + HL;X“W)
=1

= |X[PAX, X),
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where A(X, X) is some real analytic function of X and |X|* = 9a5X @XB. The

left-hand side is equal to

n n
> GpAasX°XPB, XEXY = > ga(X)ha(X),
a,b=n+1 a=n—+1

where

9a(X) =) A X X7,

a,b
ho(X) = > > GupB."s XX
b=n-+1 a,b

are holomorphic functions. Hence, (4.12) becomes

Z 9o (X)ha(X) = |X|2A(X7Y)
a=n-+1

for all X € C". By the assumption 7 — n < n and Lemma 4.3, we have that

A(X,X)=0. O

5 Proof of Theorem 1.2

At this time, we would like to set up some of the notation that we will use
throughout the rest of this section. Let us denote the coordinates of C™ x C
by (z,w), where we denote by z = (z1,...,2") to be the coordinates of C".
In addition, we will continue to use the same summation convention from the
previous sections. We also follow the partial derivative conventions of [19],

setting

0 o
fOé = %a fw = %a etc.
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We will denote by D to be the domain defined by

D={(zw)eC"xC:r(z,z,w,w) <0},

where the defining function r is given by

such that H = (h,p) is a (constant) hermitian positive definite matrix. The

boundary M of D is the real hypersurface

M ={(z,w) e C" xC:r(z, z,w,w) = 0},

For our calculations below, we will assume that gz # 0.

The associated domain Dy, and its boundary My, are given by

Dy ={w e C: q(w,w) < 0},

My ={w € C: q(w,w) = 0}.

In this case, we assume that dq # 0 whenever g = 0.

5.1 Admissible Coframe on M

For our calculations, we choose to use the one-form 6 defined by

0 = —i0r = —i(padz® + gudw), (5.1)
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which is a contact form on M. Note that, since 6 is a real one-form on M, we

have that § = #. This implies that
—i0r =60 =0 = i0r;

that is,

~i(padz® + qudw) = i(pzdz” + gwdw). (5.2)

Rearranging (5.2), we obtain, on M,
Padz® + p5d2P = —(qudw + qzdw). (5.3)
By definition of the exterior derivative, we have that

df = —idor
= 7i5(padzo‘ + qudw)
=3 (pagdzg A dz® + pewdw N dz®

+qw5dzﬁ A dw + Guwdw A dw) . (5.4)
Since p is only a function of z and ¢ a function of only w, we have that
Pow = Q5 = 0.
Hence, (5.4) becomes

do = —i(pagdzg A dz% + quwdw A dw)

= i(p,5dz" N d2P + qumdw A dw). (5.5)
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By using the equality in (5.3), (5.5) becomes the following:

do = ip,5dz" A 2P + igumdw A dw

wa qw

qw

:zpaﬁdz AdzP + i———dw A dw + iquwdw N dw

= ipaﬁdza AdzP + 1quwdw N <¢
w

q—wdw + dw)

- Guw

= ip,5dz" A Az + i qu A (qudw + ¢wdw)

w

= ipagdza AdzP — i T gy (padz + pgdz ) (5.6)
Let us define
quw
quwqw ( )

(5.6) can now be written as

do = ip,5dz" A dz +iQqupadz® A dw + iQqupzdz" A dw
= ip,zdz" A d2” + 1Qquwpadz® N\ dw + quwadzE A dw
+ iQpapEdzo‘ AdzP — iQpapEdzo‘ Ad2P + 1Qpapadz® N\ dz®
= ig,5d2® A dz® + iQpadz® A (padz® + qudw)
+ iQpEdzE A (Padz® + gudw)

= ig,5dz" N dz? — Qpadz® N0 — QpEdZE A (5.8)
where we set the Levi form matrix to be
907 = Paj T QPabz- (5.9)
If we set 1o = —Qpa and 1z =73, (5.8) becomes

df =ig,zdz" N a2’ + Nadz® N O + ngdzg N
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= 19,5 (dza Ad2P —inPdz® A6 —in®dz® A 6)
— g5 (d2° A d27 = d=2 A (076) + (in0) A dF — (in°0) A (in°0))

—ig.5 ((dza +in®0) A (d2P — inﬁa)) . (5.10)
Now we define

0% = dz® + in“0,

6% = 65. (5.11)

Thus, by (5.10), df = ig,50% A 68, By definition, (9,00‘,93) is an admissible

coframe on M.

5.2 A Metric on D,

Let us define
h — quwqw _2 quﬁ.
q

Then we have the following:

Lemma 5.1 (Webster, [19]). M is strictly pseudoconvez if and only if, on Dy,

7 >0

Proof. Let w € Dy and (z,w) € M. By definition, w € Dy implies that
g(w,w) < 0. Hence, by definition of the defining function r, p(z,zZ) > 0 at
(z,w). By the definiteness of H, we have that z # 0. In addition, we recall that
these calculations are only valid where gz # 0.

(=) Let us suppose that M is strictly pseudoconvex. By definition, the
Levi matrix (gag) is positive definite. Thus, for every non-zero X = X “6,% €

TH° M, we have that gaEX“XE > 0. By definition of the Levi matrix (gag),

(z,w)
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and the partial derivatives of p, we have that

0 < (po5 + Qpapz) X X"
= h,5XXP + Qlhas X 27|

= p(e,7) + Qlp(z,2),

where we write z = (X1,..., X™)!. Taking X® = 2 for all a, we obtain
0 < p(2,%) +Qlp(2,2)|* = —q(w, @) + Qq(w, W))*.
By definition of @, this implies ¢quqw < ¢*¢uww. Since ¢ < 0 on Dy, we have

Quwlw — qquw > 0.

Hence,
h= w >0
q
on Dy.
(<) Conversely, suppose that
p = wlw — 49w

q2

on Dy. Then,

Gww — 9quww > 0.

Hence, by definition of @), we have that Qq < 1. Let X = Xaa% be a non-zero

vector in T(lz’Ow)M . By the previous argument,

gaBXaXB = p(:z:,f) + Q|P(I7§)|27
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where we again write z = (X1,..., X")%

When @ > 0, then
9.5X° X" = p(a,7) + Qlp(z,2)|> > 0

by the definiteness of H.

When Q < 0, then by the Cauchy-Schwarz inequality?,

Ip(z,2)|* < p(z,T)p(2, 2).

This implies that

0> Qlp(z, %) > Qp(z, T)p(z,2) = —Qqp(x,T).

Thus,

9,5X°X7 = p(x,7) + Qlp(w, %)
> p(x,7) — Qqp(z,T)

>0,

because Q¢ < 1. Hence, the Levi matrix (gag) is positive definite, and by

definition, M is strictly pseudoconvex. O

Remarks. From now on, we will assume that M is strictly pseudoconvex;

that is, we assume that the Levi matrix (gag) is positive definite. In this case,

h = Guwdw — 49ww

7 >0

3Cauchy-Schwarz Inequality: For all vectors z and y in an inner product space
(X,(-,-)), we have that

[z, y)|? < (@, 2){y, y)-
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and h defines a hermitian metric on Dy.

5.3 Curvature Formulas for M

Let us first define the following:

m
" Z Py D7,
~y=l

m
=Y. pypes
y=l,v#k

where p, = aziap as before. If I, is the n x n identity matrix, we will denote

the augmented matrix obtained by deleting the first a rows and 3 columns by*

Irro;ﬁ = In({l? .. ,Oé}/, {T7 e 73}/)’

with I3 := I&»®. These will ease the readability of the following identities
concerning the inverse of the Levi matrix that will appear throughout the rest

of this paper.

Lemma 5.2. Forn > 1, let g be the n X n matrix defined by

9aB = 05 T QPaPz

The (a, B)-minors, A5, of g satisfy

L+Q¥7,, a=40,

Aup = —Qpppw, a# B,a+ B even,

+Qpspa, a# B,a+ B odd.

4By deleting the first o rows and the first 8 columns, the first row of Iﬁ"B will have an
index of o+ 1 and the first column of Iﬁ"B will have index 8 + 1
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In particular, det(g) =1+ szzlpvm and the entries of the adjugate matriz

adj(g) of g satisfy

1+QE?70(7 05257

—Qpapz, aFp.

Proof. We prove this by induction. For n = 2,

1+Q@pipr  @pipz
Qp2pt 1+ Qpaps

The minors of g are

AIT =1 + Qp2p§7 A1§ = QprTv

Ayt = Qp1ps, Agz = 1 + Qpipr
In addition, by definition,

, 14+ Qp2pz;  —Qpips
adj(g) = ;
—Qpapr 1+ Qpipt

and by Laplace’s formula®, det(g) = 1 + Qpipy + Qpaps. Hence, the lemma
holds for n = 2.

Now we assume that the statement holds for 1 < k < n — 1 and prove the
nth case. We will need to break this into three subcases.

When a = 3, the augmented matrix of g, obtained by deleting the a-row

SLaplace’s Formula: Suppose that B = (b;;) is an n X n matrix and fix any index 49 or
jo. Then the determinant of B is given by

b
1

det(B) = > big,jCig,j = C

j=1 7

i,J0 “i,J0

n n
Here, C;; = (—1)"9M;; and M;; is the (i, j)-minor of B.
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and [-column, can be blocked off in the following manner:

g=g({a} . {B})

1+Qpipt - Qpipg—t Qpirgrr - Qpipw
o Qpa—1p7 - 14+Qpa—1p5—7 QPa—1PaFT -+ QPa—1Pw
- QPa+1PT - QPat1Pg—1 I+Qpat1p577 -+ @Pat1Pm
QpnpT -+ QPnPg—T Qpnpgsr - 1+Qpnpw
A|B
C|D

By the induction hypothesis, A is invertible and det(A4) = 1 + QX¢'. Hence,
by block matrices,

det(g) = det(A)det(D — CA™'B).

In addition, by Cramer’s rule®,

cAB=c YA p

det(A)
QE‘{HI Qpa+.1pﬁ o Qpatipw
- det(4) Qpnilm o Qpupm
- degif()A) £

Note that D = I 4+ E. Hence, we have

_ det(A4) —1
D-CA'B=1*+Fp - — =
¢ nt det(A)

SCramer’s Rule: Let A be an n x n matrix. Then adj(A) - A = det(A) - I, where adj(A)
denotes the adjugate matrix of A and I is the identity matrix. If A is invertible, then the
inverse matrix of A satisfies

_ 1 .
A7l = madgm).
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1
det(A) E

=17+

=1+ F,

where we set B/ = E and Q' = Let

det(A)

14+Q papw - Q'Papw
F = : : .
Q' pnrs - 14Q pupw

Then D — CA™1B = F({a}',{B}), and by the induction hypothesis,

det(A)

det(D—CA™'B) =1+ Q's}
Therefore,

det(g) = det(A)det(D — CA™'B)
=det(A)(1+ Q%)
= det(A) + Q%7

=1+Q¥7,.

If a < B, the augmented matrix of g, obtained by deleting the a-row and

[B-column, can be blocked off in the following manner:

=g({a}’ . {B})

1+Qpipy ...  QpPipg—t1 Qpipx ... Qpipg .- Qpripw

Qp“ 1PT - 14 QPa1PaT | Qpa_1ps - Qpa_1P5 - QPa—1Pw
QPa+1PT - QPat1Pg—T Qpa+1pw - QPa+1P5 - QPat1Pw

S

Qp"% o @papa—t QpPnpz - Qpupg - 14+Qpnpm
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where ~ denotes the deleted entries. By the induction hypothesis, A is invertible
and det(A) =1+ QX¢™'. Hence,

det(§) = det(A)det(D — CA™'B).

In addition, by Cramer’s rule,

_ dj(A)
CA'B=C2L2p
det(A)
- QE?_l QPat1P - QPatiPF - QPatipw
n det(A) . :
Qpnpa .. QPnpg - QPnPw
det(A) — 1
=——DFI
det(A)

Note that D = I2~'({a}’,{B}) + E. Hence, we have

det(4) — 1

D-CAT'B=1I3""({a} {B})+E det(A)

1
det(A)

=17 ({a} {BY) + E,

= I ({e} {BY) +

where we set B/ = #(A)E and Q' = %m. Let

14+Q'parw - Q'Papw
F = : : .
Q/pnpi 1+Q/Pnpﬁ

41



Then D — CA™'B = F({a}',{B}'), and by the induction hypothesis,

_leﬁpa7 « # 57 a+ B even,
det(D — CA™'B) =

+Q/pﬁpav « 7& 5; o+ ﬁ odd.

Therefore,

det(§) = det(A) det(D — CA™'B)

—Qpspa, o #F fB,a+ [ even,

+Qp5paa a#ﬂaa+50dd'

Lastly, if @ > (3, the augmented matrix of g, obtained by deleting the a-row

and [-column, can be blocked off in the following manner:

9=9({a}" . {B})

1+Qp1pt - Qpipg=—t Qpirgsr - QpPipw

Qpp—1P1 - 14+Qps—1Ppg=7 | QPs-1P557 --- QPs—1Pmw
Wpppt -+ QPBP=T Qpppgxy - QPsPw
Qpapt - QPaPz—1 QPapssTs -+ QPabm
Qpnpy -+ QPnpg—t1 QPnpzsT - 1+ QPrpw

A| B

= )
C|D

where © denotes the deleted entry. By the induction hypothesis, A is invertible
and det(4) =1+ QX?™!. Hence,

det(g) = det(A)det(D — CA™'B).
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In addition, by Cramer’s rule,

_ dj(A)
AT B =2
¢ Cdet(A)
Qppspgyy -+ QrspPm
_ Q! i
= det(A) Qpa%m Qpapm
Qpni.ﬂﬁ — Qpapm
d _
_ et(A) lE.
det(A)

Note that D = I~ ({a},{B}’) + E. Hence, we have

_ det(4) -1

det(A) E

D—CA™'B =1]""({a} . {B}) + E

1
det(A) E

=17 ({a} {B}) + E',

= I ({a} {B}) +

where we set B/ = #(AWE and Q' = %(A). Let

4+Q'pspz - Q'pspw
F = . : .
Q'parg - 14Q'Pnpw
Then D — CA™1B = F({a}',{B}’), and by the induction hypothesis,

—Q'pppa, a# B,a+ B even,
det(D —CA™'B) =

+Q'pspa, a# B,a+ B odd.

Therefore,

det(§) = det(A) det(D — CA™'B)
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_Qpﬁpaa « 7£ Bv o+ ﬂ even,

+Qpspa, a# f,a+ [ odd.

For the final statements, by definition of the adjugate matrix, we have that

1+Q¥Y, —Qpmps ... —Qpipm
, —Qpepz  1+QXY, ... —Qpopm
adj(g) = . .
—Qpapr —Qpaps ... 14+QET,
By Laplace’s formula, det(g) = 1+ QX7. O

Corollary 5.3. Suppose that the Levi matriz g of the hypersurface M is given
by

9oB = 005 + QPaPg-

Then at every point of M,
B q
9" papz = e
where (g*P) is the inverse of (907)-

()

Then by Lemma 5.2 and Cramer’s rule,

Proof. Set

det(g) det(g) 1+ QX7
_ o q
1-Qq

Here we used the fact that p(z,%z) + ¢(w,w) = 0 on M and p(z,z) = &} when
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hog = 0,3 O
Corollary 5.4. Suppose that the Levi matrixz g of the hypersurface M is given
by

907 = hop + @papsz,

for some n x n hermitian positive definite matriz (haﬁ)- Then at every point of

M

)

oB q

9 Pabg = _1*762(]7

where (g°P) is the inverse of (903)-
Proof. By Sylvester’s law of inertia’, there exists an invertible n x n matrix

S = (sap) such that I,, = S(h,5)S™. Hence,

9= (h,5 + Qpapp)
= ST In + Q(pop5))(S™H)"

_ S—lgl(s—l)*.
Here, ' = I, + Q(plpy) and pp = 320, saqpy- Let
P1
Pn
and p' = Sp = (p},...,pl,)". By Corollary 5.3,

P9~ =10"(5"(g") 718D = (Sp)"(¢') 7' (Sp)

"Recall: Two square matrices A and B are *-congruent if there is an invertible matrix
S such that SAS* = B. Also, the inertia of a Hermitian matrix A is defined to be the tuple
(n4,n0,n—), where n is the number of positive eigenvalues of A, ng is the number of zero
eigenvalues of A, and n_ is the number of negative eigenvalues of A.

Sylvester’s law of inertia (Hermitian Version): Let A and B be Hermitian square
matrices. Then A and B are *-congruent if and only if they have the same inertia.
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O

Lemma 5.5 (Webster; [17], [19]). For the real hypersurface M with contact

form 6 = —i0r, the pseudohermitian curvature tensor Raﬁuf can be written as
R.3,5 = —A9,59% + 9,590v) — BPapspupr, (5.12)

where we set

B Q
A=— T~ 0q (5.13)
and
- () (2)
Guwqw quw qw
3 Qw) 2 q
+3Q +‘(qw +Q T 0 (5.14)

Proof. Recall that this calculation holds only when ¢z # 0.
The dual frame (X, X,, Xz) of (6,0, 0%) can be obtained from the differ-

ential of a function f on M as follows:

df = fadz® + fudw + f7d2" + fmdw
= fadz® + fudw + f3d2P + frdw

yPap g Peggse e fwdz Y8 pods?
qu qu qw

= fodz® — z—afwdza + fEdzB fwdz
w

Juw fw
+ - (padz® + qudw) q—w ( )
= fadz® = P2 20+ frae? — 2B paiP
qu qw
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o ful — — fu. (5.15)
qw

w

Since § = 6 on M, (5.15) becomes

df = fadz" +in o — P2 fudz® — pan® fub + f5d=P —in® f30
qu qu
B fdeP g o~ ) — — ) — in® ol + i 30
W qw ) qw
i i
+ =" ful — —pyn” fawt

qQuw qw

= (o= Lop ) @ ine0) (F5- 2o ) (a7 - inPo)
qu qw

- 3 i i _
+ (—m fo+in’f3+ ;(1 +pyn") fw — qj(l +W7”)fw) 0

w

= Xof0° + X5f07 + X f0, (5.16)

where we set

X = —in® + 10 + — (1 + pon") O — q%(l + ponT) Oy (5.17)

w w

and

Xo=X,. (5.18)
The procedure of [17] then shows that

RaEW = _XVXugaE + gngﬂgaEngyg + guon” (ong,yﬁ - Xy ga3>

= 9,5XvMa — 9av XNz — GuwXallg — Na59uw — TN 9avd,5-
(5.19)

By expanding (5.19), we can express RaEW in terms of the p,, the Levi matrix
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9,5 and with coeflicients only in terms of w and w.

Recall that, by definition of the Levi matrix, we have that

P.g =945 — QPQ%

By Corollary 5.4,

— : 5.20
oy (5.20)
Here, (¢7¢) is the inverse of (g,z).

Since Pop = h,p is constant, and by definition of the p, and @, we have that
_ Pu
X/Lgag - a/t - ;aqu paﬁ + Qpapﬁ
w
_ Qu
= QPap,5 — ——PaP5Pp-
qQu

Hence, (5.19) can be expanded thusly:

w

Pw Qu
_XUX;LQQB = - (% - Taﬁ) (onzpu,@ - qpapﬁpu)
w

= —Q9av9,5 + Q*9orpupz + Q*9,5P0pv — Q°Pabgpupv

Q Qu Q
+ ngaﬁpﬁpu - Q o papﬁpp,]% + gul/poc B
w
Qw Qw Q w
+ —=9,5PaPr — Q—— e 2 popgpupy;  (5.21)
qw Guwdw

z z Pu Pw
9" Xu90=X59.5 = 97° (onzpue - 7q/ prap?) (prpg - quww 'ypﬁ)
w w

Qw
= Q 9uvPalPg 2Q p(xlrpu]r Q papgpul%
Qu

Q 2
— Q7 Papspupy + ’ . + Q| papgpupvC;  (5.22)

w
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e (Xag,yﬁ - ngag) = Gurl (anﬁp’y - nggpa)
= ~0u9""Qp= Q9,30+ — Q0,500 )

= —Q%9,59:wC + Q*9,wPapz (5.23)

2
—9,5XvN0 = —9,5 <—Qpau + TQm%)

w

w

Qi
= 9,3 <ngw + Q*papy + ﬁpam

Qi
= Q9av9,5 — Q*9,5PaPv — T;gugpam; (5.24)
_ 2 Qu .
=907 Xully = QYavl,5 — @ GorPuPy = - ~9arP5Pus (5.25)
w
2 Qw
97X otz = Q959w — Q° gurPabz — 2, JumPals; (5.26)
w
~NaMlgGuv = _QQQMUpapE; (527)
—1y10" 9awd,5 = —Q*9ar9,5C (5.28)
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By combining (5.21)-(5.28) and replacing the C’s with (5.20), we obtain the

following formula for the pseudohermitian curvature tensor:

Qwﬁ
——PaPgPubv
w

Q Qw
R 5.5 = —2Q—"papgpubv — 2Q~——PaPzbuPv —
q fw Gl

afuv
w
2
PapzpupvC — Q*9,59,wC

Qu
— 3Q°Papgpury + ’q +@Q°

+ anﬁgug + anﬁguﬁ - ngaﬁgﬂﬁc
2 _ __
= ( g, Q) (903907 + 9079,5) — (Q“’“’ +2Q <Qw + Q“’)

1-Qq Guwlw Qv  Gw

Qu 2 2 q
+3Q% + ‘ +Q% PaP5PuPy+
quw 1-— Qq pEK
Q ) ( (wa (Qw Qw)
= —\|— 3. v“r av. L*)— +2 — +
( 1—Qq ) \Jo9nw T Jov 8,3 Quw Q T dw
+3Q3+’Q“’+Q22- L) papgpurs
Quw 1-Qq L
=-A (gaﬁguﬁ + gafgug> - Bpapgp,upﬁy (529)
where we set
A=— Q
1-Qq

and

e (%) (2)
Guww qu qw

+3Q3+’<Q“’)+Q22 4_
qw 1-Qq

O

Corollary 5.6 (Webster; [17], [19]). For the real hypersurface M, the pseudo-

hermitian Ricci curvature tensor R,z and the pseudohermitian scalar curvature
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tensor R can be written, respectively, as

R,z =—(n+1)Agw + Bpu.pw (5.30)

q
1-Qq

and

R:—n(n+1)A—B(1_qu)2. (5.31)

Proof. By definition (2.21), in addition to (5.20) and (5.12), we have that

« aa
R,z = R, wo — 9 Roauw

= 9" (~ Algorgyv + Goryim) — Bpapap,pr)

« o q
=—AJ a9uv — A6 v9uw + Bpupvl _ Qq

q
=—(n+1)Ag,n + Bp,pv——+—
( ) 13 12 1_Qq

and

R = Ruu — g“ﬁRug

o q
= gh* <— n+1)Ag,z + Bp ]%)
( ) 10 MHl_Qq

2
= —(n+1)Aé", - B <1 _qu>

O

Corollary 5.7 (Webster; [19]). For the real hypersurface M, the pseudoconfor-
mal curvature tensor Saﬁ;ﬁ can be written as
Bq?

S 5= <7§ 7(1?)_Ba 7
B = g D)t 2)(1 - Qq)? \Jophw T Iyiplow ) = EPelgRbe

o1



b (9030005 + 9,50ab5 + GawPuD5 + Gupary)
T 2)(1 = Qg) \JaBPuP? + 9,5PaPy + JavPuP5 + guvPaPs ) -

(5.32)

Proof. Recall from (2.20) that S5, can be written as
o Raﬁguﬁ + ngw + RaDgHB + R;LDQQB
aBur n—+2
R(90z9us + 9avd,p)
(n+1)(n+2)

By Lemma 5.5 and Corollary 5.6, we have that

q
R/Lﬁgag = 7(71 + 1)Aga§g/ﬁ + Bgagp’upyi_

1-Qq
Hence,
Saﬁui = _A(gaﬁguf + gafguﬁ) - Bpapﬁpupi
2(n+1)A n(n+1)A
(TL + 2) (gaﬁguu + gal/g#ﬁ) - (TL + 1)(n + 2) (gaﬁguy + gayg#ﬁ)
Bq
T m+2)(1-Qq) (%EP;LW + 9,5Palv + JavPuPg + g#gpa%)
B q 2
S (n+1)(n+2) <1 - Qq> (925907 + 9a9,.5)
Bg?
= 39uv w9, 3) — BPa &
(n+1)(n+2)(1 — Qq)? (gaﬁg“ 9 guﬁ) PaPgPupv
Bq

T (n+2)(1-Qq) (gaEpMW + 9,5PaPr + GowPubz + g,mpapg)

A 2(n+1)A nA
AT n+2  n+2 (903947 + 9av9,5)
Bg?
T BIuY ov9,73) — BPa -
(”+1)(”+2)(1—Qq)2(ga59“ + 9av9,5) = Brapgpupv
Bq

T3 0g) (9P + Gsbaby + Gaspubs + Gurbaps)
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5.4 Gaussian Curvature K

Now we will compute the Gaussian curvature of Dy with respect to the hermitian

metric h:

Lemma 5.8 (Webster, [19]). The Gaussian curvature K of the metric ds®> =

hdwdw on Dq is given by

3
q
K=-2 + ﬁ (kqum + QQuvuwwuow — Quwdowduwww

—QwqwwQuww + waqw@qm) ) (533)

where k = quqw — qQuw-

Proof. By definition,

K=="
h7

where 050y, log(h) = Kodw Adw. Recall that the hermitian metric h on Dy was
defined by
wYw ww k
p = o~ Quww _ ~

q? e

By definition of the partial derivatives and direct calculation,

kv = @wqww — 9Quuwim,

ks = Qulww — 99www,

kv = Quwlss — 9Quuwos-
Hence, we have that
ke 2qw
Oz0y log(h) = Ox (kdw — qdw)
q

dw N dw

= (kkwod® — kwkwd® — 2k*qque + 2k quaw) “BE

]



= (- qwtwtwers — ¢ Gwwtwotos + 4" Quwtwwss
3 3 4
+ 9" o quwwdwow + 9 Qulrwdwuwew — 9 Quuwwow

+ 66*qudntus — 20" qus° + 20w ¢w"
dw N dw

2 2
—69qw " qw me) T{]Q

- (7kqum — QuwQuwww + Gwqww quwww

4

kzdﬁ/\dw

+qw qow9uwww — quwEQwW)

2k
q
Now we set

Ky = (kawW + Guwuvwdow — wquwwIwoww
q 2k

—Quwmwdwuws T QwaEQwW) p q2 .

Hence,

KO q2
K== Kg,*
h 0%

3

q
=2+ ﬁ (kawW + Quw Qo ow — Gwdww Ivww

—Quw9rwduwww + quwEQwW) -

Corollary 5.9 (Webster, [19]).

2
B— m (5.34)
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Proof. Recall that B was defined earlier to be

2

B—wa+2Q<Qw+Qw>+3Q3+‘Q“’+Q2 . q ,
quwqw w W ) 1-Qq
where

Q _ Quw

B QwQW'

By definition, we have that

G lTGwwss — (5wwdes — Guwlvs
Qw = 2 2 5
qu 4w
GwlzGuwss — Ews — Qwlvsos
QU = 2 2 )
qu 4w

and

Qwﬁ = (quqﬁ?)waW - QQw2%3QwEwaE - Qw3%2C]Wwaw
— 0w’ 05" QwwGws + 2quwls Qwwlws” + Quw’ G5 GwwGwsfos
1
1

—2¢u° ¢5° Quz Qs + Gw’ 9o Guo: + 2(1w3QWQwE2qm) a1
G~ qw

Hence, we can expand each term of B as follows:

Qwﬁ
quwdw

= (00’ 05" Quwwos — 24w’ @5° Qwiwes — Gw° Go° doedwws

— 40’5 Qwwluwss + 200ls Qwwles + Guw” @ Gwwlws s

1
7w’ ¢w®
(5.35)

—20u° 47 Quuss + G Go Qus + 20w’ (e lus dow)

b

Qu , Quw
2Q (qw + TLU = (2qu7%2quwaE - 2%2(1111111(]10@2 - 4Qw%qw@3
w w
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1

+2QwQQEQwEQwW - 2QwQQwEZQW) 4 1 (5.36)
G 9w
3¢5
3Q% = WU, 5.37
g5 (5:37)
Q : q
'w +Q% - = (¢ 07" Quuwstwss — G’ GodwslTsdwws
qu 1-Qq
2 o 2 q
—Quwiw Qwwlvwduow + QwlwGww Qws Qw'w) Lo dg 4
quw 9w
(5.38)

Adding (5.35)-(5.38) together gives us

2

Qu
Quw

o q
1-Qq

= (kquw’ 45" quwwos — kaw’ @5° twoduws — kgw’ 4o Guwdwss

B =

wa+2Q(Qw+% +Q2

) +3Q° + ‘
Guw9w quw qw

+ kw95 Qo Gwodos + 49" G5 QuesQuos — 99" 9o QuodosGoes

1

—49w” 4" u Gudums + 490’ Guwlos” tww) 55
qu " qw

= (kqw’ 45" Qwwos — Q' @5 Grodwes — Gu’ 9o Gwwlvos

3 3 o 3,3 PV 1
+0u’ ¢ Quw Gwndos + 49w’ o Quusdurs) 75—
ka qw
_ ((K + 2)qw3qw3k3) 1
¢ kqu® gz
_ (K +2)k
P qa®

5.5 Proof of Theorem 1.2

With the above formulas, we can now prove Theorem 1.2:

Proof of Theorem 1.2. We prove the theorem by way of contradiction. Let w €
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Dy and (z,w) € M. Let us assume that f : M — S™ is a smooth CR embedding

of M into S™ such that 1 < n <7 < 2n — 1. We give Dy the hermitian metric

B = (IwQUq—Q quﬁ.
and assume that the Gaussian curvature K of the metric h satisfies K > —2 at
w.

Denote by (wa®,) to be the second fundamental form matrix of f rela-
tive to an admissible coframe (6,604,64) on S™ near f(M) which is adapted to
(6,6%,6%) on M. We follow [5] by identifying f(M) = M in S®. In addition,
we identify T'; &Z w)S"/f* (Z wyM = (T(lz’?w)M)L with respect to the Levi form

relative to 6 and we consider the second fundamental form as a C-bilinear map
T M x TS, M — T8 s™/ LT M

By the pseudoconformal Gauss equation (4.7), we have that

[gagyf] = Sa?y,? + [gal;waauwBbD]a (539)

where S denotes the pseudoconformal curvature tensor of S™ restricted to

oBuv

M. The square bracket notation, [-], will again denote the traceless component

of a tensor. Since S” is a sphere, by the results of Chern-Moser [2], SaB,r

0,
implying
Saﬁuﬁ + [gal_)waauw,ébp} =0 (540)

By the definition of the traceless component,

Saﬁpi + gaEwaauwﬁb,; = HaBg/u/ + a uB9ap + Hal/guﬁ + HW’QQB? (541)
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for hermitian matrices (H,3), (H,3), (Har), and (Hyy). Replacing S 7 ., with

(5.32), we obtain

gaEwaa,uWBbD - Bpozpﬁp,um = TaEuF’ (542)

where we set

Tagup = Hoa9ui + Huﬁ_gaz’/ + HaDguB + Hu,f/gaﬁ_

" By (9,590 + 9,007
(n+ D)0+ 2)(1 = Qq)? \JoRIi7 ™ Juser
Bq
+ m+2)(1-0q) (gagpuw + 9,5PaPv + GawPuPz + g;mpapg) :
(5.43)
So, for all (non-zero) X = Xaa%, € T(lz’Ow)M7

Taﬁu?XaXﬂXMXU = ap (wa", X X") (wBbDXﬁXF)

— BpapgpuprX XXM X7 (5.44)

Note that the left-hand side is of the form H (X, X)|X|?. Hence, by the restric-

tions on the dimensions n and 7, Corollary 4.4 implies

Gap (Wa®, XOX) (wBEDX5X7> — Bpapgpupr XX X1XT =0 (5.45)
By definiteness,
Gap (0a", XOXH) (LAJBBDXBXU) > 0. (5.46)

Since w € Dy, we have that ¢ < 0. Therefore, by (5.34), K > —2 implies that
B < 0. Thus,

~BpapspupeX “XPXIX7 > 0. (5.47)
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(5.45) combined with (5.46) and (5.47) is a contradiction. Hence, the assumption

is false and no smooth CR embedding f : M — S™ exists. O

6 Further Results

The techniques used in the previous section can be used to prove a Kéhler
version of Theorem 1.2.

Recall that a holomorphic mapping f : (X, gx) — (Y, gy) between hermitian
manifolds is called conformal if f*gy = hgx, where h is some positive function
on X. Note that, when X and Y are both Kéahler and dim X > 1, the conformal
coefficient h is a positive constant (which we will assume so in this case).

A tensor T, 5,7 over a complex manifold is called pseudoconformally flat if,

in any holomorphic chart, we have
Taﬁﬂp = Haﬁguf + Huﬁgaﬁ + Haﬁguﬁ + Hpﬁgaga
where (H,3), (H W) (How), and (H,) are smoothly-varying hermitian matrices

and (gag) is the local representation of the hermitian metric over the chart.

Proof of Theorem 1.4. Pick an arbitrary point p € X in a holomorphic coordi-

nate neighborhood (U, ¢) of X, where the coordinates are given by

Let (V, 1) be the holomorphic coordinate neighborhood of Y such that

f(U)CV, flp) €V,and ¥ = (w',...,w").
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By the Gauss-Codazzi equation®,

_ b
RQEMV — RQEMV = gagwa“uwg 7 (61)

where R = _ is the curvature tensor of Y restricted to f(X), R is the

aBuv aBuv

curvature tensor of X, g 7 is the local representation of the hermitian metric on

Y, and w,?, is the local representation of the second fundamental form of f.

By assumption, Y is pseudoconformally flat, and hence,

Raﬁup = Haﬁguﬁ + Huﬁgaﬁ + Hoc?gluﬁ + Huﬁgaﬁ7 (62)

where (H,5), (H uF) (How), and (H,5) are smoothly-varying hermitian matri-

[e%

ces. Since f is conformal and X pseudoconformally flat, we also have that

Raﬁu? = Jaﬁg,uﬁ + jﬂﬁgaf + jaig#E + j,ufgaﬁa (63)
where (J,3), (J A (Juw), and (J,7) are smoothly-varying hermitian matrices.

For a non-zero Z = Z%5% € T,°X, (6.1)-(6.3) gives us
R TS A AV ALY A W BV AY AV AV A (6.4)
where

T

aBuv = HQEQ;LP + Huﬁgaﬁ + Hoﬁgug + H,uﬁgaB

- aﬁguﬁ - Juﬁgaﬁ - Jaﬁguﬁ - Jufgaﬁ-

8Gauss-Codazzi Equation. From Riemannian geometry, let M be an n-dimensional
submanifold of the n + p-dimensional manifold P. Then, for all X,Y,Z, W € TM,

(Rp(X,Y)Z,W) =(Rp (X, Y)Z, W)+ (II(X,2),II(Y,W)) — (II(Y, Z),[I(X,W)),

where R. is the Riemannian curvature tensor and I is the second fundamental form tensor
of a mapping M — P.

60



Since the right-hand side of (6.4) is of the form |Z|*h, for some hermitian
function h, and by the assumption on the dimensions of X and Y, Corollary 4.4
implies that

gagwa“#wggﬁZO‘ZﬁZ“Zj =0.

Since g, 3 is positive definite, we must have that w,“, = 0. Hence, f is geodesic

at p € X. Since p are chosen arbitrarily, f is totally geodesic on X. O
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