
SNAPSHOT LOCATION IN PROPER ORTHOGONAL

DECOMPOSITION FOR LINEAR AND SEMI-LINEAR

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

A Dissertation

Presented to

the Faculty of the Department of Mathematics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Zhiheng Liu

August 2013

SNAPSHOT LOCATION IN PROPER ORTHOGONAL

DECOMPOSITION FOR LINEAR AND SEMI-LINEAR

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

Zhiheng Liu

APPROVED:

Prof. Ronald W. Hoppe,
Chairman

Prof. Tsorngwhay Pan

Prof. Ilya Timofeyev

Prof. Danny C. Sorensen

Dean, College of Natural Sciences and Mathematics

ii

SNAPSHOT LOCATION IN PROPER ORTHOGONAL

DECOMPOSITION FOR LINEAR AND SEMI-LINEAR

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Mathematics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Zhiheng Liu

August 2013

iii

Abstract

It is well-known that the performance of POD and POD-DEIM methods depends on the

selection of the snapshot locations. In this work, we consider the selections of the locations

for POD and POD-DEIM snapshots for spatially semi-discretized linear or semi-linear

parabolic PDEs. We present an approach that for a fixed number of snapshots the optimal

locations may be selected such that the global discretization error is approximately the same

in each associated sub-interval. The global discretization error is assessed by a hierarchical-

type a posteriori error estimator developed from automatic time-stepping for systems of

ODEs. We compare the global discretization error of this snapshot selection on error

equilibration for the full order model (FOM) with that for the reduced order model (ROM)

to study its impact. This contribution also shows that the equilibration of the global

discretization error for the FOM is preserved by its corresponding POD and POD-DEIM

based ROM. The numerical examples illustrating the performance of this approach are

provided.

iv

Contents

1 Introduction 2

2 Evolution Equations and their semi-discretization in space 6

3 POD and DEIM 11

3.1 Galerkin POD for Evolution Equations . 11

3.1.1 POD and SVD . 11

3.2 POD Discrete Empirical Interpolation (POD-DEIM) 13

4 Snapshot Location in POD 18

4.1 Error estimator for systems of ODEs . 18

4.1.1 General non-linear systems. 18

4.1.2 Linear and semi-linear systems. 21

4.2 Equilibration of the error in time . 24

4.2.1 Newton’s method for full order model (FOM) 26

4.2.2 Newton’s method for the POD based Reduced Order Model (ROM) 31

4.2.3 Newton’s method for the POD-DEIM based ROM 37

4.3 Error equilibration for the POD and the POD-DEIM based ROM 44

4.4 Snapshot location based on optimization . 49

5 Numerical Results 52

5.1 Linear parabolic equations . 52

v

5.1.1 Error equilibration in time . 53

5.1.2 Comparison of two strategies for snapshot location 60

5.2 Non-linear parabolic equations . 62

5.2.1 Example 2: Error equilibration in time 62

5.2.2 Example 3: Error equilibration in time 70

6 Conclusions 76

Bibliography 78

1

Chapter 1

Introduction

Proper orthogonal decomposition (POD) is one of the most popular model order reduction

methods that has been widely used in data analysis, pattern recognition, optimal control

and inverse problem. The POD technique assumes the availability of the states (snapshots)

y(tj) at times {tj}mj=0 of the system:





dy

dt
= f(t, y(t)) t ∈ (0, T],

y(0) = y0,

where f(t, y(t)) is assumed to be linear or semi-linear. The snapshot POD consists in

choosing an orthonormal basis such that the mean square error between the snapshots

y(tj)
′s and the corresponding l − th partial sum is minimized on average, i.e., the POD-

basis is the solution of the following minimization problem:





minJ(ψ, · · · , ψl) =

m∑

j=1

||yj −
l∑

k=1

(yj, ψk)ψk||2,

subject to: (ψi, ψj) = δij for 1 ≤ i, j ≤ l.

And it is well known that the solution of the above minimization problem is given by the

eigenvectors of the following self-adjoint operator:

Rψ =
m∑

j=0

< y(tj), ψ > y(tj), (1.1)

Surprisingly good approximation properties are reported for POD based schemes in several

articles, see [20, 21] for example. However, POD scheme is not able to really reduce

the computational complexity for non-linear systems but on the contrary, it increases the

computational complexity in some sense. As a result, several other methods are developed

to overcome the difficulty of reducing the complexity of evaluating the non-linear term. For

example, the missing point estimation (MPE) proposed in [22]; the trajectory piece-wise-

linear (TPWL) approximation proposed in [23, 24]; and discrete empirical interpolation

decomposition (DEIM) proposed in [4]. Among those approaches regarding methods to

reduce the complexity of evaluating the non-linear term, DEIM is the most recent result

to deal with the non-linear term. DEIM approach employs a small selected set of spatial

grid points to avoid evaluation of the expensive L2 inner products at every time step

that are required to evaluate the non-linearities and focuses on approximating each non-

linear function so that a certain coefficient matrix can be precomputed and, as a result,

the complexity in evaluating the non-linear term is proportional to the small number of

selected spatial indices. Hence, the reduced system from the procedure of DEIM considers

both a POD basis for the the state variables and a POD basis related to each non-linear

term.

On the other hand, one can deduce that both POD and POD-DEIM method require the

3

availability of the states (snapshots) y(tj) at times {tj}mj=0 of the discretized system and

for fixed l, a solid upper bound (state error) of J is given by the sum of eigenvalues of R

after l− th index. This gives the rise to the interest of allocating the POD basis according

to the time sub-intervals such that the global state error is minimized. [13] presents a

method for allocating the optimal locations of the POD basis for linear PDE by adding

new snapshots to the existing fixed snapshots, then proceed to solve the optimal locations

of newly added snapshots by minimizing the integral form of the global state error:

J(yh, t̄, φ) =

ˆ T

0
‖y(t, x)−

l∑

i=1

yh(ti, x)φi‖ dt, (1.2)

where yh(t, x) is the FE solution of the reduced system based on the fixed snapshots plus

newly added snapshots. This approach is able to dramatically reduce the cost function

J(yh, t̄, φ) but is also restricted to the linear systems.

In this thesis, we present the error equilibration in time approach to select the snapshot

locations in a different point of view. We select the locations such that the global discretiza-

tion error is approximately the same in each associated time sub-interval. This approach is

developed from the ideal of the automatic time-stepping method (ATSM), which employs

the a posteriori error estimation and an adaptive time step such that the change between

two successive error estimations is bounded by the given tolerance. Unfortunately, the

adaptive time step may become too small comparing to the mesh size when the solution

of the system changes rapidly and hence a super large amount of steps are expected to

occur. Different from ATSM, error equilibration in time deals with a fixed number of

steps and requires to allocate the snapshots such that each error estimator is of the same

order of magnitude in the associated sub-interval, i.e., it is the error estimator that is

adaptive. This contribution is organized as follows: Chapter 2 is devoted to the Galerkin

semi-discretization in space for evolution equations. The POD and POD-DEIM methods

4

are reviewed in Chapter 3. Global discretization error for the full order model (FOM) and

the reduced order model (ROM) are developed and studied in Chapter 4. In Chapter 5,

some numerical examples are presented.

5

Chapter 2

Evolution Equations and their

semi-discretization in space

We consider the semi-linear parabolic PDEs that can be written as the abstract evolution

equations according to:




y′(t) + Ay(t)− f(t, y(t)) = 0, t ∈ (0, T],

y(0) = y0,

(2.1a)

(2.1b)

where y′(t) := dy/dt and A is a linear second order elliptic differential operator with

D(A) = H2(Ω) ∩ H1
0 (Ω), Ω is a bounded polyhedral domain in R

N (N = 1, 2), with

boundary Γ := ∂Ω.

We further assume that:

T > 0, y0 ∈ L2(Ω),

and

f ∈ C([0, T], L2(Ω))

6

satisfies the Lipschitz condition in the second argument, i.e.,

‖f(t, y1)− f(t, y2)‖L2(Ω) ≤ Lf‖y1 − y2‖L2(Ω), y1, y2 ∈ L2(Ω), t ∈ [0, T], (2.2)

for some constant Lf > 0. In particular, we assume A to be of the form:

Ay = −
N∑

i,j=1

∂

∂xj
(aij

∂y

∂xi
)−

N∑

i=1

bi
∂y

∂xi
− cy, (2.3)

where bi ∈ L∞(Ω), 1 ≤ i ≤ N , 0 ≤ c(x) ∈ L∞(Ω), and aij ∈ L∞(Ω), 1 ≤ i, j ≤ N , such

that for some α > 0:

N∑

i,j=1

aij(x)ξiξj ≥ α‖ξ‖2, ξ ∈ R
N , ∀x ∈ Ω.

Moreover, we assume the coefficient functions to be such that −A − ǫI is dissipative for

some ǫ > 0 with D(A) ⊂ R(I − hA), where 0 < h < 1
ǫ
. Then, the solution operator of

(2.1a), (2.1b) is a non-linear semi-group ([7, 8]). In case f does not depend on y, (2.1a)

represents a linear evolution equation whose solution operator is a strongly continuous

linear semi-group.

The computation of snapshots is done with respect to a spatially discretized system of

equations (2.1a), (2.1b), for instance, the finite element method ([25, 26]). We define the

function spaces:

W (0, T) = H1((0, T),H−1(Ω)) ∩ L2((0, T),H1
0 (Ω)),

W̄ (0, T) = {y ∈W (0, T)|f(t, y) ∈ L2(Ω), t ∈ (0, T)},

The finite element method is based on the variational formulation of (2.1a), (2.1b) such

7

that for almost all t ∈ (0, T) and v ∈ H1
0 (Ω), it holds:





<
∂y

∂t
, v >H−1(Ω),H1

0
(Ω) +a(y, v)− < f(t, y(t)), v >L2(Ω) = 0,

< y(0), v >L2(Ω) =< y0, v >L2(Ω),

(2.4a)

(2.4b)

where the bi-linear form a(·, ·) : H1
0 (Ω)×H1

0 (Ω) is given by:

a(y, v) = −
N∑

i,j=1

ˆ

Ω
aij

∂y

∂xi

∂y

∂xj
dx+

N∑

i=1

ˆ

Ω
biv

∂y

∂xi
dx+

ˆ

Ω
cyv dx (2.5)

A function satisfying (2.4a), (2.4b) is called a weak solution of (2.1a), (2.1b). For the

existence of a weak solution, we refer to [5, 14]. In particular, under the previous assump-

tions on the operator A and the non-linear mapping f , the existence of a weak solution is

guaranteed.

For the finite element approximation of (2.4a) and (2.4b), we let {Th(Ω)} be a shape regular

family of geometrically conforming simplicial triangulation of Ω. We denote the set of nodal

points of Th(Ω) by Nh(Ω) and set n = card(Nh(Ω)). For Tr ∈ Th(Ω), we refer to hTr
as

the diameter of Tr and set h = max{hTr
|Tr ∈ Th(Ω)}. We further refer to Vh ⊂ H1

0 (Ω)

as the finite element space of continuous, piece-wise linear finite elements with respect to

Th(Ω). Let P1(Tr) be the set of polynomials of degree no more than 1 on Tr, then:

Vh = {vh ∈ C(Ω̄)|vh|Tr ∈ P1(Tr), Tr ∈ Th(Ω), vh|Γ = 0}. (2.6)

We note that dimVh = n and Vh = span{φ1h, · · · , φnh}, where φih stands for the nodal

basis function associated with the nodal point ai,h ∈ Th(Ω). Then the finite element

approximation of (2.4a) and (2.4b) reads: Find yh ∈ C1([0, T], Vh) such that for all

8

t ∈ [0, T] and vh ∈ Vh it holds:





<
∂yh
∂t

, vh >L2(Ω) +a(yh, vh)+ < f(yh), vh >L2(Ω) = 0,

< yh(0), vh >L2(Ω) =< yh,0, vh >L2(Ω),

(2.7a)

(2.7b)

We may identify the finite element function yh(·, t) with a vector y(t) and denote by

M, A ∈ R
n×n the mass and the stiffness matrix, respectively, such that:

y(t) =




y1,h(t)

...

yn,h(t)



, yi,h(t) = yh(ai,h, t), ai,h ∈ Th(Ω),

M = (Mi,j) = (< φih, φ
j
h >L2(Ω)), 1 ≤ i, j ≤ n,

A = (Ai,j) = (a(φih, φ
j
h)), 1 ≤ i, j ≤ n.

We further refer to y0 as the vectors with components:

y0 =




< yh,0, φ
1
h >L2(Ω)

...

< yh,0, φ
n
h >L2(Ω)



,

and denote by f(t,y) : Rn → R
n, t ∈ [0, T] the non-linear map:

f(t,y) =




< f(t,
n∑

j=1

yj,hφ
j
h), φ

1
h >L2(Ω)

...

< f(t,

n∑

j=1

yj,hφ
M
h), φnh >L2(Ω)




.

Then, the finite element approximation (2.7a) and (2.7b) can be equivalently written as

9

the following initial-value problem for a system of non-linear first order ODEs:





My′(t) +Ay(t)− f(t,y(t)) = 0, t ∈ [0, T],

My(0) = y0.

(2.8a)

(2.8b)

Since f is continuous and satisfies the Lipschitz condition in the second argument, due to

the Theorem of Picard-Lindelöf ([6]), the initial-value problem (2.8a) and (2.8b) admits a

unique solution.

We consider (2.8a) and (2.8b) as the Full Order Model (FOM) for which we will describe

the application of the POD and POD-DEIM in the following Chapter 3.

10

Chapter 3

POD and DEIM

3.1 Galerkin POD for Evolution Equations

3.1.1 POD and SVD

In this chapter, we consider the singular value decomposition for a linear map from finite

dimensional Hilbert space V into another finite dimensional Hilbert space W.

Proposition 3.1. Let F : V → W be a linear operator and dim(V) = m, dim(W) =

n, m ≤ n. Then there exist non-zero real numbers σ1 ≥ σ2 ≥ · · · ≥ σm; orthogonal basis

{υk}mk=1 of V and orthogonal basis {ω}mk=1 of W such that:

F (υk) = σkωk, and F
∗(ωk) = σkυk for k = 1, · · · ,m.

Proof. For a proof we refer to Proposition 1 in [9].

Proposition 3.1 implies the following corollary.

11

Corollary 3.2. Under the hypothesis of Proposition 3.1 we have:

F ∗F (ωk) = σ2kωk, and FF ∗(υk) = σ2kυk for k = 1, · · · ,m.

The Proper Orthogonal Decomposition (POD) can be formulated as a constrained mini-

mization problem. For that purpose, we consider the initial value problem (2.8a), (2.8b)

and assume the availability of the snapshots {y0,y1, · · · , yM} ⊂ R
n, where yi = y(ti) is the

finite element solution of (2.8a), (2.8b) at time instance ti, where 0 ≤ ti ≤ T, 0 ≤ i ≤M .

For any l ∈ N, l < n, we want to find the orthonormal basis {ωk}lk=1 such that the

mean square error between the members of the ensembles and their l − th partial sum is

minimized:

(Pl)





minJ(ω, · · · , ωl) =

M∑

j=1

||yj −
l∑

k=1

< yj , ωk > ωk||2

subject to: (ωi, ωj) = δij for 1 ≤ i, j ≤ l

The solution to problem Pl is given in [9] as stated in the following corollary.

Corollary 3.3. Let Y : Rn → R
n, such that Y (υ) =

M∑

k=1

< υ, ek > yk, where ek’s are

the canonical basis in R
n. Let K = (kij), 1 ≤ i, j ≤ n, kij =< yj , yi >, then the POD-

basis {ωk}lk=1 are given by ωk = 1√
λk

Y (υk), where the pair {λk, υk} solves the following

eigenvalue problem:

Kυk = λkυk, for k = 1, · · · , l. (3.2)

The argumented minimal takes the form:

argmin(Pl) =

M∑

k=l+1

λk (3.3)

12

It is clear that the POD-basis {ωk}lk=1 are the eigenvectors of matrix K and because that

the error between the ensembles and their corresponding l−th partial sum is bounded below

by the sum of the suqared singular values after l− th, the major advantage of POD is that

we can choose sufficiently small lower bound with the appropriately chosen dimension l.

The matrix V = [υ1, υ2, · · · , υl] ∈ R
n×l is the so-called POD basis matrix, which is used to

reduce the order of the model by replacing y(t) by V yl(t), where yl(t) ∈ R
l. We multiply

V T to the equations and get:





V TMV
dyl(t)

dt
+ V TAV yl(t)− V T f(t, V yl(t)) = 0,

V TMV yl(0) = V Ty0

(3.4a)

(3.4b)

(3.4a), (3.4b) are usually refered to as the POD based ROM. The vector V yl(t) is the

POD approximation solution to the FOM (2.8a), (2.8b). The following estimation for the

difference between the FOM solution and the ROM approximation solution holds true:

||yj − V yl
j || ≤ ||IM − V V T || = (

M∑

k=l+1

λk)
1

2 = τpod (3.5)

The constant τpod is the so-called POD state error.

3.2 POD Discrete Empirical Interpolation (POD-DEIM)

We let Ñ(u) = V T f(t, V u) and assume that the non-linear function f(t, y(t)) is continuous

differentiable in y, then the Jacobian of the non-linear term of equation 3.4a is of the form:

Ĵf (u) = −V T fy(t, V u)V. (3.6)

13

In most circumstances, the evaluation of Ñ(u) and the inverse of Jacobian Ĵ−1
f (u) at certain

u = yl(tj) are required to compute the solutions of the initial value problem (3.4a), (3.4b).

But the non-linear term Ñ(u) has a computational complexity that depends on n, the

dimension of the original FOM. In [4], page 2743, the authors show that if there are q

components in the non-linear function f , then the computational complexity for evaluating

Ñ(u) is roughly O(α(q) + 4nl), where α is some function of q, i.e., the computational

complexity of POD based ROM is not reduced at all for non-linear terms.

The same inefficiency occurs in the evaluation of Jacobian Ĵf (u) when a solvers of Newton-

type is used because at each Newton iteration, besides the non-linear term Ñ(u), the

Jacobian must also be computed with a computational cost which still depends on the

dimension of the FOM.

Ĵf (u) = − V T
︸︷︷︸
l×n

fy(t, V u)︸ ︷︷ ︸
n×n

V︸︷︷︸
n×l

(3.7)

The computational complexity for evaluating 3.7 is roughly O(α(n) + 2n2l+2nl2 +2nl) if

Ĵf is dense, O(α(n) + nl + 2nl2 + 2nl) if Ĵf is sparse or diagonal (From [4], page 2743).

In order to reduce the computational complexity of Ñ(u), an efficient way is to approximate

the non-linear function f(u) = f(t, V u) by its projection onto the subspace spanned by a set

of linearly independent vectors {N1, N2, · · · , Nld}, where Ni ∈ R
n×1, 1 ≤ i ≤ ld, such that

for matrix N = [N1, N2, · · · , Nld] and coefficient vector c(u) the following approximation

holds true:

f(u) ≈ Nc(u).

14

We use DEIM method to deal with the approximation of non-linear terms and choose

matrix P such that:

P = [ep1 , ep2 , · · · , epld] ⊂ R
n×ld , where epi = [0, · · · , 0, 1, 0, · · · , 0]T ∈ R

n×1,

and

P T f(u) = (P TN)c(u). (3.8)

Then, we have:

f(u) ≈ Nc(u) = N(P TN)−1P T f(u) = N(P TN)−1f(P Tu). (3.9)

One can combine POD with DEIM, that is to say, POD can be used to reduce the linear

terms while DEIM is used to deal with the non-linear term. As for the projection basis

matrix N , one can apply the POD method to the matrix whose columns are the non-linear

evaluations at different time instances, i.e., the non-linear snapshot matrix, then choose

the first ld eigenvectors as the columns of matrix N . In [4], an algorithm has been provided

by the authors to compute the interpolation indices {pi}ldi=1 for DEIM. The POD-DEIM

algorithm is listed in Algorithm1.

We let f̃(u) = N(P TN)−1P T f(u). It is clear that f̃(u) is indeed an interpolation approx-

imation of the non-linear function f(u) in the sense that

P T f̃(u) = P TN(P TN)−1P T f(u) = (P TN)(P TN)−1P T f(u) = P T f(u)

The following lemma states the error between the f(u) and its approximation f̃(u).

15

Algorithm 1 POD-DEIM

INPUT: Non-linear snapshots {n1, · · · , nm} ⊂ R
n.

OUTPUT: Interpolation indices p = [p1, · · · , pld]T ∈ R
n.

Apply POD to matrix [n1, · · · , nm] and choose the first ld POD basis as U ∈ R
n×ld .

DEIM projection basis matrixU = [u1, · · · , uld].

[|ρ|, p1] = max{|U1|},

N = [u1], P = [ep1], p = [p1],

for i = 2 : ld do

Solve (P TN)c = P Tui for c,

r = ui −Nc,

[|ρ|, pi] = max{|r|},

N ← [N,ui], P ← [P, epi], p← [p, pi].

end for

16

Lemma 3.4. Let f ∈ R
n be any vector function of dimension n, N ∈ R

n×ld be a given

DEIM basis matrix. Then the DEIM approximation of order ld ≤ n for f in the space

spanned by the columns of N is given by:

f̃ = N(P TN)−1P T f,

where P = [ep1 , ep2 , · · · , epld] with p = [p1, · · · , pld] be the output of Algorithm 1. Moreover,

an error bound for f̃ is given by:

||f − f̃ || ≤ CD||(In×n −NNT)f ||, CD = ||(P TN)−1||. (3.10)

Proof. We refer to the Lemma 3.2 in [4].

17

Chapter 4

Snapshot Location in POD

4.1 Error estimator for systems of ODEs

This section is devoted to the numerical solution of an initial-value problem for a system of

non-linear first order ODEs by the implicit Euler scheme and the estimation of the global

discretization error by a hierarchical type error estimator based on the implicit trapezoidal

rule. We first focus on general non-linear systems in R
n and deal with some modifications

for linear and semi-linear systems, then apply the results to the FOM (2.8a), (2.8b).

4.1.1 General non-linear systems.

Given a function f : R+ × D → R
n, D ⊂ R

n, y0 ∈ R
n, and T > 0, we consider the

initial-value problem

y′(t) = f(t, y(t)), 0 ≤ t ≤ T, (4.1a)

y(0) = y0, (4.1b)

18

where y′(t) := dy(t)/dt. If f is continuous in both arguments and satisfies a Lipschitz con-

dition in the second argument, the theorem of Picard-Lindelöf [6] guarantees the existence

and uniqueness of a solution.

For the numerical solution we assume

0 =: t0 < t1 < · · · < tM := T, M ∈ N, (4.2)

to be a partitioning of the time interval [0, T] with step sizes

τm := tm − tm−1, 1 ≤ m ≤M, (4.3)

and we set τ := max {τm | 1 ≤ m ≤ M}. We denote by ym the approximation of

y(tm), 0 ≤ m ≤M, by the implicit Euler scheme




ym − τm f(tm, y

m) = ym−1, 1 ≤ m ≤M,

y0 = y0.

(4.4a)

(4.4b)

We note that at each time step (4.4a) represents a non-linear algebraic system which can

be solved by a Newton type method.

If the solution y of (4.1a),(4.1b) satisfies y ∈ C2([0, T]), the implicit Euler method (4.4a),(4.4b)

is convergent of order 1, i.e., there exists a constant C > 0 such that

‖y(tm)− ym‖ ≤ C τ, 1 ≤ m ≤M.

We are interested in a computable quantity em, called error estimator, that provides an

upper and a lower bound for the global discretization error y(tm) − ym in the sense that

there exist constants 0 < CE ≤ CR satisfying:

‖y(tm)− ym‖ ≤ CR em, (4.5a)

‖y(tm)− ym‖ ≥CE em. (4.5b)

19

An estimator for which (4.5a) holds true is called reliable, since for a given tolerance

TOL > 0 the criterion

em < TOL (4.6)

assures that the global discretization error is of the same order of magnitude as TOL. It

is said to be efficient, if (4.5b) is satisfied which avoids overestimation and thus prevents

waste of computational time.

Let us assume that ŷm, 0 ≤ m ≤ M, with ŷ0 = y0 are approximations of y(tm) which

improve on ym in the sense that for some constant 0 ≤ q < 1 it holds

‖y(tm)− ŷm‖ ≤ q ‖y(tm)− ym‖, 1 ≤ m ≤M. (4.7)

We define ηm = ŷm − ym and choose em := ‖ηm‖ as an estimator. The triangle inequality

‖y(tm)− ym‖ ≤ ‖y(tm)− ŷm‖+ em ≤ q ‖y(tm)− ym‖+ em

infers reliability of the estimator according to

‖y(tm)− ym‖ ≤ 1

1− q e
m, (4.8)

whereas the other direction of the triangle inequality

‖y(tm)− ym‖ ≥ em − ‖y(tm)− ŷm‖+ em ≥ em − q ‖y(tm)− ym‖

implies efficiency of the estimator by means of

1

1 + q
em ≤ ‖y(tm)− ym‖. (4.9)

A natural candidate for providing ŷm is the implicit trapezoidal rule





ŷm − τm
2
f(tm, ŷ

m) = ŷm−1 +
τm
2
f(tm−1, ŷ

m−1), 1 ≤ m ≤M,

ŷ0 = y0,

(4.10a)

(4.10b)

20

which is known to be convergent of order 2 provided y ∈ C3([0, T]), i.e.,

‖y(tm)− ym‖ ≤ C τ2, 1 ≤ m ≤M.

Hence, for sufficiently smooth y and sufficiently small τ the so-called saturation assumption

(4.7) can be expected to hold true.

4.1.2 Linear and semi-linear systems.

In the linear case, the right-hand side in (4.1a) is given by f(t, y) := −Ay+ f(t), where we

assume A ∈ R
n×n to be regular and f ∈ C([0, T]). Then, (4.1a),(4.1b) reads





y′(t) +Ay(t) = f(t), 0 ≤ t ≤ T,

y(0) = y0.

(4.11a)

(4.11b)

At each time step, the implicit Euler scheme requires the solution of the linear system

(I + τmA)y
m = ym−1 + τmf(tm), 1 ≤ m ≤M (4.12)

whereas the trapezoidal rule takes the form

(I +
τm
2
A)ŷm = (I − τm

2
A)ŷm−1,

+
τm
2
(f(tm−1) + f(tm)), 1 ≤ m ≤M. (4.13)

We rearrange terms in (4.13):

(I + τmA)ŷ
m = ŷm−1 +

τm
2
A(ŷm − ŷm−1) +

τm
2
(f(tm−1) + f(tm)). (4.14)

If we replace ŷm, ŷm−1 on the right-hand side of (4.14) by ym, ym−1 respectively, then

subtract (4.12) from (4.14), we obtain

(I + τmA)η
m =

τm
2

(
A(ym − ym−1)− f(tm) + f(tm−1)

)
.

21

Hence, the error estimator can be computed as follows

em =
τm
2
‖(I + τmA)

−1
(
A(ym − ym−1)− f(tm) + f(tm−1)

)
‖. (4.15)

In the semi-linear case, the right-hand side in (4.1a) reads f(t, y) := −Ay + f(y), where

A ∈ R
n×n is regular and f ∈ C(D). The initial-value problem (4.1a),(4.1b) takes the form

y′(t) +Ay(t) = f(t, y(t)), 0 ≤ t ≤ T, (4.16a)

y(0) = y0, (4.16b)

and the implicit Euler scheme reads

(I + τmA)y
m − τmf(tm, ym) = ym−1, 1 ≤ m ≤M, (4.17)

whereas the trapezoidal rule takes the form

(I +
τm
2
A)ŷm − τm

2
(f(tm−1, ŷ

m−1) + f(tm, ŷ
m))

= (I − τm
2
A)ŷm−1, 1 ≤ m ≤M. (4.18)

We use a slightly modified trapezoidal rule by replacing f(tm−1, ŷ
m−1) with f(tm, y

m), i.e.,

we use ym from the implicit Euler scheme as a predictor and the trapezoidal scheme as a

corrector:

(I +
τm
2
A)ŷm − τm

2
(f(tm, y

m) + f(tm, ŷ
m)) = (I − τm

2
A)ŷm−1 (4.19)

and rearrange (4.19) as:

(I + τmA)ŷ
m − τm

2
(f(tm, y

m) + f(tm, ŷ
m)) = ŷm−1 +

τm
2
A(ŷm − ŷm−1). (4.20)

Subtracting (4.17) from (4.20), we obtain:

(I + τmA)η
m − τm

2
(−f(tm, ym) + f(tm, ŷ

m) = ŷm−1 − ym−1 +
τm
2
A(ŷm − ym−1). (4.21)

22

We rewrite (4.21) as:

(I + τmA)η
m − τmf(tm, ŷm) = ŷm−1 − ym−1 +

τm
2
A(ŷm − ym−1)

− τm
2
(f(tm, y

m) + f(tm, ŷ
m)). (4.22)

If we replace ŷm−1, ŷm by ym−1, ym on the right hand side of (4.22) and note that ŷm =

ηm + ym, we obtain the equation for ηm:

(I + τmA)η
m − τmf(tm, ym + ηm) =

τm
2
A(ym − ym−1)

− τmf(tm, ym), 1 ≤ m ≤M. (4.23)

The error estimator em then can be computed from the norm of ηm.

Remark 4.1. By replacing ŷi with yi, for i = m−1 and m in (4.14) and (4.22), we actually

assume that the initial values for the implicit Euler scheme and the modified trapezoidal

scheme are the same. This can be done by taking ym−1
avg = 1

2(ŷ
m−1 + ym−1) as the initial

value for both schemes.

Remark 4.2. Instead of the implicit Euler scheme (4.17) we may also use the semi-implicit

Euler scheme:

(I + τmA)y
m = ym−1 + τmf(y

m−1), 1 ≤ m ≤M, (4.24)

which has the advantage that no non-linear system has to be solved. In this case, the

estimator is given as follows

em =
τm
2
‖(I + τmA)

−1
(
A(ym − ym−1) + f(ym)− f(ym−1)

)
‖. (4.25)

23

4.2 Equilibration of the error in time

The a posteriori error estimation described in section 4.1 provides the possibility of com-

puting an adaptive selection of time instants tm ∈ (0, T), 1 ≤ m ≤ M − 1, such that in

each time sub-interval [tm−1, tm] the global discretization error em is bounded by a certain

portion TOL of ‖ym‖. In order to enforce ‖ em
ym
‖ < TOL, the length of each time step must

be adaptive and as a result, the number of time steps M is not fixed but dependent on the

behaviour of the solution.

A different point of view is to prescribe a fixed number of time steps and choose the

time instants tm, 1 ≤ m ≤ M − 1, such that in each time interval [tm−1, tm] the global

discretization error ‖y(tm)− ym‖ is of the same order of magnitude. Since we do not know

the exact solution, as a substitute for ‖y(tm)−ym‖ we use the error estimator em. In other

words, the goal is to find tm, 1 ≤ m ≤M − 1, such that

em ≈ em′ , 1 ≤ m 6= m′ ≤M. (4.26)

The vectors {ηm}Mm=1 can be computed by applying Newton’s method to (4.23) for a semi-

linear system. In this section, we assume that f(t, y(t)) is semi-linear, continuous in t and

satisfies the following Lipschitz condition in the second argument:

||f(·, x1)− f(·, x2)|| ≤ Lf ||x1 − x2|| (4.27)

We consider the semi-discretized systems (2.8a), (2.8b):

My′(t) +Ay(t) − f(t,y(t)) = 0, t ∈ [0, T],

My(0) = y0.

We discretize the above initial value problem in time by the implicit Euler scheme and the

24

modified trapezoidal rule with an implicit Euler predictor, respectively and solve for ym

and ηm by Newton’s method.

For ym, we solve the following equation:

(M+ τmA)ym − τmf(tm,y
m)− ym−1 = 0. (4.29)

For ηm = ŷm − ym, we solve:

(M+ τmA)ηm − τmf(tm,y
m + ηm)− τm

2
A(ym − ym−1) + τmf(tm,y

m) = 0. (4.30)

We define the relative error erel = [e1rel, · · · , eMrel]:

emrel =
em

max{em : 1 ≤ m ≤M} , 1 ≤ m ≤M. (4.31)

Then, the goal of the error equilibration in time is to find the distribution of time instances

{0 = t0, t1, · · · , tM−1, tM = T} such that the error estimators {em}Mm=1 are approximately

the same, i.e., the difference between the error estimators are bounded by the given toler-

ance TOL:

1− TOL < emrel < 1.

As em

max{em} ≤ em

mean{em} , so the error equilibration in time can be formulated as a con-

strained minimization problem of variance as follows:

minJ(
−→
t ,−→y ,−→̂y) =

1

M

M∑

i=1

|ei − 1

M

M∑

i=1

ei|2, (4.32)

(4.33)

25

subject to:





em = ‖ηm‖, 1 ≤ m ≤M,

ηm = ‖ym − ŷm‖,

(M+ τmA)ym − τmf(tm,y
m)− ym−1 = 0, 1 ≤ m ≤M,

(M+ τmA)ηm − τmf(tm,y
m + ηm)− τm

2
A(ym − ym−1)

+ τmf(tm,y
m) = 0, 1 ≤ m ≤M,

(4.34a)

(4.34b)

(4.34c)

(4.34d)

where the vectors
−→
t , −→y , −→̂y are given by:

−→
t =




t1
...

tM



, −→y =




y1

...

yM



,
−→̂
y =




ŷ1

...

ŷM



.

The TOL can be used as a stopping criteria for the evaluation of cost function J . In

this work, we provide an algorithm based on the bi-section method. For any given time

partitioning, we compare each em with the mean value of the error estimators, then extend

or shrink the length of the time sub-interval [tm−1, tm] accordingly. In order to update

several time sub-intervals simultaneously, we collect the total length that we cut off from

the sub-intervals which need to be shrunk, then distribute it to the sub-intervals which need

to be extended accordingly to the corresponding ratio of em

mean
. The detailed algorithm is

listed in Algorithm 2:

4.2.1 Newton’s method for full order model (FOM)

In this section, we apply Newton’s Method to equations (4.29), (4.30) and consider the

existence and uniqueness of the Newton iterates.

26

Algorithm 2 Equilibration of error in time

INPUT Tolerance TOL, P 0 = {0 = t0, t1, · · · , tM−1, tM = T}

OUTPUT Time instance P ∗ = {0 = t∗0, t
∗
1, · · · , t∗M−1, t

∗
M = T} for equilibration of error

Initialization: erel = [1, 1, · · · , 1], TOL, flag = 1.

while flag > TOL do

0. Compute time step length ∆tm = tm − tm−1, 1 ≤ m ≤M .

1. Compute {ym}Mm=1 from (4.29).

2. Input {ym}Mm=1 to (4.30) and compute {ηm}Mm=1.

3. Compute erel from {ηm}Mm=1 according to (4.31), flag = max{erel}.

4. Compute the average of the error estimator ê = 1
M

M∑

i=1

em.

5. Compute αm = 1− ê
em
, 1 ≤ m ≤M .

6. Compute ∆t+ =
∑

i∈S+

αi∆ti, ∆t− = −
∑

j∈Sc

+

αj∆tj, where S+ = {m : αm ≥ 0}.

7. ∆t̂ = min{∆t+,∆t−}.

while ∆t̂ > 0 do

Loop 1.1 j = 1 where j ∈ Sc
+;

Loop 1.2 ∆tj = ∆tj −min{−αj∆tj,∆t̂};

Loop 1.3 ∆t̂ = ∆t̂−min{−αj∆tj,∆t̂}; j = j + 1;

end while

while ∆t̂ > 0 do

Loop 2.1 i = 1 where i ∈ S+;

Loop 2.2 ∆ti = ∆ti +min{αj∆ti,∆t̂};

Loop 2.3 ∆t̂ = ∆t̂+min{αi∆ti,∆t̂}; i = i+ 1;

end while

8. P = {tm|tm =

m∑

i=1

∆ti 1 ≤ m ≤M}; P 0 ← P .

end while

27

We introduce the map F : Rn → R
n as follows:

F (x) = (M+ τmA)x− τmf(tm, x)− g(tm). (4.35)

At time instance tm, 1 ≤ m ≤ M , where 0 = t0 < t1 < · · · < tM = T , ym and ηm are

solutions to F (x) = 0 with different g(tm), where g(tm) is given by:

g(tm) =





Mym−1, for computing ym

τm
2 A(ym − ym−1)− τmf(tm,y

m), for computing ηm
(4.36)

ym can be solved by Newton’s method with initial value x0 = ym−1, so does ηm with initial

value x0 = 0.

We observe that the non-linear function F (x) inherits the Lipschitz condition from f in

the sense that:

||F (x1)− F (x2))|| ≤ LF ||(x1 − x2||, x1, x2 ∈ R
n, (4.37)

where the Lipschitz constant LF is given by:

LF = ||M+ τmA||+ τmLf . (4.38)

The following two lemmas will be used in the proof of theorems thereafter.

28

Lemma 4.3 (Banach perturbation lemma). Let A, C ∈ R
n×n and assume that A is

invertible with ‖A‖−1 ≤ α. If ‖A− C‖ ≤ β and αβ < 1, then C is also invertible and

‖C‖−1 ≤ α

1− αβ . (4.39)

Proof. We refer to ([1]), Page 45.

Lemma 4.4 (Neumann lemma). Let A ∈ R
n×n and ‖A‖ < 1. Then (I − A) is invertible

and

‖(I −A)−1‖ ≤ 1

1− ‖A‖ . (4.40)

Proof. We refer to ([1]), Page 45.

It is clear that if f is continuous differentiable in its second argument, then F is also

continuous differentiable with regular Jacobian:

F ′(x) = M+ τmA+ τmf ′x(tm, x) x ∈ R
n×n (4.41)

And it follows from the Banach perturbation lemma(4.3) that F ′(x) is invertible for suffi-

cient small τm. Hence, we may solve F (x) = 0 by Newton’s method:

F ′(xk)∆xk = −F (xk), (4.42)

xk+1 = xk +∆xk, k ≥ 0. (4.43)

The existence and uniqueness of the Newton iterates at each time step is provided by the

following theorem:

29

Theorem 4.5. Let F : D ⊂ R
n → R

n be continuously differentiable on the domain D.

Assume that its Jacobian F ′(x) is invertible for some initial guess x0 ∈ D and that the

following conditions hold true:

||F ′(x0)−1F (x0)|| ≤ αm, αm > 0, (4.44)

||F ′(x0)−1(F ′(y1)− F ′(y2))|| ≤ γm||y1 − y2||, y1,y2 ∈ D, (4.45)

h = αmγm <
1

2
, (4.46)

B(x0, ρm) ⊂ D, ρm =
1−
√
1− 2h

γm
. (4.47)

Then, for the sequence {xk}k∈N of Newton iterates the following hold true:

(i) F ′(x) is invertible for all Newton iterates xk, k ∈ N .

(ii) The sequence {xk}k∈N is well defined with xk ∈ B̄(x0, ρ) and xk
k→∞−−−→ x∗ quadrati-

cally, where F (x∗) = 0.

(iii) x∗ is unique in B̄(x0, ρm)
⋃
(D

⋂
B(x0, ρ̂m)), where ρ̂m = 1+

√
1−2h

γm
.

Proof. We refer to the Theorem 2.1 in ([3]).

This theorem states that Newton’s method is quadratically convergent provided the initial

iterate x0 is situated in a sufficiently small neighbourhood of the solution x∗, the so-

called Kantorovich neighbourhood. Otherwise, the convergence of Newton’s method may

be achieved by appropriate globalization techniques such as a damped Newton method

combined with a so-called monotonicity test for which we refer to ([3]).

30

4.2.2 Newton’s method for the POD based Reduced Order Model (ROM)

We denote the POD basis matrix by V ∈ R
n×l, then the implicit Euler method for POD

based ROM reads:

(Mrom + τmArom)ym
rom − τmV T f(tm, V ym

rom)− ym−1
rom = 0, yrom ∈ R

l, (4.48)

whereas the POD based ROM for ηmrom ∈ R
l is given by:

(Mrom + τmArom)ηmrom−τmV T f(tm, V ym
rom + V ηmrom)

− τm
2
Arom(ym

rom − ym−1
rom) + τmV

T f(tm, V ym
rom) = 0. (4.49)

Let f̂(t, x) : [0, T] × R
l → [0, T]× R

l such that:

f̂(t, x) = V T f(t, V x). (4.50)

Then, the reduced non-linear function F̂ : Rl → R
l reads:

F̂ (x) = (Mrom + τmArom)x− τmf̂(tm, x)− grom(tm), x ∈ R
l, (4.51)

where Mrom = V TMV, Arom = V TAV, ym
rom = V Tym and function grom(tm) is given by:

grom(tm) =





Mromym−1
rom , for computing ym

rom

τm
2 rom

(ym
rom − ym−1

rom)− τmf̂(tm,y
m
rom), for computing ηmrom

(4.52)

We observe that F̂ also inherits the properties of F .

Theorem 4.6. If F is continuously differentiable in D ⊂ R
n, then F̂ is also continuously

differentiable in D̂ = {x ∈ R
l : V x ∈ D} and its Jacobian is given by:

F̂ ′(x) = V TF ′(V x)V, x ∈ D̂. (4.53)

31

Proof. For x ∈ D̂, we can deduce from (4.50)-(4.52) that:

F̂ (x) = V TF (V x). (4.54)

So, if F is continuously differentiable, F̂ is also continuously differentiable and its Jacobian

follows directly from (4.54).

Now, we consider Newton’s method for ROM.

Theorem 4.7. Let F be continuously differentiable in x ∈ D ⊂ R
n with Jacobian F ′ and

F ′
V (x) = V TF ′(x)V, x ∈ D. Assume that F ′(x) satisfies the affine covariant Lipschitz

condition:

‖F ′(x)−1(F ′(y1)− F ′(y2))‖ ≤ γm‖y1 − y2‖, y1,y2 ∈ D, γm > 0, (4.55)

Then, V TF ′(x)−1V is an approximate inverse of F ′
V (x) in the sense that:

V TF ′(x)−1V = F ′
V (x)

−1Dl, (4.56)

where

Dl = Il − V TF ′(x)(IN − V V T)F ′(x)−1V. (4.57)

In particular, if it holds:

||(In − V V T)F ′(x)−1V || ≤ q(||V TF ′(x)||)−1for some 0 ≤ q < 1, (4.58)

where In denotes the n× n identity matrix, then we have:

||F ′
V (x)

−1|| ≤ 1

1− q ||V
TF ′(x)−1V ||. (4.59)

Moreover, assume that y ∈ D̂ satisfies:

||x− V y|| < C−1
F ′ , where CF ′ =

γ

1− q ||V
TF ′(x)−1||||V TF ′(x)||. (4.60)

32

Then it holds:

||F̂ ′(y)−1|| ≤ 1

1− q ||V
TF ′(x)−1V ||(1 − CF ′ ||x− V y||)−1. (4.61)

Proof. As F ′(x) is regular, F ′
V (x) is also regular. Note that V TV = Il, so:

F ′
V (x)V

TF ′(x)−1V = V TF ′(x)V V TF ′(x)−1V

= Il − V TF ′(x)(IN − V V T)F ′(x)−1V

= Dl.

Under the assumption (4.58), Dl satisfies:

‖Il −Dl‖ = ‖V TF ′(x)(IN − V V T)F ′(x)−1V ‖

≤ ‖(IN − V V T)F ′(x)−1V ‖‖V TF ′(x)‖ ≤ q < 1.

As a consequence of Neumann’s Lemma (4.4), Dl is invertible and:

F ′
V (x)

−1 = V TF ′(x)−1V D−1
l ,

which implies that V TF ′(x)−1V is an approximate inverse of F ′
V (x).

Moreover, by the Banach perturbation Lemma (4.3):

||D−1
l || = ||(Il − (Il −Dl))

−1|| ≤ 1

1− ||Il −Dl||
≤ 1

1− q , (4.62)

it follows that (4.59) is true.

We use the Banach perturbation lemma (4.3) to prove (4.61). Let S = F ′
V (x), E =

F̂ ′(y)− F ′
V (x), where x ∈ D, y ∈ D̂. Note that ‖V ‖ ≤ 1 as V is the POD basis matrix.

Then:

||E|| = ||V T (F ′(x)− F ′(V y))V ||

≤ ||V TF ′(x)||||F ′(x)−1(F ′(x)− F ′(V y))|| ≤ γ||V TF ′(x)||||x− V y||.

33

Hence,

||S−1E|| ≤ ||V TF ′(x)−1V D−1
l ||||E||

≤ γ

1− q ||V
TF ′(x)−1||||V TF ′(x)||||x − V y||

= CF ′ ||||x− V y|| < 1.

As a consequence of the Banach perturbation lemma (4.3), S + E = F̂ ′(x) is invertible

and:

||F̂ ′(x)−1|| = ||(S + E)−1|| ≤ ||S−1||
1− ||S−1E||

=

1
1−q
||V TF ′(x)−1V ||

1− CF ′ ||x− V y||

=
1

1− q ||V
TF ′(x)−1||(1− CF ′ ||x− V y||)−1.

Remark 4.8. For the POD based ROM, the assumption (4.60) in Theorem (4.7) can be

expected to hold true provided ‖y − V Tx‖ is sufficiently small, which can be easily seen

from:

||x− V y|| ≤ ||x− V V Tx||+ ‖V ‖||y − V Tx|| = τpod + ||y − V Tx|| (4.63)

The existence and uniqueness of the Newton iterates at each time step tm of Newton’s

method for the POD based ROM is provided in the following theorem:

Theorem 4.9. Assume that for F : D ⊂ R
n → R

n the assumptions in Theorem 4.5

hold true and (4.58) in Theorem4.7 is satisfied for x = x0. Let x̂0 = V Tx0. Then, for

34

F̂ : D̂ ⊂ R
l → R

l the following hold true:

||F̂ ′(x̂0)
−1F̂ (x̂0)|| ≤ α̂m, (4.64)

||F̂ ′(x̂0)
−1(F̂ ′(y1)− F̂ ′(y2))|| ≤ γ̂m||y1 − y2||, y1,y2 ∈ D̂, (4.65)

where the constants are given by:

α̂m =
1

1− q ||V
TF ′(x0)||||V TF ′(x0)

−1V ||(1− CF ′ ||x0 − V x̂0||)−1(αm + ǫm), (4.66)

γ̂m =
γ

1− q ||V
TF ′(x0)||||V TF ′(x0)

−1V ||(1 − CF ′ ||x0 − V x̂0||)−1, (4.67)

and ǫm is given by:

ǫm = ||F ′(x0)||−1(||V T (g(tm,ym)− g(tm, V ŷm)||)+

(||V T (M+ τmA)||+ τmLf ||V T ||)||x0 − V x̂0||), (4.68)

Similar to Theorem 4.5, if we further assume:

ĥm = α̂mγ̂m <
1

2
, B̂(x̂0, ρ̂m) ⊂ D̂, where ρ̂m =

1−
√

1− 2ĥm
γ̂m

. (4.69)

Then, for the sequence {x̂k}k∈N of Newton iterates, the following hold true:

(i) F̂ ′(x) is invertible for all Newton iterates x̂k, k ∈ N.

(ii) The sequence {x̂k}k∈N is well defined with x̂k ∈ B(x0, ρ̂m) and x̂k
k→∞−−−→ x̂∗ quadrati-

cally, where F̂ (x̂∗) = 0.

(iii) x̂∗ is unique in B(x̂0, ρ̂m)
⋃
(D

⋂
B(x̂0, ρ̂m)), where ¯̂ρm = 1+

√
1−2h

¯̂γm
.

35

Proof. By the definition of F̂ given in (4.51):

F̂ (x̂0)
−1F̂ (x̂0) = F̂ (x̂0)

−1(V T ((M + τmA)V x̂0) + τmf(tm, V x̂0)− g(tm, V ŷm))

= F̂ (x̂0)
−1V T

(
((M+ τmA)x0 + τmf(tm, x0)− g(tm,ym)) + g(tm,ym)− g(tm, V ŷm)︸ ︷︷ ︸

1

−

((M+ τmA)(x0 − V x̂0) + τm(f(tm, x0)− f(tm, V x̂0))︸ ︷︷ ︸
2

)
(4.70)

Under assumption (4.44) in Theorem (4.5) and (4.58) in Theorem 4.7, the term 1 on the

right hand side of (4.70) can be estimated as follows:

||F̂ (x̂0)
−1V T ((M + τmA)x0 + τmf(tm, x0)− g(tm,ym)) + g(tm,ym)− g(tm, V ŷm)||

= ||F̂ (x̂0)
−1V T (F ′(x0)F

′(x0)
−1F ′(x0)) + g(tm,ym)− g(tm, V ŷm)||

≤ ||F̂ (x̂0)
−1||

(
αm||V TF ′(x0)||+ ||V T (g(tm,ym)− g(tm, V ŷm))||

)

≤ 1

1− q ||V
TF ′(x0)

−1||||V TF ′(x0)||−1(1− CF ′ ||x0 − V x̂0||)−1·
(
αm + ||V TF ′(x0)||−1||V T (g(tm,ym)− g(tm, V ŷm))||

)
(4.71)

The term 2 on the right hand side of (4.70) can be estimated according to (4.58) in Theorem

4.7:

||F̂ ′(x0)
−1V T

(
(M+ τmA)(x0 − V x̂0) + τm(f(tm, x0)− f(tm, V x̂0))

)
||

≤ 1

1− q ||V
TF ′(x0)

−1||||V TF ′(x0)||(1 − CF ′ ||x0 − V x̂0‖)·

(||V T (M+ τmA)||+ τmLf)||x0 − V x̂0||. (4.72)

Combine the results in (4.70), (4.71) and (4.72), we can obtain 4.64.

36

In order to prove (4.65), we assume that y1,y2 ∈ D̂. Then:

||F̂ ′(x̂0)
−1(F̂ ′(y1)− F̂ ′(y2))|| = ||F̂ ′(x̂0)

−1V T (F ′(V y1)− F ′(V y2))||

≤ γm||F̂ ′(x̂0)
−1V TF (x0)||||y1 − y2||

≤ γm
1− q ||V

TF ′(x0)
−1||||V TF ′(x0)||(1− CF ′ ||x0 − V x̂0||)||y1 − y2||

= γ̂m||y1 − y2||

Results (i) − (iii) are the consequence of Theorem (4.5).

4.2.3 Newton’s method for the POD-DEIM based ROM

Throughout this section, we assume that f(t, y) is continuously differentiable on its second

argument, then f(t,y) : [0, T]×Rn → R
n is also continuously differentiable on y. Moreover,

we assume that fy satisfies the affine invariant Lipschitz condition for y = x0. Then f(t,y)

also satisfies the affine invariant Lipschitz condition as follows:

||fy(t, x0)−1(fy(t,y1)− fy(t,y2))|| ≤ γf ||y1 − y2||, y1,y2 ∈ D. (4.73)

For DEIM , we perform SVD to the non-linear snapshot matrix, then reduce the complexity

of the non-linear term by replacing f with f̄ such that:

f̄ = N(P TN)−1P T f , (4.74)

where P ∈ R
n×l, N ∈ R

n×l are matrices introduced in Section (3.2).

To obtain the implicit Euler solution ym
d and the solution difference ηmd of the DEIM based

FOM, we compute a zero of the following function by Newton’s method:

Fd(x) = (M+ τmA)x+ τmf̄(tm, x)− g(tm), x ∈ R
n, (4.75)

37

where gm(tm) is the same as in (4.36).

Correspondingly, we solve a zero of the following function for the POD-DEIM basedROM:

F̂d(x) = (Mrom + τmArom)x+ τmV
T f̄(tm, V x)− grom(tm), x ∈ R

l, (4.76)

where grom(tm) is given in (4.52).

Similar to the previous sections, we are interested in the properties of Fd and F̂d. First

of all, (4.75) clearly shows that Fd(x) is continuously differentiable provided f(t,y) is

continuously differentiable with respect to y. The Jacobian of Fd(x) is given by:

F ′
d(x) = M+ τmA+ τmN(P TN)−1P T fy(t, x), x ∈ R

n. (4.77)

Therefore, for x ∈ R
l, as F̂d(x) = V TFd(V x), Theorem (4.6) implies that F̂d(x) is also

continuously differentiable and its Jacobian is given by:

F ′
d(x) = Mrom + τmArom + τmV

TN(P TN)−1P T fy(t, V x)V. (4.78)

The following theorem provides the invertibility of F̂ ′(x).

Theorem 4.10. If the non-linear map Fd(x) for the DEIM based ROM satisfies the

assumptions of Theorem (4.7), then the non-linear map F̂d(x) for the POD-DEIM ROM

is continuously differentiable in D̂ ⊂ R
n with its Jacobian given by:

F̂ ′
d(x̂) = V T (M+ τmA+ τM f̄(tm, V x̂))V, x̂ ∈ D̂, (4.79)

where D̂ = {x̂ : V x̂ ∈ D}.

Further, if x̂ ∈ D̂ satisfies:

||x− V x̂|| ≤ 1

CF ′

, for some x ∈ D, (4.80)

38

where CF ′ = 1
1−q

τmγfCD||V TF ′
d(x)

−1V ||||fy(tm, x0)||, then F̂d is regular and invertible and

the following holds:

||F̂ ′
d(x)

−1|| ≤ 1

1− q ||V
TF ′

d(x)
−1V ||(1− CF ′ ||x− V x̂||)−1. (4.81)

Proof. We follow the proof of Theorem (4.7) and introduce F ′
d,V (x) : D → R

l×l such that:

F ′
d,V (x) = V TF ′

d(x)V. (4.82)

Then V TF ′
d(x)

−1V is an approximate inverse of F ′
d,V (x) in the sense that:

F ′
d,V (x)V

TF ′
d(x)

−1V = V TF ′
d(x)V V

TF ′
d(x)

−1V

= Il − V TF ′
d(x)(IN − V V T)F ′

d(x)
−1V = Dd,l.

From (4.62) in the proof of Theorem (4.7), ||D−1
d,l || ≤ 1

1−q
and:

||F ′
d,V (x)

−1|| ≤ 1

1− q ||V
TF ′

d(x)
−1V || (4.83)

On the other hand, the difference between F̂ ′
d(x̂) and F

′
d,V (x) can be estimated as follows:

||F̂ ′
d(x̂)− F ′

d,V (x)|| = ||V T (F ′
d(V x̂)− F ′

d(x))V ||

= ||τmV T (f̄y(tm, V x̂)− f̄y(tm, x))V ||

≤ τm||V T ||||N(P TN)−1P T fy(tm, x0)fy(tm, x0)
−1·

(fy(tm, V x̂)− fy(tm, x))||||V ||

≤ τmγfCD||fy(tm, x0)||||x − V x̂||. (4.84)

Similar to the proof of Theorem (4.7), we combine (4.83) and (4.84), then apply the Banach

perturbation Lemma to prove (4.81).

The existence and uniqueness of Newton iterates at each time step for the POD-DEIM

based ROM is provided in the following theorem.

39

Theorem 4.11. Assume that for Fd : D ⊂ R
n → R

n the assumptions of Theorem (4.5)

are satisfied and that condition (4.60) in Theorem4.7 holds true for x = x0. Then, for

non-linear map F̂d the following hold true:

||F̂ ′
d(x̂0)

−1F̂d(x̂0)|| ≤ α̃m, (4.85)

||F̂ ′
d(x̂0)

−1(F̂ ′
d(y1)− F̂ ′

d(y2))|| ≤ γ̃m||y1 − y2||, y1,y2 ∈ D̂, (4.86)

where the constants are given by:

α̃m =
1

1− q ||V
TF ′

d(x0)||||V TF ′
d(x0)

−1V ||(1 −CF ′ ||x0 − V x̂0||)−1(αm + ǫm), (4.87)

γ̃m =
1

1− q ||V
TF ′

d(x0)||||V TF ′
d(x0)

−1V ||(1− CF ′ ||x0 − V x̂0||)−1(γm + ǫ̂m), (4.88)

where ǫm, ǫ̂m are given by:

ǫm = ||V TF ′
d(x0)||−1

(
||V T (g(tm,ym)− g(tm, V ŷm))||

+ τmCD||(IN −NNT)f(tm, x0)||(||V T (M+ τmA)|| + τmCDLf)||x0 − V x̂0||
)
, (4.89)

ǫ̂m = τmγfCD||V TF ′
d(x0)||−1||(IN −NNT)fy(tm, x0)||. (4.90)

Similar to Theorem (4.5), if we further assume:

ĥm = α̃mγ̃m <
1

2
;

¯̂
B(x̂0, ρ̂m) ⊂ D̂, (4.91)

where ρ̂m = 1−
√

1−2ĥm

γ̃m
.

Then, for the sequence {x̂k}k∈N of the POD-DEIM based ROM Newton iterates, the fol-

lowing hold true:

(i) F̂ ′
d(x) is invertible for all Newton iterates x̂k, k ∈ N.

(ii) The sequence {x̂k}k∈N is well defined with x̂k ∈ B(x̂0, ρ̂m) and x̂k
k→∞−−−→ x̂∗ quadrati-

cally, where F̂d(x̂
∗) = 0.

40

(iii) x̂∗ is unique in B(x̂0, ρ̂m)
⋃
(D

⋂
B(x̂0, ρ̃m)), where ρ̃m = 1+

√
1−2ĥm

¯̂γm
.

Proof. Similar to the proof of Theorem (4.9), we can estimate F̂ ′
d(x̂0)

−1F̂d(x̂0) as follows:

F̂ ′
d(x̂0)

−1F̂d(x̂0) = F̂d(x̂0)
−1V T

(
(M+ τmA)V x̂0 + τmN(P TN)−1P T f(tm, V x̂0)

− g(tm, V ŷm)
)

(4.92)

= F̂ ′
d(x̂0)

−1V T
((

(M+ τmA)x0 + τmf(tm, x0)− g(tm,ym) + g(tm,ym)− g(tm, V ŷm)︸ ︷︷ ︸
term (1)

)

−
(
(M+ τmA)(x0 − V x̂0) + τm(f(tm, x0)− (P TN)−1P T f(tm, x0))︸ ︷︷ ︸

term (2)

)

− τmN(P TN)−1P T (f(tm, x0)− f(tm, V x̂0))︸ ︷︷ ︸
term (3)

)
.

Now we estimate the term (1)-term (3) separately.

By the conditions in Theorem (4.7) and (4.81) in Theorem (4.10), the term (1) can be

estimated as follows:

||F̂ ′
d(x̂0)

−1V T
(
(M+ τmA)x0 + τmf(tm, x0)− g(tm,ym)

)
+ g(tm,ym)− g(tm, V ŷm)||

= ||F̂ ′
d(x̂0)

−1V T (F ′
d(x0) + g(tm,ym)− g(tm, V ŷm))||

= ||F̂ ′
d(x̂0)

−1V T (F ′
d(x0)F

′
d(x0)

−1F ′
d(x0) + g(tm,ym)− g(tm, V ŷm))||

≤ ||F̂ ′
d(x̂0)

−1||
(
αm||V TF ′

d(x0)||+ ||V T (g(tm,ym)− g(tm, V ŷm))||
)

≤ 1

1− q ||V
TF ′

d(x0)
−1V ||||V TF ′

d(x0)||−1(1− CF ′ ||x0 − V x̂0||)−1
(
αm+ (4.93)

||V TF ′(x0)||−1||V T (g(tm,ym)− g(tm, V ŷm))||
)
.

41

Similar to the term (1), the term (2) can be estimated as follows:

||F̂ ′
d(x0)

−1V T
(
(M+ τmA)(x0 − V x̂0) + τm(f(tm, x0)−N(P TN)−1P T f(tm, x̂0))

)
||

≤ 1

1− q ||V
TF ′

d(x0)
−1V ||(1 − CF ′ ||x0 − V x̂0||)−1·

(
||V T

(
(M+ τmA)(x0 − V x̂0) + τm(f(tm, x0)−N(P TN)−1P T f(tm, x̂0))||

))

≤ 1

1− q ||V
TF ′

d(x0)
−1V ||(1 − CF ′ ||x0 − V x̂0||)−1· (4.94)

(||V T (M+ τmA)||||x0 − V x̂0||+ τmCD||V T ||||(IN −NNT)f(tm, x0)||.

Under the assumption that condition (4.60) in Theorem 4.7 holds true, we can use Lemma

(3.4) in Section (3.2) to estimate the term (3):

||F̂ ′
d(x̂0)

−1V T (τmN(P TN)−1P T (f(tm, x0)− f(tm, V x̂0)))|| ≤ τm||F̂ ′
d(x̂0)

−1||

||N(P TN)−1P T ||Lf ||x0 − V x̂0||

≤ 1

1− q τmCDLf ||V T F̂ ′(x0)
−1V ||||V T ||(1 − CF ′ ||x0 − V x̂0||)||x0 − V x̂0||. (4.95)

Combining the results (4.93), (4.94), (4.95), we obtain:

||F̂ ′
d(x̂0)

−1F̂ ′
dx̂0)|| ≤

1

1− q ||V
TF ′(x0)

−1V ||(1 − CF ′||x0 − V x̂0||)·
(
αm||V TF ′(x0)||+ (||V T (M+ τmA)||+ τmCDLf ||V T ||)||x0 − V x̂0||

+ ||V T (g(tm,ym)− g(tm, V ŷm)||+ τmCD||(IN −NNT)f(tm, x0)||
)
,

which proves (4.85).

42

(4.86) can be proved in a similar way:

F̂ ′
d(x̂0)

−1(F̂ ′
d(y1)− F̂ ′

d(y2)) = F̂ ′
d(x̂0)

−1
(
V T (M+ τmA)V (y1 − y2)+

τmV
TN(P TN)−1P T (fy(tm, V y1)− fy(tm, V y2))V

)

= F̂ ′
d(x̂0)

−1
(
V T (M+ τmA)V (y1 − y2)V + τmV

T (fy(tm, V y1)− fy(tm, V y2))V−

τmV
T
(
(fy(tm, V y1)− fy(tm, V y2))−N(P TN)−1P T (fy(tm, V y1)− fy(tm, V y2))

)
V
)

= F̂ ′
d(x̂0)

−1
(
V T (F ′(V y1)− F ′(V y2))V︸ ︷︷ ︸

term (a)

(4.96)

− τmV T (IN −N(P TN)−1P T)(fy(tm, V y1)− fy(tm, V y2))V︸ ︷︷ ︸
term (b)

)
.

We estimate the terms (a) and (b) separately.

Assume that x̂0 ∈ D̂ satisfies the condition in Theorem (4.7) such that ||x0− V x̂0|| ≤ 1
C

F ′

.

Then from (4.81) in Theorem (4.10), term (a) can be estimated as follows:

||F̂ ′
d(x̂0)

−1
(
V T (F ′(V y1)− F ′(V y2))V

)
||

= ||F̂ ′
d(x̂0)

−1(V TF ′(x0)F
′(x0)

−1(F ′(V y1)− F ′(V y2))||

≤ γm||F̂ ′
d(x̂0)

−1||||V TF ′(x0)||||V y1 − V y2||

≤ γm
1− q ||V

TF ′
d(x0)

−1V ||||V TF ′(x0)||(1 − CF ′ ||x0 − V x̂0||)−1||y1 − y2||. (4.97)

Similarly, the term (b) can be estimated by using condition (4.60) in Theorem4.7 and

43

Lemma (3.4) in Section (3.2), as shown below:

||τmF̂ ′
d(x̂0)

−1V T (IN −N(P TN)−1P T)(fy(tm, V y1)− fy(tm, V y2))V ||

≤ τm||F̂ ′
d(x̂0)

−1||||(IN −N(P TN)−1P T)(fy(tm, V y1)− fy(tm, V y2))||

≤ τm
1− q ||V

TF ′
d(x0)

−1V ||(1 − CF ′ ||x0 − V x̂0||)−1·

||(IN −N(P TN)−1P T)fy(tm, x0)fy(tm, x0)
−1(fy(tm, V y1)− fy(tm, V y2))||

≤ τm
1− qCD||V TF ′

d(x0)
−1V ||(1 − CF ′ ||x0 − V x̂0||)−1·

||(IN −NNT)fy(tm, x0)||||fy(tm, x0)−1(fy(tm, V y1)− fy(tm, V y2))||

≤ τm
1− qCDγf ||V TF ′

d(x0)
−1V ||(1− CF ′ ||x0 − V x̂0||)−1·

||(IN −NNT)fy(tm, x0)||||V y1 − V y2||

≤ τm
1− qCDγf ||V TF ′

d(x0)
−1V ||(1− CF ′ ||x0 − V x̂0||)−1· (4.98)

||(IN −NNT)fy(tm, x0)||||y1 − y2||.

Combining (4.97) and (4.98), we obtain (4.86).

4.3 Error equilibration for the POD and the POD-DEIM

based ROM

So far, we have examined the existence and uniqueness of the Newton iterates for both the

FOM and the ROM . Now, we are in a position to show that the error equilibration of

the FOM is inherited by its ROM. That is to say, if 0 = t0 < t1 < · · · < tM = T is the

time partitioning such that the error estimators for FOM satisfy:

em ≈ em′ , 1 ≤ m 6= m′ ≤M,

44

then the error estimators forROM emrom’s are also of the same order of magnitude, provided

certain conditions are satisfied.

emrom ≈ em
′

rom, 1 ≤ m 6= m′ ≤M.

We consider the POD based ROM first and assume that F (x) satisfies the assumptions

in Theorem (4.5) and (4.7) so that Newton’s method generates a unique solution at each

time step.

We recall that at each time instance tm,

em = ‖ηm‖ = ‖ŷm − ym‖,

and ηm is solved by Newton’s method from the following equation:

F (x) = (M+ τmA)x− τmf(tm, x)− g(tm) = 0, x ∈ D,

with initial value x0 = 0.

On the other hand, the error estimator for the POD based ROM reads:

emrom = ‖ηmrom‖ = ‖ŷm
rom − ym

rom‖,

and ηmrom is solved by Newton’s method from:

F̂ (x̂) = (Mrom + τmArom)x̂− τmf̂(tm, x̂)− grom(tm) = 0, x̂ ∈ D̂,

with initial value x̂0 = 0.

From (3.5) in Section (3.1), we know that there exists a constant C > 0 such that:

||ηm − V ηmrom|| = ||(ym − ŷm)− V (ym
rom − ŷm

rom)||

≤ ||(ym − V ym
rom)||+ ||ŷm − V ŷm

rom|| ≤ Cτpod, (4.99)

45

where τpod = (

n∑

i=l+1

λi)
1

2 is the POD state error.

Therefore, the equilibration of error is preserved by the ROM if the POD state error τpod

is sufficient small.

Theorem 4.12. Assume that F (x) satisfies the assumptions in Theorem (4.5) and (4.7)

for initial value x = 0. Let us further assume that: δm = Cτpod(e
m)−1 ≪ 1 for 1 ≤ m ≤M .

Then, let em = e(1− ǫm), 0 < ǫm ≪ 1 and rk = max(ρ̂m, ρm| 1 ≤ m ≤M), where ρm, ρ̂m

are the Kantorovich radii for the FOM and the POD based ROM respectively, the following

is true:

(rk)
−1(1− ǫm)(1 − δm)e ≤ emrom

em−1
rom

≤ rk(1− ǫm−1)−1(1− δm−1)−1e−1. (4.100)

Proof.

||ηm − V ηmrom|| ≥ ||ηm|| − ||V ηmrom|| ≥ ||ηm|| − ||ηmrom|| = em − emrom

From (4.99), we can get:

emrom ≥ em − ||ηm − ηmrom|| ≥ em(1−C τpod
em

).

By Theorem (4.5) and (4.9), we have:

emrom ≤ ρ̂m, 1 ≤ m ≤M.

Hence,

emrom
em−1
rom

≥ em(1− Cτpod(em)−1)

ρ̂m−1
≥ e(1− ǫm)(1 − Cτpod(em)−1)

rk
(4.101)

and

em−1
rom

emrom
≥ em−1(1− Cτpod(em−1)−1)

ρ̂m
≥ e(1− ǫm−1)(1− Cτpod(em−1)−1)

rk
. (4.102)

The inequality (4.100) follows directly from (4.101) and (4.102).

46

Remark 4.13. For the constant e in Theorem (4.12), we can take the average value of the

error estimators, i.e., e = 1
M

M∑

m=1

em. If the error equilibration is satisfied for {em}, 1 ≤

m ≤M , then ǫm ≪ 1 holds true.

A similar result can be derived for the POD-DEIM based ROM. We first apply Theorem

(4.11) to F̂d(x) with initial value x = 0 in the following corollary:

Corollary 4.14. Assume that Fd(x) satisfies the assumptions of Theorem (4.5) and (4.7)

for x = 0. Then, for POD-DEIM non-linear map F̂d(x), the following hold true:

||F̂ ′
d(0)

−1F̂d(0)|| ≤ α̂m,

||F̂ ′
d(0)

−1(F̂ ′
d(y1)− F̂ ′

d(y2))|| ≤ γ||y1 − y2||, y1,y2 ∈ D̂,

where the constants are given by:

α̂m = α(1 + ǫ(1)m); γ̂m == γ(1 + ǫ(2)m);

where, α, γ, ǫ
(1)
m , ǫ

(2)
m are given by:

α =
1

1− q ||V
TF ′

d(0)||||V TF ′
d(0)

−1V ||αm,

γ =
1

1− q ||V
TF ′

d(0)||||V TF ′
d(0)

−1V ||γm,

ǫ(1)m =
1

α(1− q) ||V
TF ′

d(0)
−1V ||‖|V T (g(tm,ym)− g(tm, V ŷm))||,

ǫ(2)m =
τmγfCD

γ(1− q) ||V
TF ′

d(0)
−1V ||||(IN −NNT)fy(tm, 0)||.

Let us further assume:

ĥm = α̂mγ̂m <
1

2
;

¯̂
B(x̂0, ρ̂m) ⊂ D̂,

where ρ̂m = 1−
√

1−2ĥm

γ̂m
.

47

Then, the sequence {x̂k} of the POD-DEIM based ROM Newton iterates is well defined

with {x̂k} ∈ B(0, ρ̂m) and x̂k
k→∞−−−→ x̂∗ quadratically, where F̂d(x̂

∗) = 0. x̂∗ is unique in

B(0, ρ̂m)
⋃
(D

⋂
B(0, ρ̃m)), where ρ̃m = 1+

√
1−2ĥm

γ̂m
.

Moreover, if we let ĥ = αγ, ρ̂ = 1−
√

1−2ĥ
γ

, then the following hold true:

(1 + ǫ(1)m)ρ̂ ≤ ρ̂m ≤ 2(1 + ǫ(1)m)ρ̂. (4.103)

Proof. On one hand, as 0 < αγ ≤ α̂mγ̂m:

ρ̂m
ρ̂

=
γ

γ̂m

1−√1− 2α̂mγ̂m
1−√1− 2αγ

=
γ

γ̂m

(1−√1− 2α̂mγ̂m)(1 +
√
1− 2αγ)

2αγ

≥ γ

γ̂m

2α̂mγ̂m
2αγ

= 1 + ǫ(1)m .

On the other hand, as α̂mγ̂m < 1
2 < 1, we have:

ρ̂m
ρ̂
≤ γ

γ̂m

1− (1− 2α̂mγ̂m)

1−√1− 2αγ
=

2α̂mγ(1 +
√
1− 2αγ)

2αγ
≤ 2(1 + ǫ(1)m).

The proof for the rest of the results follows directly from the proof for Theorem (4.11).

From (3.4) in Section (3.2) we can deduce that there exists a constant CD > 0 such that:

||ηm − V ηmrom|| = ||(ym − ŷm)− V (ym
rom − ŷm

rom)||

≤ ||(ym − ym
rom)||+ ||ŷm − ŷm

rom|| ≤ CDτD, (4.104)

where τD = (
n∑

k=l+1

λk +
n∑

k=l+1

sk)
1

2 is the POD-DEIM state error.

Theorem 4.15. Assume that F (x) satisfies the assumptions in Theorem (4.5) and (4.7)

for initial value x = 0. If we further assume that: δm = CτD(e
m)−1 ≪ 1 for 1 ≤ m ≤ M

and let em = e(1 − ǫm), 0 < ǫm ≪ 1, rk = max(ρ̂m, ρ̂| 1 ≤ m ≤ M). Then, the following

is true:

(1− ǫm)(1 − δm)e

2rk(1 + ǫ
(1)
m)

≤ emrom
em−1
rom

≤ 2rk(1 + ǫ
(1)
m)

(1− ǫm−1)(1 − δm−1)e
. (4.105)

48

Proof. By (4.103) in Corollary (4.14), (4.105) can be proved in much the same way as in

the proof of Theorem (4.12).

4.4 Snapshot location based on optimization

In [13], the authors consider the linear case of the evolution equation. They show that

instead of taking the FE solution at fixed time instances Y = [y(t0, x), · · · , y(tM , x)] as the

POD snapshot matrix, one can use a different POD snapshot matrix Ynew by adding some

new snapshots {y(t̄1, x), · · · , y(t̄k̄, x)} to the existing snapshot matrix Y . Then, POD can

be performed to the new snapshot matrix Ynew. The elements of {y(t̄1, x), · · · , y(t̄k̄, x)}

can be the same as the elements of Y , that is to say, if y(t̄k, x) = y(ti, x), where 1 ≤ k ≤ k̂,

1 ≤ i ≤M , then we double y(ti, x) in the snapshot matrix Y , otherwise the new snapshot

is added to Y according to its time instance t̄k, 1 ≤ k ≤ k̂ in order to construct the new

snapshot Ynew.

With the new snapshot matrix Ynew, the authors proceed by solving the optimal location

of the additional snapshots, i.e., solving for the time instances t̄k, 1 ≤ k ≤ k̄ such that the

following cost function is minimized:

J(yl, t̄, φ) =

ˆ T

0
‖y(t, x) −

l∑

i=1

yl(ti, x)φi‖ dt, (4.106)

where y(t, x) and yl(t, x) are the FE solution of the FOM and the POD based ROM

based on the new snapshot matrix Ynew, respectively. y(t, x) = [y(t1, x), · · · , y(tl, x)]T ,

yl = [yl(t1, x), · · · , yl(tl, x)]T , t̄ = [t̄1, · · · , t̄k̄]T and φ = [φ1, · · · , φl] is the matrix whose

columns are POD basis functions.

As we have shown in section 3.1 that the POD basis functions are the solutions of an

49

eigenvalue problem, the authors suggest that we can define the self-adjoint operator R for

computing the POD basis functions based on the new snapshot matrix as follows:

R(t̄)φ = λφ, (4.107a)

R(t̄)φ =

M∑

j=0

< y(tj, x), φ > y(tj, x) +

k̄∑

k=1

< y(t̄k, x), φ > y(t̄k, x). (4.107b)

On the other hand, as yl(ti) = yl(ti, x)’s are the FE solutions to the POD based ROM,

so we also have the following constrains:

dyl(t)

dt
+Alyl(t) = f l(t), 0 ≤ t ≤ T, (4.108a)

yl(0) = yl
0. (4.108b)

Where the vectors yl
0 and f l(t) are given by:

~ψ0 =




< y0, φ1 >

...

< y0, φl >



, f l(t) =




< f(t), φ1 >

...

< f(t), φl >



.

And the coefficient matrix:

Al = ((Al
ij)) ∈ R

l×l,with Al
ij =< Aφj , φi > .

Moreover, recall that the POD basis functions are orthonormal and t̄k ∈ (0, T], so we also

have:

‖φi‖ = 1, 1 ≤ i ≤ l, 0 < t̄k ≤ T 1 ≤ i ≤ k̄. (4.109)

With constrains (4.107a), (4.107b), (4.108a), (4.108b) and (4.109), the optimal location of

the additional snapshots can be formulated as a non-linear minimization problem of the cost

50

function J(yl, t̄, φ) and can be solved by the SQP (Sequential Quadratic Programming)-

type algorithm with BFGS updates based on the second order sufficient optimality con-

ditions given in their paper. In our numerical example, a linear evolution equation is

also examined and both the error equilibration method and the optimal location method

invented by Kunisch/Volkwein are performed for comparison.

51

Chapter 5

Numerical Results

5.1 Linear parabolic equations

The first example is taken from [13] and features a solution that exhibits a rapid change

only in the initial time interval.

Example 1. Let Q := Ω× (0, T), where Ω = (0, 1)2, and Σ := Γ× (0, T), where Γ := ∂Ω.

Consider the following parabolic initial-boundary value problem





∂y

∂t
− c∆y + β · ∇y + y = f in Q,

c
∂y

∂n
+ qy = g on Σ,

y(·, 0) = y0 in Ω,

where the source terms f, g, the coefficient function q, and the initial data y0 are chosen

52

according to:

f(x, t) =





4, x = (x1, x2), (x1 − 0.25)2 + (x2 − 0.65)2 ≤ 0.05, t ∈ [0, T],

0, otherwise
,

g(x, t) =





1, x = (x1, 1), 0 < x1 < 1, t ∈ [0, T],

0, x = (1, x2), 0 < x2 < 1, t ∈ [0, T],

0, x = (0, x2), 0 < x2 < 1, t ∈ [0, T],

−1, x = (x1, 0), 0 < x1 < 1, t ∈ [0, T]

,

q(x, t) =





1, x = (x1, 1), 0 < x1 < 1, t ∈ [0, T],

x2, x = (1, x2), 0 < x2 < 1, t ∈ [0, T],

−2, x = (x1, 0), 0 < x1 < 1, t ∈ [0, T],

0, x = (0, x2), 0 < x2 < 1, t ∈ [0, T]

,

y0(x) = sin(πx1)cos(πx2), x = (x1, x2) ∈ Ω.

Further, we choose T = 1, c = 0.1, and β = (0.1,−10)T .

We discretize the spatial domain Ω by a uniform grid with mesh size h = 1
40 and construct

a simplicial triangulation by right isosceles. As a result, the degree of freedom for the

spatial discretization is 412. Further, we utilize piecewise linear FE ansatz functions and

solve the discretized system by the implicit Euler method with a fixed time step length

∆t = 1
20 . The FE solutions y(t, x) at time instances t = [0, 0.15, 0.5, 0.75, 1] are shown

in Figure 5.1.

5.1.1 Error equilibration in time

In this numerical example, we consider the error equilibration in time. We take TOL =

1e − 2 as the tolerance for the error estimators em and apply Algorithm 2 introduced in

53

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.5

0

0.5

1

1.5

x1

FE solution at t = 0

x2

y
(t
,x

)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.5

0

0.5

1

1.5

x1

FE solution at t = 0.05

x2
y
(t
,x

)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.5

0

0.5

1

1.5

x1

FE solution at t = 0.15

x2

y
(t
,x

)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.5

0

0.5

1

1.5

x1

FE solution at t = 0.5

x2

y
(t
,x

)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.5

0

0.5

1

1.5

x1

FE solution at t = 0.75

x2

y
(t
,x

)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.5

0

0.5

1

1.5

x1

FE solution at t = 1

x2

y
(t
,x

)

Figure 5.1: Example 1: Implicit Euler FE solutions at different time instances

54

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

ith time instance

t i

Plot of 21 time instances for error equilibration

Time instance
x=0.15

Figure 5.2: Example 1: 21 time instances for the error equilibration for FOM

section 4.2 to the FOM with initial time partitioning P0 = {tj = j∆t, 0 ≤ j ≤M}, where

M = T
∆t

. We observe that the finite element solution does not change significantly from

t = 0.15 to t = 1. Therefore, if we denote the set of the time instances for the error

equilibration by Peq = {0 = t0, t1, · · · , t20 = 1}, then one can expect to see that most of

the elements in Peq are located in the initial sub-interval [0, 0.15], as shown in Figure 5.2.

Now we use the implicit Euler FE solutions to construct the POD snapshot matrix Y =

[y(0, x),y(t1 , x), · · · ,y(t20, x)], then apply the PODmethod to the FOMwith l = 6, 10, 14, 21

POD basis, respectively. The singular values for POD snapshot matrix Y is plotted in Fig-

ure 5.3. The first 6 POD basis functions are shown in Figure 5.4.

By Theorem 4.12 in Section 4.3, the error estimators emrom for POD-based ROM is also

expected to be of the same order of magnitude, provided they are computed from the time

partitioning that satisfies the error equilibration for the FOM. That is to say, if we let the

emrel, ê
m
rel be the relative errors for FOM and ROM, respectively, as introduced in (4.31).

Then, for sufficiently small POD state error τpod, we have:

êmrel < TOL, if emrel < TOL (5.2)

55

2 4 6 8 10 12 14 16 18 20
10

−15

10
−10

10
−5

10
0

10
5

ith singular value

σ
i

Plot of singular values for POD snapshot matrix

σ
σ

6

σ
10

σ
14

Figure 5.3: Example 1: Singular values {σi}21i=1 for the POD snapshot matrix.

We take l = 6, 10, 14, 21 as dimensions for the POD-based ROM and compute the

error estimators for ROM accordingly. The behaviour of the error estimators for ROM

and FOM are plotted in Figure 5.5-5.8. A table containing the average and the standard

deviation of the error estimator under different POD dimension l is provided in Table 5.1.

POD dim FOM l = 6 l = 10

µ({em})± σ(em) 2.855e − 1± 7.333e − 4 5.53e − 1± 3.171e − 1 2.852e − 1± 3.53e − 2

POD dim FOM l = 14 l = 21

µ({em})± σ(em) 2.855e − 1± 7.333e − 4 2.849e − 1± 4.6e − 3 2.855e − 1± 1.5e− 3

Table 5.1: Example 1: Mean (µ({em})) ± standard deviation (σ(em)) of the error estima-

tors under POD dimension l

We can see from Figure 5.5 that for the ROM with dimension l = 6, emrom’s are completely

different from em’s because of the large POD state error τpod as shown in Figure 5.3.

However, as we increase the POD dimension l, the relative error êmrel will decrease. Figure

56

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.03

−0.025

−0.02

−0.015

x1

POD basis function φ1(x)

x2

φ
1
(x
)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.05

0

0.05

x1

POD basis function φ2(x)

x2

φ
2
(x
)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x1

POD basis function φ3(x)

x2

φ
3
(x
)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

x1

POD basis function φ4(x)

x2

φ
4
(x
)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x1

POD basis function φ5(x)

x2

φ
5
(x
)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

x1

POD basis function φ6(x)

x2

φ
6
(x
)

Figure 5.4: Example 1: The first 6 POD basis functions

57

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ith error

e
i

Error estimators for the FOM and the ROM with dimension l = 6 (out of 30%)

em for FOM

em for ROM

Figure 5.5: Example 1: Error estimators em and emrom at time instance tm, 1 ≤ m ≤M for

POD dimension l = 6.

2 4 6 8 10 12 14 16 18 20
0.15

0.2

0.25

0.3

0.35

0.4

ith error

e
i

Error estimators for the FOM and the ROM with dimension l = 12 (out of 50%)

em for FOM

em for ROM

TOL above em

TOL below em

Figure 5.6: Example 1: Error estimators em and emrom at time instance tm, 1 ≤ m ≤M for

POD dimension l = 10

58

2 4 6 8 10 12 14 16 18 20
0.26

0.27

0.28

0.29

0.3

0.31

0.32

ith error

e
i

Error estimators for the FOM and the ROM with dimension l = 14 (out of 70%)

em for FOM

em for ROM

TOL above em

TOL below em

Figure 5.7: Example 1: Error estimators em and emrom at time instance tm, 1 ≤ m ≤M for

POD dimension l = 14.

2 4 6 8 10 12 14 16 18 20
0.26

0.27

0.28

0.29

0.3

0.31

0.32

ith error

e
i

Error estimators for the FOM and the ROM with dimension l = 21 (out of 100%)

em for FOM

em for ROM

TOL above em

TOL below em

Figure 5.8: Example 1: Error estimators em and emrom at time instance tm, 1 ≤ m ≤M for

POD dimension l = 21.

59

5.5 shows that for sufficiently large POD dimension l, {em}Mm=1 and {emrom}Mm=1 are almost

the same.

5.1.2 Comparison of two strategies for snapshot location

In this numerical example, we compare the error equilibration method with the approach

for computing optimal snapshot locations introduced in Section 4.4. We use the same

spatial discretization as in Section ??, but change the time step to ∆t = 1
14 , i.e., the initial

time partitioning is set to be P0 = {tj = j
14 , 0 ≤ j ≤ 14}. We first compute the time

partitioning Peq = {0 = t0, t1, · · · , t14 = 1} for the error equilibration, the result is plotted

in Figure 5.1.2.

Now, we fix the POD dimension to be l = 3 and take off t1, · · · , t4 from Peq. We use the

rest 11 time instances as the fixed locations for POD snapshots and compute the optimal

locations for 4 additional time instances t̄ = [t̄1, t̄2, t̄3, t̄4]
T by solving the minimization

problem that has been introduced in Section (4.4). For initial guess of the additional snap-

shot locations, we take t̄0 = [0.03, 0.05, 0.08, 0.1]T The optimization is computed by SQP

algorithm with BFGS updates using matlab function ’fmincon’ according to the following

settings:

options=optimset(’Display’ , ’iter’ , ’Algorithm’ , ’sqp’ , ’TolX’ ,...

1e-9, ’TolFun’ ,1e-7, ’TolCon’ ,1e-6, ’Diagnostics’ , ’on’ ,...

’MaxFunEvals’ ,10ˆ4, ’MaxIter’ ,10ˆ4, ’GradObj’ , ’on’ ,...

’LargeScale’ , ’off’);

The optimal locations are t̄∗ = [5.21e− 003, 8.98e− 002, 2.34e− 002, 1.74e − 002]T . t̄’s are

60

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

ith time instance

t i

Plot of 15 time instances for error equilibration

Time instance
x=0.15

Figure 5.9: Example 1: 15 time instances for the error equilibration for FOM.

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

ith time instance

t i

11 fixed time instances and 4 addtional snapshot locations

Fixed time instance for error equilibration
Optimal location for addtional snapshots
Time instances been taken out

Figure 5.10: Example 1: 11 fixed time instances (blue), the deleted 4 time instances and

the optimal locations for 4 additional time instances (red).

plotted together with the fixed snapshot locations in Peq in Figure 5.10. The values of the

cost function J(y, t̄, ~φ) under different time partitioning are also listed in Table 5.2. From

Figure 5.10, we can see that the optimal locations of the POD snapshot (Kunisch/Volkwein

approach) are close to the locations computed by means of the error equilibration. Table

(5.2) shows that the evaluation of the cost function for the optimal snapshot locations

(Kunisch/Volkwein approach) is smaller than that of error equilibration in time but there

is no significant difference between the two costs.

61

Time partitioning Peq t̄0 t̄∗

Cost J(y, t̄, ~φ) 1.1629 1.3107 1.1224

Table 5.2: Example 1: Values of J for the time partitioning of error equilibration Peq,

initial additional locations t̄0 and optimal locations t̄∗

5.2 Non-linear parabolic equations

As examples for non-linear parabolic problems we choose two initial-boundary value prob-

lems for semi-linear second order parabolic partial differential equations.

5.2.1 Example 2: Error equilibration in time

Let Q := Ω × (0, T), where Ω = (0, 1) and Σ := Γ × (0, T), with Γ := ∂Ω. Consider the

following semi-linear parabolic initial-boundary value problem:





∂y

∂t
−∆y + y2 = f in Q,

y = 0 on Σ,

y(·, 0) = 0 in Ω,

(5.3a)

(5.3b)

(5.3c)

where the right-hand side f is given such that:

ye = x3(1− x)3t2(1− t)2 arctan(60((x − 5

4
)2 + (t+

1

4
)2)

1

2 − 1)

is the solution to 5.3a-5.3c.

It is obvious that y(t, x)2 is Lipschitz continuous if y(t, x) is bounded, i.e., the solution to

system ((5.3a))-((5.3c)) exists globally. On the other hand, it has been shown in Theorem

5.2 in [27] that the solution exists globally if the initial value is bounded above by the

62

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

t

Exact solution

x

y
(t
,x

)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

t

Implicit Euler solution

x
y
(t
,x

)

Figure 5.11: Example 2: Exact solution and the implicit Euler FE solution for FOM .

first eigenfunction of −∆. As our initial value is 0, so the solution exists globally and is

bounded. Therefore, y(t, x)2 is Lipschitz continuous and conditions in Theorem (4.5) are

satisfied. So, the newton’s method applies to system ((5.3a))-((5.3c)).

With T = 1, we uniformly discretize the interval Ω with mesh size h = 1
128 and denote

the grid points by {0 = x0 ≤ x1 < · · · < x128 = 1}. Then we utilize piece-wise linear FE

functions and discretize the PDE in time by the implicit Euler method with fixed time step

length ∆t = 1
40 . The exact and the implicit Euler solutions are displayed in Figure 5.11.

As in previous example, the tolerance for error equilibration is taken to be TOL = 1e− 2,

then we apply Algorithm 2 from Section (4.2) to the FOM with initial time partitioning

P0 = {tj = j
40 , 0 ≤ j ≤ M}. Figure 5.11 shows that the finite element solution does

not perform any significant change along the time interval [0, 1]. Therefore, different from

Example 1, the time instances for error equilibration for Example 2 are expected to be

distributed all over the entire time interval [0, 1], as shown in Figure 5.12. We use the

implicit Euler FE solutions as the snapshot matrix to compute both the POD and the

63

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

ith time instance

t i

Plot of 40 time instances for error equilibration

Equilibration Time instance
t2
t40

Figure 5.12: Example 2: 40 time instances for error equilibration for non-linear FOM .

POD-DEIM basis functions and singular values. To visualize the solution of the ROM, we

take l = 3, 12 as the dimensions for both the POD based ROM and the POD-DEIM based

ROM, respectively. The singular values of POD snapshot matrix and DEIM non-linear

snapshot matrix are plotted in Figure 5.13 and Figure 5.14. The solutions of the POD and

POD-DEIM ROM are shown in Figure 5.15 and Figure 5.16. We also provide the first 6

POD basis functions and DEIM basis functions in Figure 5.1 and Figure 5.1.

Figure 5.15 shows that when the POD dimension l is small (3 out of 40), the solution of

POD based ROM might be inaccurate. This may result in the large difference between

the error estimators for the FOM and the ROM. To examine the behaviour of the error

estimators of ROM, we take POD dimension l = 12, 20, 28, 40 and compute the error

estimators for the ROM according to the locations given by the error equilibration of the

FOM. The error estimators are shown in Figure 5.19-5.21.

Figure 5.19-5.21 show that as the dimension l increases, the error estimators for the ROM

tend to ’converge’ to within the interval bounded by the given TOL. The average of the

error estimators and their standard deviation under different dimensions l are listed in

Table 5.3.

64

5 10 15 20 25 30 35 40

10
−15

10
−10

10
−5

10
0

ith singular value

σ
i

Singular values for POD snapshot matrix

σ
σ

12

σ
20

σ
28

Figure 5.13: Example 2: Singular values {σi}40i=1 for POD snapshot matrix.

5 10 15 20 25 30 35 40

10
−20

10
−15

10
−10

10
−5

10
0

ith singular value

σ
i

Singular values for DEIM non-linear snapshot matrix

σ
σ

12

σ
20

σ
28

Figure 5.14: Example 2: Singular values {σi}40i=1 for DEIM non-linear snapshot matrix.

65

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
−3

t

POD FE solution with l = 3 basis functions

x

y
(t
,x

)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

t

POD FE solution with l = 12 (30%) basis functions

x

y
(t
,x

)

Figure 5.15: Example 2: Implicit Euler FE solution for POD based ROM with dimension

l = 3 (Left), 12 (Right).

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
−3

t

POD-Deim FE solution with l = 3 basis functions

x

y
(t
,x

)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

t

POD-Deim FE solution with l = 12 (30%) basis functions

x

y
(t
,x

)

Figure 5.16: Example 2: Implicit Euler FE solution for POD-DEIM based ROM with

dimension l = 3 (Left), 12 (Right).

66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

x

φ
i(
x
)

POD basis function φ1(x)

φi(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

φ
i(
x
)

POD basis function φ2(x)

φi(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

φ
i(
x
)

POD basis function φ3(x)

φi(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

φ
i(
x
)

POD basis function φ4(x)

φi(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

φ
i(
x
)

POD basis function φ5(x)

φi(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

φ
i(
x
)

POD basis function φ6(x)

φi(x)

Figure 5.17: Example 2: Plot of the first 6 POD basis functions

67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

x

φ
i(
x
)

DEIM basis function φ1(x)

φi(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

φ
i(
x
)

DEIM basis function φ2(x)

φi(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

φ
i(
x
)

DEIM basis function φ3(x)

φi(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

φ
i(
x
)

DEIM basis function φ4(x)

φi(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

φ
i(
x
)

DEIM basis function φ5(x)

φi(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

φ
i(
x
)

DEIM basis function φ6(x)

φi(x)

Figure 5.18: Example 2: Plot of the first 6 basis functions for DEIM

68

5 10 15 20 25 30 35 40

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2
x 10

−4

ith error

e
i

em for the FOM and the ROM with dimension l = 12 (30%)

em for FOM
em for POD
em for POD-DEIM
TOL

Figure 5.19: Example 2: Error estimators em and emrom for the ROM with dimension

l = 12, 20

5 10 15 20 25 30 35 40

3.5

3.6

3.7

3.8

3.9

4
x 10

−4

ith error

e
i

em for the FOM and the ROM with dimension l = 14 (50%)

em for FOM
em for POD
em for POD-DEIM
TOL

Figure 5.20: Example 2: Error estimators em and emrom for theROM with dimension l = 20

5 10 15 20 25 30 35 40

3.65

3.7

3.75

3.8

3.85
x 10

−4

ith error

e
i

em for the FOM and the ROM with dimension l = 28 (70%)

em for FOM
em for POD
em for POD-DEIM
TOL

Figure 5.21: Example 2: Error estimators em and emrom for theROM with dimension l = 28

69

5 10 15 20 25 30 35 40
3.65

3.7

3.75

3.8

3.85
x 10

−4

ith error

e
i

em for the FOM and the ROM with dimension l = 40 (100%)

em for FOM
em for POD
em for POD-DEIM
TOL

Figure 5.22: Example 2: Error estimators em and emrom for theROM with dimension l = 40

µ({em})± σ(em) POD POD-DEIM FOM

l = 12 3.6287e − 4± 1.0639e − 4 3.6314e − 4± 1.0940e − 4 3.707e − 4± 5.0249e − 8

l = 20 3.6290e − 4± 6.7517e − 06 3.6417e − 4± 6.9064e − 5 NA

l = 28 3.6945e − 4± 5.9643e − 07 3.7026e − 4± 1.9100e − 06 NA

l = 40 3.6963e − 4± 6.0801e − 07 3.6963e − 4± 6.0801e − 07 NA

Table 5.3: Example 2: Average of the error estimators (µ({em})) and its standard deviation

(σ(em)) for the ROM with dimension l.

5.2.2 Example 3: Error equilibration in time

In this numerical example, we use the same settings as in equation (5.3a) but change the

non-linear term to y3 and consider the error equilibration in time accordingly, i.e., we

consider the following equation:





∂y

∂t
−∆y + y3 = f in Q,

y = 0 on Σ,

y(·, 0) = 0 in Ω,

(5.4a)

(5.4b)

(5.4c)

70

5 10 15 20 25 30 35 40

10
−8

10
−6

10
−4

10
−2

ith singular value

σ
i

Singular values for POD snapshot matrix

σ
σ

12

σ
20

σ
28

Figure 5.23: Example 3: Singular values {σi}40i=1 for POD snapshot matrix.

Similar to Example 2, we compute the time instances for error equilibration in time for

the FOM. Then, we solve the equation (5.4a)-(5.4c) by implicit Euler method with a fixed

time step length ∆t = 1
40 and use the solutions as the POD snapshot matrix to compute

the error estimators for the ROM with POD dimensions l = 12, 20, 28, 40.

As the solution of (5.4a) is the same as that of (5.3a), the plot of solutions and the singular

values of POD snapshot matrix are omitted. The singular values of POD snapshot matrix

and DEIM non-linear snapshot matrix are plotted in Figure (5.23) and (5.24)

Compared to the singular values of POD snapshot matrix, the singular values of DEIM

non-linear snapshot matrix are much smaller and are dominated by that of POD snapshot

matrix. Therefore, the error estimators of POD based ROM are overlapped with that

of POD-DEIM based ROM, as shown in Figure (5.25)-(5.28). However, DEIM method

can significantly reduce the computing time for solving the ROM. Table (5.4) shows the

average computing time for solving the two different types of ROM based on two different

71

5 10 15 20 25 30 35 40
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

ith singular value

σ
i

Singular values for DEIM non-linear snapshot matrix

σ
σ

12

σ
20

σ
28

Figure 5.24: Example 3: Singular values {σi}40i=1 for DEIM non-linear snapshot matrix.

discretization in time for a given time partitioning.

Implicit Euler Modified Trapezoidal

POD 16.926 40.4198

POD-DEIM 5.0544 12.8544

Table 5.4: Example 3: Average computing time for solving types of ROM for equilibration

time instances

The average of the error estimators and their standard deviation under different dimensions

l are listed in Table (5.5), which shows how the error estimators of ROM converge to within

the tolerance as we increase POD dimension.

72

5 10 15 20 25 30 35 40

4

4.5

5

5.5

6

6.5

7

7.5
x 10

−4

ith error

e
i

e
m for the FOM and the ROM with dimension l = 12

e
m for FOM

e
m for POD

e
m for POD-DEIM

Figure 5.25: Example 3: Error estimators em and emrom for theROM with dimension l = 12

5 10 15 20 25 30 35 40

5.6

5.8

6

6.2

6.4

6.6

6.8

7
x 10

−4

ith error

e
i

e
m for the FOM and the ROM with dimension l = 20

e
m for FOM

e
m for POD

e
m for POD-DEIM

TOL

Figure 5.26: Example 3: Error estimators em and emrom for theROM with dimension l = 20

73

5 10 15 20 25 30 35 40
6.1

6.15

6.2

6.25

6.3

6.35

6.4
x 10

−4

ith error

e
i

e
m for the FOM and the ROM with dimension l = 28

e
m for FOM

e
m for POD

e
m for POD-DEIM

TOL

Figure 5.27: Example 3: Error estimators em and emrom for theROM with dimension l = 28

5 10 15 20 25 30 35 40
6.1

6.2

6.3

6.4

6.5

6.6
x 10

−4

ith error

e
i

e
m for the FOM and the ROM with dimension l = 40

e
m for FOM

e
m for POD

e
m for POD-DEIM

TOL

Figure 5.28: Example 3: Error estimators em and emrom for theROM with dimension l = 40

74

µ({em})± σ(em) POD POD-DEIM FOM

l = 12 4.9751e − 4± 4.1643e − 5 4.9751e − 4± 4.1643e − 5 6.2455e − 4± 8.7215e − 7

l = 20 6.0040e − 4± 1.4586e − 5 6.0040e − 4± 1.4586e − 5 NA

l = 28 6.2310e − 4± 1.2263e − 6 6.2310e − 4± 1.2263e − 6 NA

l = 40 6.2432e − 4± 8.8220e − 7 6.2432e − 4± 8.8220e − 7 NA

Table 5.5: Example 3: Average of the error estimators (µ({em})) and its standard deviation

(σ(em)) for the ROM with dimension l.

75

Chapter 6

Conclusions

So far, we have developed an approach for determining the optimal snapshot locations for

time dependent parabolic PDEs from the ideal of automated time stepping, the so-called

error equilibration in time. The goal of this approach is to determine the time instances

such that on each time sub-interval the error estimators are almost of the same order of

magnitude. Different from the automated time stepping, the total number of time steps

in this method is fixed and the length of each time sub-interval is adaptive according to

the corresponding error estimator. This error equilibration approach can be formulated as

an optimization problem about the variance of the error estimators and a bi-section type

algorithm is provided. This approach applies to both FOM and ROM. The property of

error equilibration in time for FOM is preserved by the POD and POD-DEIM basedROM

provided the dimension of the ROM is large enough such that the POD or POD-DEIM

error is sufficiently small, as shown in numerical examples 1, 2, 3. Moreover, as stated

in Theorem 4.12 and 4.15, if the error estimators for ROM are computed from the time

instances such that the error estimators for FOM are equilibrated, then they are bounded

76

by some constants. This result is shown in Figure (5.5), (5.6), (5.19), (5.20), (5.25) and

(5.26). Although the error estimators for ROM do not located within the given tolerance

for equilibration TOL, they are bounded above and below.

77

Bibliography

[1] J.M.Ortega, and W.C.Rheinboldt; Iterative Solution of Nonlinear Equations in Several
Variables Academic Press, 1970.

[2] H. Brézis and A. Pazy; Convergence and approximation of semigroups of nonlinear
operators, J. Funct. Anal. 9, 63–74, 1972.

[3] P. Deuflhard; Newton Methods for Nonlinear Problems. Affine Invariance and Adap-
tive Algorithms, Springer, Berlin-Heidleberg-New York, 2004.

[4] Chaturantabut. Saifon, D. C. Sorensen; Nonliear model reduction via discrete emper-
ical interpolation SIAM Journal on Scientific Computing 32, 2737-2764, 2010.

[5] T. Henri; Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin-
Heigelberg-New York, 1981.

[6] Earl A. Coddington, Norman Levinson (1955); Theory of Ordinary Differential Equa-
tions, New York: McGraw-Hill, 1995.

[7] T. Kato; Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19,
503–520, 1967.

[8] N. Kenmochi and S. Oharu; Difference approximation of nonlinear evolution equations
and semigroups of nonlinear operators. Publ. RIMS, Kyoto Univ. 10, 147–207, 1974.

[9] K. Kunisch and S. Volkwein; Proper orthogonal decomposition and singular value
decomposition. J. Optim. Theory and Appl. 102, 345–371, 1999.

[10] K. Kunisch and S. Volkwein; Galerkin proper orthogonal decomposition methods for
parabolic problems. Numer. Math. 90, 117–148, 2001.

[11] K. Kunisch and S. Volkwein; Galerkin proper orthogonal decomposition methods for
a general equation in fluid dynamics. SIAM J. Numer. Anal. 40, 492–515, 2002.

[12] K. Kunisch and S. Volkwein; Proper orthogonal decomposition for optimality systems.
M2AN, 42, 1–23, 2008.

78

[13] K. Kunisch and S. Volkwein; Optimal snapshot location for computing POD basis
functions. Preprint. Department of Mathematics. Karl-Franzens University of Graz,
2009.

[14] O.A. Ladyzenskaja, V.A. Solonnikow, and N.N. Ural’ceva. Linear and quasilinear
Equations of Parabolic Type. AMS, Providence, 1968

[15] H.V. Ly and H.T. Tran; Modelling and control of physical processes using proper
orthogonal decomposition. Math. and Comput. Modelling 33, 223–236, 2001.

[16] B. C. Moore; Principal component analysis in linear systems: controllability, observ-
ability, and model reduction, IEEE Trans. Automat. Control 26, 17–32, 1981.

[17] K. Sun, R. Glowinski, M. Heinkenschloss, and D. C. Sorensen; Domain decomposition
and model reduction of systems with local nonlinearities, In: Numerical Mathematics
and Advanced Applications. ENUMATH 2007 (K. Kunisch, G. Of, and O. Steinbach,
eds.), pp. 389–396, Springer, Berlin-Heidelberg-New York, 2008.

[18] F. Tröltzsch and S. Volkwein; POD a posteriori error estimates for linear-quadratic
optimal control problems. to appear in Comp. Opt. and Appl., 2009

[19] K. Zhou, J. C. Doyle, and K. Glover; Robust and Optimal Control, Prentice Hall,
Englewood Cliffs, 1996.

[20] M.Fahl; Computation of POD basis functions for fluid flows with Lanczos methods.
Mathematical and Computer Modelling, 2000

[21] K.Fukunaga; Introduction to Statistical Recognition, Academic Press, 1999

[22] P. Astrid, Reduction of Process Simulation Models; A Proper Orthogonal Decom-
position Approach, Ph.D. thesis, Department of Electrical Engineering, Eindhoven
University of Technology, Eindhoven, The Netherlands, 2004.

[23] M. J. Rewienski ; A Trajectory Piecewise-Linear Approach to Model Order Reduction
of Nonlinear Dynamical Systems, Ph.D. thesis, Massachusetts Institute of Technology,
Cambridge, MA, 2003.

[24] M. Rewienski and J. White; Model order reduction for non-linear dynamical systems
based on trajectory piecewise-linear approximations, Linear Algebra Appl., 415 (2006),
pp. 426454

[25] S.C.Brenner and L.Ridgway Scott; The mathematical Theory of Finite Flement Meth-
ods. 3rd Edition, Springer, New York, 2008

[26] P.F.Ciarlet; The Finite Element Method for Elliptic Problems. SIAM, Philadelphia,
2002

79

[27] Bei Hu; Blow-up Theories for Semilinear Parabolic Equations Springer Heidelberg
Dordrecht London New York, 2011

80

	Introduction
	Evolution Equations and their semi-discretization in space
	POD and DEIM
	Galerkin POD for Evolution Equations
	POD and SVD

	POD Discrete Empirical Interpolation (POD-DEIM)

	Snapshot Location in POD
	Error estimator for systems of ODEs
	General non-linear systems.
	Linear and semi-linear systems.

	Equilibration of the error in time
	Newton's method for full order model (FOM)
	Newton's method for the POD based Reduced Order Model (ROM)
	Newton's method for the POD-DEIM based ROM

	Error equilibration for the POD and the POD-DEIM based ROM
	Snapshot location based on optimization

	Numerical Results
	Linear parabolic equations
	Error equilibration in time
	Comparison of two strategies for snapshot location

	Non-linear parabolic equations
	Example 2: Error equilibration in time
	Example 3: Error equilibration in time

	Conclusions
	Bibliography

