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Abstract

Variational principles for finding eigenvalues, and associated eigenvectors, for sym-

metric matrices and compact self-adjoint linear operators have been studied for some

time now (see [2] or [3], for instance). Here we shall introduce and study uncon-

strained variational principles for the eigenproblem of a pair of bilinear forms (a,m)

on a Hilbert space. Each functional in the one-parameter family of functionals has

well-defined first and second variations.

First variations characterize the critical points as eigenvectors of (a,m) with asso-

ciated eigenvalues given by specific formulae. Properties of the set of critical points,

that depend on the parameter value of the family of functionals, are given and sum-

marized by a bifurcation diagram. Second variations enable a Morse index theory

that characterizes the critical point as being associated with the jth eigenvalue.

The framework is quite general, but the assumption on (a,m) are appropriate

for the study of second-order divergence form elliptic problems in Hilbert-Sobolev

spaces, including problems with non-zero boundary data and indefinite weights. These

problems include Robin, Steklov and general eigenvalue problems.
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Chapter 1

Background and Motivation

1.1 Introduction

A primary purpose of eigenvalue analyses is to provide spectral representations of

solutions of linear systems. When these systems are described by symmetric matrices,

self-adjoint linear operators, or symmetric bilinear forms, the standard variational

principles for eigenvalues of these forms have been based on minimizing or maximizing

Rayleigh’s quotient. This is Rayleigh’s principle and it is essentially a constrained

optimization problem.

However, some unconstrained variational principles for matrices and compact,

self-adjoint, linear operators have been described in Auchmuty [2, 3, 4]. Following

this direction, in this work we shall describe a one-parameter family of unconstrained

variational principles for finding eigenvalues and eigenvectors of a pair (a,m) of con-

tinuous, symmetric, bilinear forms on a separable Hilbert space V . This framework is

appropriate for elliptic eigenvalue problems set in Hilbert-Sobolev spaces on bounded

regions, including problems with non-zero boundary data. The functionals involved
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1.1 INTRODUCTION

in these principles have well-defined first and second variations which allow non-zero

critical points to be characterized as certain eigenvectors of the pair (a,m) and to be

characterized by their Morse index. More specifically, a non-degenerate critical point

associated to the jth eigenvalue of (a,m), counting multiplicities, will have Morse

index (j−1), provided the parameter is large enough. Thus, in this case, a minimizer

of the functional will be a critical point associated to the least eigenvalue λ1 with zero

Morse index.

We begin in the next section with a discussion on bilinear forms and the (a,m)-

eigenvalue problem that we address in this dissertation. We also summarize some of

the spectral properties of the sequence of eigenvectors of the pair (a,m) defined by

the iterative construction given in Auchmuty [7], and recall some results from the

calculus of variations that we shall use throughout this work .

In Chapter 2 the Morse and null index of bilinear forms satisfying a G̊arding type

inequality are introduced along the lines outlined in Zeidler [10]. However, our work

here uses bilinear forms exclusively as opposed to the use of the corresponding linear

operators and associated dual spaces. The indices of these particular bilinear forms

are then shown to be finite, and in a certain sense invariant; we thus provide an

infinite-dimensional version of Sylvester’s law of inertia. However, before showing

all of these properties, we first give spectral representations of these special bilinear

forms, and also of those bilinear forms that are weakly continuous. Lastly, the case

where the bilinear form is a Hessian form (the second derivative) of a functional is

considered and a splitting of the corresponding quadratic form given.

Chapter 3 introduces the one-parameter family of unconstrained variational prin-

ciples and then properties of the functional G (.;µ) are proved. The results enable the

existence of global minimizers of the variational problem, and first variations char-
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1.1 INTRODUCTION

acterize non-zero critical points as certain eigenvectors of the pair of bilinear forms

(a,m), where the m-norm of these eigenvectors is a function of the parameter µ and

the associated eigenvalue. We then describe the dependence of the set of critical

points on the parameter value µ and provide a bifurcation diagram. Lastly, we show

how the functional G (.;µ) may be penalized to yield again unconstrained variational

principles, but this time for finding the second smallest eigenvalue λ2 of the pair

(a,m). Though this penalization method may be generalized for higher eigenvalues,

we end the chapter by providing constrained variational principles for finding higher

eigenvalues.

We emphasize that up to this point only first variations of the functional G (.;µ)

have been used in the work. It is only until Chapter 4 that we show G (.;µ) has well-

defined second derivatives, which allows us to use the work from Chapter 2 to evaluate

the Morse and null indices of critical points of the functional. These calculations in

turn provide further information on the bifurcation results given in Chapter 3. In

particular, we show that minimizers of the functional G (.;µ) have zero Morse index

and that non-minimizing critical points have Morse index being strictly positive. More

specifically, we show the Morse index of a critical point associated to the jth-distinct

eigenvalue is equal to the sum of the multiplicities of the (j − 1) previous distinct

eigenvalues.

The results proved up to Chapter 4 assume that the bilinear form m satisfies

m(v, v) ≥ 0, or that it be strictly positive for non-zero vectors v ∈ V . In Chapter

5 we consider the indefinite weighted eigenproblem, which is the problem where the

bilinear form m is not necessarily positive. That is, we consider the case where there

3



1.2 TERMINOLOGY AND ASSUMPTIONS

are vectors v1, v2 in V such that

m(v1, v1) < 0 < m(v2, v2).

We show that our previous work applies to this case as well.

Chapter 6 is devoted to showing how our results applies to linear elliptic eigen-

value problems; we consider three classes of problems. The first type of problems

considered are Robin eigenvalue problems, and Steklov eigenproblems are studied -

which are problems with homogeneous equations where the eigenparameter appears

in the boundary condition instead of the differential equation. The last class of prob-

lems we consider are general problems where the eigenparameter appears both in the

differential equation and in the boundary condition. We note that the condition on

the boundary of the (bounded) region where the problems are defined is that it it be

composed of finitely many Lipschitz surfaces.

Also, we again emphasize that in all this work we make exclusive use of bilinear

forms and not of the associated linear operators. We point out too that some of the

results given here are related to results on unconstrained variational principles for

eigenproblems described by Auchmuty in [2, 3, 4, 5, 7] .

1.2 Terminology and Assumptions

1.2.1 Bilinear Forms and Eigenvalue Problems

In this work, V is a real, separable, infinite-dimensional Hilbert space with inner

product and norm denoted 〈., .〉V and ‖.‖V , respectively. The dual space of V is

denoted V ∗ and is again a real, separable, infinite-dimensional Hilbert space with
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1.2 TERMINOLOGY AND ASSUMPTIONS

dual norm ‖.‖∗. The dual pairing between V and V ∗ is denoted 〈., .〉 so that the value

of a functional u∗ ∈ V ∗ evaluated at a vector u ∈ V is written 〈u∗, u〉.

A bilinear form b : V × V → R is said to be symmetric provided b(u, v) = b(v, u)

holds for all u, v ∈ V . The corresponding quadratic form B(u) := b(u, u) is said

to be positive provided it satisfies B(u) ≥ 0 for all u ∈ V , and strictly positive if

B(u) > 0 for all non-zero u ∈ V ; similarly, negative and strictly negative are defined

with inequalities reversed. The bilinear form b is said to be V -coercive provided there

exists a constant k > 0 such that B(u) ≥ k‖u‖2
V for all u ∈ V .

When the bilinear form b is symmetric, we also have the following. The null space

of b is the subset N(b) of V given by

N(b) := {u ∈ V : b(u, v) = 0, ∀v ∈ V }.

If N(b) = {0}, then b is said to be non-degenerate; otherwise it is degenerate. Fur-

thermore, the vectors u, v ∈ V are said to be b-orthogonal if b(u, v) = 0. A subset

E of V is said to be a basis of V when it is a maximal linearly independent set in

V with respect to inclusion. A subset E of V is said to be a b-orthogonal basis of V

provided it is a basis and any two vectors in E are b-orthogonal.

Moreover, we say that b has finite rank M , with M ∈ N, provided there are

M linearly independent functionals u∗1, . . . , u
∗
M in V ∗, such that b has the following

representation:

b =
M∑
j=1

u∗j ⊗ u∗j (1.1)

That is, b has finitie rank if b(u, v) =
∑M

j=1〈u∗j , u〉〈u∗j , v〉 for all u, v ∈ V . It follows

from definition that a finite rank form is weakly continuous.
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1.2 TERMINOLOGY AND ASSUMPTIONS

In this work, we shall consider bilinear forms a : V × V → R and m : V × V → R

subject to some of the following conditions:

(A1): a(., .) is a continuous, symmetric, bilinear form that is V -coercive. That is,

there exist constants 0 < k0 ≤ k1 <∞ such that

k0‖u‖2
V ≤ a(u, u) ≤ k1‖u‖2

V for all u ∈ V. (1.2)

(A2): m(., .) is a weakly continuous, symmetric, bilinear form on V .

(A3): m(u, u) ≥ 0 for all u ∈ V .

(A4): m(u, u) > 0 for all non-zero u ∈ V .

Define A , M to be the quadratic forms on V associated to a, m, so that

A (u) := a(u, u) and M (u) := m(u, u).

When (A1) holds, the bilinear form a(., .) defines an inner product

[u, v]a := a(u, v) (1.3)

on V that is equivalent to the V inner product. When m(., .) satisfies (A2) and (A3),

then ‖u‖m :=
√

M (u) defines a semi-norm on V . A vector u ∈ V is said to be

m-normalized provided it satisfies ‖u‖m = 1.

We will study issues related to finding non-trivial solutions (λ, u) ∈ R× V of

a(u, v) = λm(u, v) for all v ∈ V. (1.4)

This will be called the (a,m)-eigenproblem. The number λ is an eigenvalue of (a,m)
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1.2 TERMINOLOGY AND ASSUMPTIONS

if there is a non-zero vector u in V satisfying (1.4) and the associated u is called an

eigenvector of (a,m) corresponding to λ. When λ is an eigenvalue, let Eλ be the set

of all u ∈ V such that (1.4) holds. The number of linearly independent eigenvectors

of (a,m) corresponding to the eigenvalue λ is called the multiplicity of λ. When the

multiplicity of λ is one, then λ is said to be a simple eigenvalue.

When (A1)-(A3) hold, by taking v = u an eigenvector in (1.4), we see that every

eigenvalue λ of (a,m) must be strictly positive. The iterative construction given

in Auchmuty [7] yields the following summary of spectral results about the (a,m)-

eigenproblem.

Theorem 1.1. Assume (a,m) satisfy (A1)-(A3). Then either there are

(i) finitely many strictly positive eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λM of (a,m) and a

corresponding m-orthonormal set of eigenvectors EM := {ej : 1 ≤ j ≤M}, or else

(ii) countably infinitely many strictly positive eigenvalues λ1 ≤ λ2 ≤ · · · of (a,m),

with limj→∞ λj = ∞, and a corresponding m-orthonormal set of eigenvectors E+ :=

{ej : j ≥ 1}.

In both cases, these eigenvalues can be found iteratively and are repeated accord-

ing to their multiplicities. When (A4) also holds, then (ii) holds and E+ is an m-

orthonormal basis of V .

Proof. The assumption on (a,m) are the assumptions for the bilinear forms in The-

orem 4.2 and 4.3 in Auchmuty [7]. From these theorems the desired conclusions are

obtained with a-orthonormality instead of m-orthonormality. For an eigenvector e

corresponding to an eigenvalue λ > 0 of (a,m), we note that

a(e, u) = 0 if and only if m(e, u) = 0,

7



1.2 TERMINOLOGY AND ASSUMPTIONS

which holds for all u ∈ V , allows a-orthogonality to be replaced by m-orthogonality.

Moreover, m-normalized eigenvectors are obtained from a-normalized eigenvectors by

taking ẽ := λ1/2e for an a-normalized eigenvector e corresponding to the eigenvalue

λ.

In view of this theorem, by takingW to be the a-orthogonal complement of the null

space N(m) of m, we see that when conditions (A1)-(A3) are satisfied, the following

a-orthogonal decomposition that we shall use in our analysis holds

V = N(m)⊕aW (1.5)

with the eigenvectors of (a,m) lying in W . The subspace W will be finite or infinite

dimensional accordingly as (i) or (ii) in the theorem hold.

1.2.2 Tools from the Calculus of Variations

Various results from the calculus of variations will be used in this work. Background

material may be found in Attouch, Buttazzo, Michaille [1], Blanchard and Brüning

[8], or Zeidler [10].

Let F : V → R be a given functional. The first variation of F at the point u ∈ V

in the direction v ∈ V is defined to be the following derivative

δF (u; v) :=
d

dt
F (u+ tv)

∣∣∣
t=0

provided this derivative exists. When δF (u; v) exists for all v ∈ V and is a continuous

linear functional in v, then F is said to be Gâteaux differentiable at u and the linear

functional v 7→ δF (u; v) is the Gâteaux derivative of F at u. A point u ∈ V is a

8



1.2 TERMINOLOGY AND ASSUMPTIONS

critical point of F provided F is Gâteaux differentiable at u and

δF (u; v) = 0 for all v ∈ V.

A number c is a critical value of F if there is a critical point u with F (u) = c.

The second variation of F at u in the directions v, w ∈ V is defined by

δ2F (u; v, w) :=
∂2

∂t2∂t1
F (u+ t1v + t2w)

∣∣∣
t1=t2=0

whenever this derivative exists. If δ2F (u; v, w) exists for all v, w ∈ V and is a

continuous bilinear form in (v, w), then F is said to be twice Gâteaux differentiable at

u and the bilinear form (v, w) 7→ δ2F (u; v, w) is called the Gâteaux second derivative,

or Hessian form, of F at u.

We point out that in contrast with most references dealing with the calculus of

variations (see, for instance, [1], [8], or [10]) which take the second variation of a

functional F at a point u to be the derivative given by

δ2F (u; v) =
d2

dt2
F (u+ tv)

∣∣∣
t=0
,

for a given direction vector v in V , provided this derivative exists, we opt for the

above definition of second variations since a goal of our analysis is to determine the

type (degenerate or non-degenerate) of a critical point of F , and not merely whether

the critical point provides a local miniminum or not.

9



Chapter 2

Types and Morse Indices

Morse theory for infinite-dimensional spaces investigates the strong relations between

variational problems and topology. In this work, however, since we shall prove results

about the critical points of smooth unconstrained variational problems, our main

interest is only in the type of a critical point determined by the Hessian form of the

functional at the point.

We thus define the Morse index of bilinear forms satisfying a G̊arding type inequal-

ity, and use the theory of the Morse index along the lines outlined in Zeidler [10],

Section 37.27b. Here, in contrast to [10], the presentation and analysis uses bilinear

forms directly rather than the associated linear operators between dual spaces.

2.1 Spectral Representation of Bilinear Forms

In order to define the Morse index of bilinear forms, we first provide the following

spectral representations of two classes of bilinear forms. We show the Morse index of

the second class of bilinear forms is finite and invariant in a certain sense.

10



2.1 SPECTRAL REPRESENTATION OF BILINEAR FORMS

2.1.1 Weakly Continuous Bilinear Forms

Consider first the class of weakly continuous bilinear forms on V whose corresponding

quadratic forms are positive. That is, assume the bilinear form m satisfies (A2) and

(A3), and let the bilinear form a satisfy (A1). Take W as in the decomposition (1.5),

and let E0 = {ej : j ∈ J0} be a maximal a-orthonormal set in the null space N(m)

of m. Define J+ to be the indexing set of an m-orthonormal basis of eigenvectors for

the subspace W . That is, J+ is equal to {1, . . . ,M} or N accordingly as (i) or (ii) of

Theorem 1.1 holds. That E := E0∪{ej : j ∈ J+} is an a-orthogonal basis of V follows

from Corollary 4.4 and 4.5 of Auchmuty [7]. We then have the following result.

Theorem 2.1. Assume (a,m) satisfy (A1)-(A3). With the subspace W as in the

decomposition (1.5), and J+ as above, we have

m(u, v) =
∑
j∈J+

λ−2
j a(ej, u)a(ej, v) for all u, v ∈ V. (2.1)

Proof. By taking ẽj := λ
−1/2
j ej for an m-normalized eigenvector ej of (a,m) corre-

sponding to λj, we obtain an a-orthonormal basis Ẽ := E0 ∪ {ẽj : j ∈ J+} for V . As

a(., .) is equivalent to the V -inner product, an element u in V then has an expansion

u =
∑
j∈J+

c+
j ẽj +

∑
j∈J0

c0
jej

with c+
j = a(ẽj, u) for j ∈ J+, and c0

j = a(ej, u) for j ∈ J0. Since m(ej, v) = 0 for

each j ∈ J0 and all v ∈ V , we have

m(u, v) =
∑
j∈J+

c+
j m(ẽj, v) =

∑
j∈J+

λ−2
j a(ej, u)a(ej, v)

11



2.1 SPECTRAL REPRESENTATION OF BILINEAR FORMS

for all u, v ∈ V as desired.

For j ∈ J+, denote by εj the linear functional given by v 7→ a(ej, v) for v ∈ V .

Then εj is in V ∗ for each j ∈ J+ by continuity of a, and the representation (2.1) for

m in terms of the a-inner product may be written in terms of the linear functionals

εj ∈ V ∗ as

m =
∑
j∈J+

λ−2
j εj ⊗ εj (2.2)

When (i) of Theorem 1.1 holds, then the cardinality of J+ in the representation

(2.2) is finite and thus m is a finite rank bilinear form on V . Also, for different a-inner

products we have different representations of m.

2.1.2 Semi-coercive Bilinear Forms

The second class of bilinear forms that we shall now consider are those satisfying a

G̊arding-type inequality on V . Specifically, we consider bilinear forms b subject to

the following conditions:

(M1): b : V × V → R is a symmetric, continuous, bilinear form on V , and

(M2): there is a bilinear form m satisfying (A2) and (A4), and there are constants

k2, k3 > 0 such that

B(v) ≥ k2‖v‖2
V − k3M (v) for all v, w ∈ V. (2.3)

A bilinear form b is said to be semi-coercive on V provided it satisfies both (M1)

and (M2). The following theorem provides a spectral representation of semi-coercive

bilinear forms which will be used later when we evaluate Morse and null indices of such

bilinear forms. We point out that the proof of Theorem 1.1 is based on a constructive

12



2.1 SPECTRAL REPRESENTATION OF BILINEAR FORMS

algorithm found in [7] that determines successive eigenvalues.

Theorem 2.2. Assume the pair (b,m) satisfies (M1) and (M2). Then there exists an

m-orthonormal basis E = {ej : j ∈ N} of V consisting of eigenvectors corresponding

to eigenvalues −∞ < λ1 ≤ λ2 ≤ · · · of the pair (b,m), with limj→∞ λj =∞, and

b(v, w) =
∞∑
j=1

λjm(ej, v)m(ej, w) for all v, w ∈ V. (2.4)

Proof. Consider the eigenproblem of finding non-trivial solutions (λ, v) ∈ R× V of

b(v, w) = λm(v, w) for all w ∈ V (2.5)

From (M2) we have B(v) + k3M (v) ≥ k2‖v‖2
V for all v ∈ V , i.e., the bilinear form

b̃ := b + k3m is V -coercive and thus satisfies the conditions of the bilinear form in

(A1). Since m satisfies (A2) and (A4), it follows from Theorem 1.1 that there is an

m-orthonormal basis E+ := {ej : j ∈ N} of V consisting of eigenvectors of (b̃, m)

corresponding to an increasing sequence of strictly positive eigenvalues λ̃1 ≤ λ̃2 ≤ · · ·

with no accumulation point. That is,

b̃(ej, w) = λ̃jm(ej, w) for all w ∈ V

with m(ej, ek) = δjk for all j, k ∈ N.

For each j ∈ N set λj := λ̃j − k3. Then

b(ej, w) = λjm(ej, w) (2.6)

holds for all w ∈ V , so that taking E = E+ gives an m-orthonormal basis of V

13



2.2 TYPE AND MORSE INDEX OF A BILINEAR FORM

consisting of eigenvectors corresponding to an increasing sequence of eigenvalues

−∞ < λ1 ≤ λ2 ≤ · · · for the pair (b,m) with no accumulation point. The first

part of the theorem then holds.

Since E is a basis of V , an element v in V has an expansion

v =
∞∑
j=1

m(ej, v)ej.

Since b is continuous on V , we have

b(v, w) =
∞∑
j=1

m(ej, v)b(ej, w) =
∞∑
j=1

λjm(ej, v)m(ej, w)

for all w ∈ V .

As in the case of weakly continuous bilinear forms, the representation (2.4) for the

semi-coercive bilinear form b in terms of the bilinear form m may be written in terms

of functionals in V ∗ as follows. For each j ∈ N, let εj denote the linear functional

on V given by v 7→ m(ej, v) for v ∈ V . Then εj is in V ∗ for each j as m is weakly

continuous on V , so that (2.4) turns into

b =
∞∑
j=1

λjεj ⊗ εj. (2.7)

2.2 Type and Morse Index of a Bilinear Form

Let b : V ×V → R be a symmetric, continuous, bilinear form on V . That is, b satisfies

assumption (M1). Recall b is said to be non-degenerate provided the null space N(b)

of b is equal to {0}; otherwise, b is said to be degenerate. The dimension of the null
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2.2 TYPE AND MORSE INDEX OF A BILINEAR FORM

space of b on V is said to be the null index of b on V and denoted i0(b). It follows

from definitions that the null index i0(b) of b is zero whenever b is non-degenerate.

Suppose the corresponding quadratic form B of b is strictly negative on subspaces

W of V , with dimW ≤ J for all such subspaces. Furthermore, suppose that among

these subspaces W there is a closed subspace Wb with dimWb = J . Then we say that

the Morse index of b on V is J , and denote this as i(b) = J . If no such subspace W

exists, then B is positive on V and we say the Morse index of b is zero.

When b also satisfies (M2), the following results show that the Morse index and

null index of b are finite and independent of the choice of the bilinear form m in (M2).

Theorem 2.3. Assume the pair (b,m) satisfies (M1) and (M2). Then

(i) the Morse index i(b) of b is finite and equal to the number of negative eigenvalues

of (b,m) counting multiplicities,

(ii) the null index i0(b) of b is finite and equal to the multiplicity of 0 as an eigenvalue

of (b,m), and

(iii) b is non-degenerate if and only if 0 is not an eigenvalue of (b,m).

Proof. By Theorem 2.2, let E = {ej : j ∈ N} be an m-orthonormal basis of V

consisting of eigenvectors corresponding to an increasing sequence of eigenvalues

−∞ < λ1 ≤ λ2 ≤ · · · , with no accumulation point, of the pair (b,m). Let

W− = span{ej : λj < 0} and W0 = span{ej : λj = 0}.

As the λj’s form an increasing sequence of real numbers with no finite accumulation

point, the dimensions of W− and W0 are both finite. From (2.4), for each v ∈ W− we

15
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have

b(v, v) =
∞∑
j=1

λjm(v, ej)
2 =

∑
{j:λj<0}

λjm(ej, v)2

by the m-orthogonality of the ej’s. Hence, the associated quadratic form B is strictly

negative on W−, and also from (2.4) we see that dim(W−) is maximal for subspaces

on which B is strictly negative. The first assertion then holds.

By the m-orthonormality of the eigenvectors ej’s it is easy to see that v ∈ W0 if

and only if v ∈ N(m), so the second assertion also holds. The last statement is also

direct.

2.3 Invariance of Indices

We show next that the Morse and null index of b are independent of the form m chosen

in (M2). This may be regarded as an infinite-dimensional version of Sylvester’s law

of inertia in finite-dimensional, real, linear spaces.

Theorem 2.4. Assume b satisfies (M1), and m1,m2 both satisfy (A2) and (A4).

Suppose both pairs (b,m1) and (b,m2) satisfy an inequality of the form (2.3) with

m1,m2 in place of m. Then

(i) the number of negative eigenvalues (counting multiplicities) of (b,m1) is equal to

the number of negative eigenvalues (counting multiplicities) of (b,m2), and

(ii) the multiplicity of 0 as an eigenvalue of (b,m1) is equal to the multiplicity of 0

as an eigenvalue of (b,m2).

Proof. Eigenvalues are counted with multiplicities. Denote by i(b;m1) the number of

negative eigenvalues of (b,m1). By Theorem 2.3 i(b;m1) is finite, and the dimension

16
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of any subspace W on which B is strictly negative satisfies

dimW ≤ i(b;m1).

Let W− be the subspace of V generated by eigenvectors corresponding to negative

eigenvalues of (b,m2). By Theorem 2.3 again, W− has finite dimension, denoted

i(b;m2), equal to the number of negative eigenvalues of (b,m2), so that

i(b;m2) ≤ i(b;m1),

as B is strictly negative on W−. Interchanging the roles of i(b;m1) and i(b;m2) gives

the reverse inequality so that the first statement holds.

The second statement holds as any vector v in the null space N(b) of b satisfies

b(v, w) = 0m(v, w) for all w ∈ V,

regardless of the form m satisfying (M1) and (M2).

2.4 Indices and the Calculus of Variations

When F : V → R is a twice Gâteaux differentiable functional on V the definitions

and terminology given in previous sections correspond as follows for critical points of

F . A critical point u of F is said to be degenerate or non-degenerate accordingly

as the Hessian form δ2F (u; ., .) is degenerate or non-degenerate. Furthermore, the

Morse index and null index of a critical point u of F are defined as the Morse index

and null index of δ2F (u; ., .), and are denoted i(u) and i0(u), respectively.

17



2.4 INDICES AND THE CALCULUS OF VARIATIONS

In Morse theory, the splitting of the quadratic form corresponding to the Hessian

form of a functional at a non-degenerate critical point plays a crucial role. For this

investigation we thus consider the following splitting of a (Hessian) bilinear form

which yields the corresponding splitting of the associated quadratic form.

Corollary 2.5. Assume b satisfies (M1), (M2) and is non-degenerate. Then there

are bilinear forms b− and b+ on V with the following properties:

(i) b− and b+ are continuous and symmetric, with b− having finite rank equal to the

Morse index of b, and satisfy

b(v, w) = b+(v, w)− b−(v, w) for all v, w ∈ V. (2.8)

(ii) The corresponding quadratic forms B− and B+ are both positive, convex func-

tionals on V , with B− weakly continuous, and satisfy

B(v) = B+(v)−B−(v) for all v ∈ V. (2.9)

Proof. Let m be a bilinear form satisfying (M2). From Theorem 2.3 we have that

a subspace of maximal (finite) dimension on which B is strictly negative is spanned

by E− := {ej : 1 ≤ j ≤ i(b)}, where i(b) is the Morse index of b and the ej’s are m-

orthonormal eigenvectors corresponding to strictly negative eigenvalues λj of (b,m).

Define the bilinear form b− : V × V → R by

b−(v, w) = −
i(b)∑
j=1

λjm(v, ej)m(w, ej). (2.10)

Then b− has finite rank i(b), and the identities (2.4) and (2.10) imply that the bilinear
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2.4 INDICES AND THE CALCULUS OF VARIATIONS

form b+ := b−b− is continuous and symmetric on V , so that the first assertions holds.

From (2.10), we see that the quadratic form B− corresponding to b− is a positive,

convex functional on V that is weakly continuous. It follows from (2.4) and (2.10)

that the quadratic form B+ coresponding to b+ also is a positive, convex functional

on V . Therefore, the last statement holds.
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Chapter 3

Weighted Eigenvalue Problems

In the previous chapters, eigenvalue problems and representation theorems for bilinear

forms, and concepts of Morse theory to be used in this work were introduced, as well as

related notation. In this chapter, our interest is in describing and analyzing certain

unconstrained parametrized functionals whose critical points yield eigenvalues and

eigenvectors of the pair (a,m) of bilinear forms. It is shown that the functionals are

minimized precisely at eigenvectors of the pair (a,m) corresponding to the smallest

(strictly) positive eigenvalue λ1, when the parameter is strictly bigger than λ1. In this

case, the m semi-norm of the minimizers and the minimum value of the functional

are related to λ1.
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3.1 THE LEAST EIGENVALUE λ1

3.1 Unconstrained Variational Principles for the

Least Eigenvalue

Let (a,m) be a pair of bilinear forms satisfying (A1), (A2), and consider the functional

G : V × (0,∞)→ R given by

G (u;µ) := a(u, u)− µm(u, u) +
1

2
m(u, u)2. (3.1)

The variational principle here is the unconstrained problem (Pµ) of minimizing G (.;µ)

on V and finding

α(µ) := inf
u∈V

G (u;µ). (3.2)

The following theorem gives properties of the functional G (.;µ) that are used to

provide results for this variational principle.

Theorem 3.1. Assume (A1), (A2) hold and G (.;µ) is defined by (3.1). Then

(i) G (.;µ) is continuous, coercive and weakly l.s.c. on V , and

(ii) G (.;µ) is Gâteaux differentiable on V with first variation at u in the direction

v given by

δG (u; v;µ) = 2a(u, v) + 2[m(u, u)− µ]m(u, v). (3.3)

Proof. The quadratic form A (u) := a(u, u) is continuous on V as for fixed u ∈ V

and un ∈ V with ‖un − u‖V −→ 0, the identity

a(un, un)− a(u, u) = a(un − u, un − u) + a(un − u, u) + a(u, un − u) (3.4)
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3.1 THE LEAST EIGENVALUE λ1

gives

|A (un)−A (u)| ≤ k1‖un − u‖2
V + 2k1‖u‖V ‖un − u‖V −→ 0 as n→∞.

It follows that G (.;µ) is continuous on V as m is weakly continuous on V .

The weak continuity of m and the continuity of the function ψ(x) = −µx + 1
2
x2

defined on R, implies the composition

−µm(u, u) +
1

2
m(u, u)2

is weakly continuous on V , hence weakly l.s.c. on V . The quadratic form A is weakly

l.s.c. on V as A continuous and convex on V , and we then get that G (.;µ) is weakly

l.s.c. on V .

Since ψ(x) = −µx + 1
2
x2 ≥ −µ

2
2 for all x ∈ R, as x̂ = µ is the unique minimizer

for ψ on R, and since the bilinear form a(., .) is coercive on V we obtain

G (u;µ) ≥ k0‖u‖2
V −

µ2

2
,

which implies G (·;µ) is coercive on V . Thus (i) holds.

Fix u, v ∈ V . Then for t 6= 0, we have for the quadratic form M (u) := m(u, u)

M (u+ tv) = M (u) + 2tm(u, v) + t2M (v).

Thus limt→0 M (u+ tv) = M (u) and

δM (u; v) =
d

dt
M (u+ tv)

∣∣∣
t=0

= 2m(u, v).
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3.1 THE LEAST EIGENVALUE λ1

Similarly, δA (u; v) = 2a(u, v). As ψ(x) = −µx + 1
2
x2 is a polynomial of degree two,

the composition ψ◦M (u+εv) is a polynomial of degree four in t, so that we can apply

the classical chain rule to compute the first variation of G (.;µ) and obtain equation

(3.3) for any u, v ∈ V .

For fixed u ∈ V the first variation δG (u; .;µ) = 2a(u, .) + 2[m(u, u)− µ]m(u, .) is

the sum of two continuous linear functionals on V . Hence δG (u; .;µ) is continuous

and linear on V for each u in V , showing that G (.;µ) is Gâteaux differentiable on V ,

and therefore (ii) follows.

From Theorem 1.1 there is a smallest strictly positive eigenvalue λ1 of (a,m)

when (A1)-(A3) hold, so Theorem 3.1 now yields the following results about the

unconstrained problem (Pµ).

Theorem 3.2. Assume (A1)-(A3) hold and G is defined by (3.1).

(i) 0 is the unique critical point of G (.;µ) when µ ≤ λ1, and 0 and the points

(µ−λj)1/2e are the critical points of G (.;µ) when µ > λ1, where e is an m-normalized

eigenvector corresponding to the eigenvalue λj in the interval (0, µ).

(ii) The critical values of G (.;µ) are 0 for any value of µ > 0, and 0 and −1
2
(µ−λj)2

when µ > λ1 and λj is in the interval (0, µ).

(iii) The minimizer(s) of G (.;µ) on V are 0 when µ ≤ λ1, and (µ − λ1)1/2e when

µ > λ1, with e an m-normalized eigenvector of (a,m) corresponding to λ1.

(iv) The value of the problem (Pµ) is α(µ) = 0 when µ ≤ λ1, and α(µ) = −1
2
(µ−λ1)2

when µ > λ1.
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3.1 THE LEAST EIGENVALUE λ1

Proof. By (ii) of Theorem 3.1, a critical point ũ ∈ V must satisfy

a(ũ, v) =
[
µ−m(ũ, ũ)

]
m(ũ, v) for all v ∈ V. (3.5)

The point 0 always is a solution to (3.5) for any value of µ. Equation (3.5) implies a

non-zero critical point ũ of G (.;µ) is an eigenvector of the pair (a,m) corresponding

to a strictly positive eigenvalue λj = µ−m(ũ, ũ).

Substituting such a critical eigenvector ũ for v in (3.5) gives

a(ũ, ũ) =
[
µ−m(ũ, ũ)

]
m(ũ, ũ) = λj(µ− λj)

which implies λj(µ− λj) > 0 as a(., .) is coercive. Thus λj < µ, or that

0 < λj < µ.

Therefore, the only critical points of G (.;µ) are the point 0 and weighted eigenvectors

of the pair (a,m) corresponding to eigenvalues in the interval (0, µ). Also, when

µ ≤ λ1, we see that 0 is the unique critical point of G (.;µ), so that the first assertion

follows.

From (i) of Theorem 3.1, G (.;µ) attains a finite infimum on V which by (ii) of

that theorem must occur at a critical point, making the infimum a critical value. For

a non-zero critical point ũ of G (.;µ) corresponding to an eigenvalue λj ∈ (0, µ) we

have that

G (ũ;µ) = −(µ− λj)2 +
1

2
(µ− λj)2 = −1

2
(µ− λj)2

is a critical value of G (.;µ). Thus when µ ≤ λ1, the infimum is given by α(µ) = 0 as 0
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3.2 BIRFURCATION OF CRITICAL POINTS OF G (.;µ)

is the only critical point of G (.;µ) in this case. When µ > λ1, then the last expression

for G (ũ;µ) shows that the smallest critical value is α(µ) = −1
2
(µ− λ1)2 which occurs

at any point (µ − λ1)1/2e with e an m-normalized eigenvector corresponding to λ1.

Assertions (ii), (iii) and (iv) then hold.

Given µ ∈ (0,∞), Theorem 3.2 shows that the unconstrained variational problem

(Pµ) of minimizing G (.;µ) can be used to find upper and lower bounds on λ1 as stated

in the following result.

Corollary 3.3. Assume (A1)-(A3) hold and G is given by (3.1).

(i) If α(µ) = 0, then µ ≤ λ1.

(ii) If there exists ṽ ∈ V with G (ṽ;µ) < 0, then

λ1 = inf
G (u;µ)<0

[
µ−

√
−2G (u;µ)

]
≤ µ−

√
−2G (ṽ;µ). (3.6)

Proof. The first assertion follows from (iii) of Theorem 3.2. When there exists ṽ ∈ V

with G (ṽ;µ) < 0, then −1
2
(µ − λ1)2 = α(µ) ≤ G (ṽ;µ), which follows also from part

(iii) of the previous theorem, gives the second assertion.

3.2 Birfurcation of Critical Points of G (.;µ)

Also from Theorem 3.2 we will see that as the parameter µ in G (.;µ) increases past

an eigenvalue of (a,m), the set of critical points of G (.;µ) gains a new set of critical

points which bifurcates from the origin. This will follow from the following theorems

which also provide a number of topological properties of the sets of critical points.

To make this more precise, we first we make the following definitions.
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We shall now write the jth distinct eigenvalue of (a,m) as λ̃j and the multiplicity

of λ̃j as mj, so that

λ̃1 < λ̃2 < λ̃3 < · · ·

and λ̃1 = λ1 and λ̃2 > λ2 when λ1 has multiplicity m1 ≥ 2.

For an eigenvalue λ̃j, with 0 < λ̃j < µ, let Ej be the eigenspace corresponding to

λ̃j and define the set C(λ̃j;µ) by

C(λ̃j;µ) := {u ∈ Ej : ‖u‖2
m = µ− λ̃j}. (3.7)

When (A1)-(A3) hold, Theorem 1.1 shows that each eigenspace Ej is finite-dimensional,

and there are only finitely many eigenspaces corresponding to eigenvalues in a given

interval (0, µ). It follows then that the sets C(λ̃j;µ) lie in finite-dimensional sub-

spaces of V . Moreover, the topological structure of the set C(λ̃j;µ) is related to the

multiplicity of λ̃j as described in the next theorem.

Theorem 3.4. Assume (A1)-(A3) hold and that the sets C(λ̃j;µ) are given by (3.7).

(i) If λ̃j ∈ (0, µ) is a simple eigenvalue of (a,m), then C(λ̃j;µ) consists of exactly

two points.

(ii) If λ̃j ∈ (0, µ) is an eigenvalue of (a,m) of multiplicity mj ≥ 2, then C(λ̃j;µ) is

diffeomorphic to an (mj − 1)-dimensional sphere.

Proof. If the eigenvalue λ̃j ∈ (0, µ) is simple, then C(λ̃j;µ) = {±(µ− λ̃j)1/2e} where

e is an m-normalized eigenvector of the pair (a,m) corresponding to λ̃j, so (i) holds.

If λ̃j is an eigenvalue of (a,m) of multiplicity mj ≥ 2, let {ej, ej+1, . . . , ej+mj−1}
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be an m-orthonormal basis of the eigenspace Ej. A calculation then shows that

C(λ̃j;µ) =

{
u ∈ V : u =

mj∑
k=1

ckej+k−1 with

mj∑
k=1

c2
k = µ− λ̃j

}
,

which is diffeomorphic to an (mj − 1)-dimensional sphere. Thus (ii) holds.

The next theorem shows the bilinear form m provides an additional orthogonality

relationship between the sets C(λ̃j;µ).

Theorem 3.5. Assume (A1)-(A3) hold and that the sets C(λ̃j;µ) are given by (3.7).

(i) Two sets C(λ̃i;µ), C(λ̃j;µ) corresponding to distinct eigenvalues λ̃i, λ̃j ∈ (0, µ),

are m-orthogonal. That is, if ui is in C(λ̃i;µ) and uj is in C(λ̃j;µ), with i 6= j, then

m(ui, uj) = 0.

(ii) If ui ∈ C(λ̃i;µ) and uj ∈ C(λ̃j;µ), with i 6= j, then

‖ui − uj‖m =

√
2µ− (λ̃i + λ̃j). (3.8)

Proof. The m-orthogonality of the eigenspaces Ej gives the first assertion. To obtain

the second one, we see that for ui ∈ C(λ̃i;µ) and uj ∈ C(λ̃j;µ) we have

ui = (µ− λi)1/2ei and uj = (µ− λj)1/2ej

for some m-normalized eigenvectors ei, ej corresponding to λ̃i, λ̃j, respectively. It

then follows that

‖ui−uj‖2
m = m(ui, ui)−2m(ui, uj) +m(uj, uj) = (µ− λ̃i) + (µ− λ̃j) = 2µ− (λ̃i+ λ̃j),
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3.2 BIRFURCATION OF CRITICAL POINTS OF G (.;µ)

as desired.

Now let

C(µ) :=
⋃

0<λ̃j<µ

C(λ̃j;µ). (3.9)

When (A1)-(A3) hold, part (i) of Theorem 3.2 says C(µ) is the set of non-zero-critical

points of G (.;µ). Since each set C(λ̃j;µ) lies in a finite dimensional subspace of V ,

as noted above, consequently so do the sets C(µ) for any value µ in (0,∞).

As a consequence of the above results, the set of critical points of G (.;µ) may be

described as follows.

Corollary 3.6. Assume (A1)-(A3) hold, G is given by (3.1), and the set C(µ) is

given by (3.9). Then the set C(µ) is closed and bounded, consisting of a finite number

of connected components and finitely many discrete points. In particular, if each

eigenvalue λ̃j in (0, µ) is simple, then C(µ) consists of 2M points in V , where M is

the number of eigenvalues in (0, µ).

Thus, for fixed µ in (0,∞), the above results show that C(µ), the set of non-

zero critical points of G (.;µ), is the disjoint union of finitely many finite-dimensional

spheres C(λ̃j;µ), the spheres being pairwise m-orthogonal.

When the parameter µ increases, the number of critical points may increase. The

following Figure 3.1 is a schematic bifurcation diagram for the critical points of G (.;µ).

In the figure,

Cj = {(λ̃j + s, s1/2e) : s ≥ 0, e ∈ Ej}

is the bifurcation branch of the set of critical points corresponding to the jth distinct

eigenvalue λ̃j of (a,m); the sphere C(λ̃j;µ) is thought of as a point on the branch Cj.

28



3.3 THE SECOND AND HIGHER POSITIVE EIGENVALUES

Figure 3.1: Bifurcation diagram for G (.;µ)

From Theorem 3.2 we see that 0 is a critical point for any value of µ, and it is the

unique critical point when µ ≤ λ1. As µ increases through an eigenvalue λ̃j, a new

sphere C(λ̃j;µ) of critical points emanates from the origin and moves along the branch

Cj. That is, each sphere of non-zero critical points, centered at the origin, persists

and expands in V as the parameter µ increases, without any further bifurcations.

3.3 The Second and Higher Positive Eigenvalues

Theorem 3.2 of the previous section shows that when µ > λ1, the value α(µ) of the

unconstrained problem (Pµ) yields the least eigenvalue λ1 of (a,m) and the minimizers

are associated eigenvectors. Our interest now is in obtaining variational principles for

the second eigenvalue (consequently higher eigenvalues) and associated eigenvectors.

In the first subsection, a penalization of the functional G (.;µ) will be described which

yields unconstrained variational principles for the second eigenvalue λ2 of (a,m).

This may be compared to the contrained variational principles given in the second

subsection.

29



3.3 THE SECOND AND HIGHER POSITIVE EIGENVALUES

3.3.1 A Penalization Method for Finding λ2

Suppose that we know an m-normalized eigenvector e1 corresponding to the first

eigenvalue λ1 of (a,m). Let τ , called a penalty parameter, be a positive real number

and let Gτ : V × (0,∞)→ R be the functional defined by

Gτ (u;µ) := G (u;µ) + τm(e1, u)2 (3.10)

where G is the functional given by (3.1).

Consider the problem (Pµ,τ ) of minimizing Gτ (.;µ) on V and finding

α(µ, τ) := inf
u∈V

Gτ (u;µ). (3.11)

This is again an unconstrained variational problem.

A calculation similar to that as in the proof of Theorem 3.1 yields that this

functional has first variation at u in the direction v given by

δGτ (u; v;µ) = 2{a(u, v) + [m(u, u)− µ]m(u, v) + τm(e1, u)m(e1, v)} (3.12)

Thus a vector u ∈ V is a critical point of Gτ (.;µ) provided it satisfies

a(u, v) = [µ−m(u, u)]m(u, v)− τm(e1, u)m(e1, v) for all v ∈ V. (3.13)

Note that a critical point ũ of G (.;µ) will be a critical point of Gτ (.;µ) for all τ > 0

provided it also satisfies m(e1, ũ) = 0.

Theorem 3.2 shows that 0 is a minimizer of the functional G (.;µ) for values µ in

the interval (0, λ1]. This will now translates into the following result for Gτ , which
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shows that when the least eigenvalue λ1 is simple, the zero vector is always a critical

point of this penalized functional and is a minimizer for a larger range of values of

the parameter µ. Further results about the unconstrained variational principle (Pµ,τ )

are also summarized in the next theorem which show that the non-zero minimizers

are eigenvectors associated to the second eigenvalue of the pair (a,m). First, let

µc := min{λ1 + 2τ, λ2}.

Theorem 3.7. Assume (A1)-(A3) hold, the sets C(λ̃j;µ) are given by (3.7), and Gτ

is defined by (3.10).

(i) If 0 < µ ≤ µc and λ̃1 is a simple eigenvalue of (a,m), then 0 is the unique

minimizer of Gτ (.;µ) on V and the value of the problem (Pµ,τ ) is α(µ, τ) = 0.

(ii) If µ > µc, τ > λ̃2 − λ̃1 and λ̃1 is a simple eigenvalue of (a,m), then the

minimizers of Gτ (.;µ) on V are the vectors in the set C(λ̃2;µ) and the value α(µ, τ)

of the problem (Pµ,τ ) satisfies

α(µ, τ) = −1

2
(µ− λ̃2)2 > −1

2
(µ− λ̃1)2 = α(µ). (3.14)

(iii) If µ > µc and λ̃1 is an eigenvalue of multiplicity m1 ≥ 2, then the minimizers

of Gτ (.;µ) on V are the vectors u in the set C(λ̃1;µ) that also satisfy m(e1, u) = 0.

In this case, the value of the problems (Pµ,τ ) and (Pµ) are the same and is given by

α(µ, τ) = α(µ) = −1

2
(µ− λ̃1)2. (3.15)

Proof. Note that as the penalty parameter τ is positive, we have

Gτ (u;µ) ≥ G (u;µ) for all (u, µ) ∈ V × (0,∞).
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Evaluating Gτ (.;µ) at a critical point uj = (µ − λ̃j)
1/2e of G (.;µ), with e an m-

normalized eigenvector of (a,m) inEj gives Gτ (uj;µ) = −1
2
(µ−λ̃j)2+τ(µ−λ̃j)m(e1, e)

2

which becomes

Gτ (uj;µ) =


−1

2
(µ− λ̃1)2 + τ(µ− λ̃1) if m(e1, e) = 1,

−1
2
(µ− λ̃j)2 if m(e1, e) = 0.

(3.16)

When µ ≤ µc, the only possible non-zero critical points uj of G (.;µ) are the points

u1 in E1. From (3.16), we see that when λ̃1 is simple, the corresponding critical value

of Gτ (.;µ) at u1 satisfies

Gτ (u1;µ) = −1

2
(µ− λ̃1)2 + τ(µ− λ̃1) > 0

as µ < λ̃1 + 2τ , so that α(µ, τ) = 0 and (i) holds.

The inequalities µ > µc, τ > λ̃2 − λ̃1 imply µ > λ̃2, when λ̃1 is simple. Thus the

points u1, u2 are critical points of G (.;µ), and consequently of Gτ (.;µ), in this case.

When λ̃1 is simple, by adding µ− λ̃1 to both sides of the inequality µ− λ̃2 < µ− λ̃1,

we get

[2µ− (λ̃1 + λ̃2)] < 2(µ− λ̃1).

With τ > λ̃2 − λ̃1, we then obtain

(µ− λ̃1)2 − (µ− λ̃2)2 = [λ̃2 − λ̃1][2µ− (λ̃1 + λ̃2)] < 2τ(µ− λ̃1),
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3.3 THE SECOND AND HIGHER POSITIVE EIGENVALUES

Rearrangement then gives

Gτ (u2;µ) = −1

2
(µ− λ̃2)2 < −1

2
(µ− λ̃1)2 + τ(µ− λ̃1) = Gτ (u1;µ),

from (3.16), so that the vectors u2 in C(λ̃2;µ) are minimizers of Gτ (.;µ), and (ii)

holds.

When µ > µc and λ̃1 is non-simple, from (3.16) we see that the corresponding

critical value of Gτ (.;µ) at any critical point u1 = (µ− λ̃1)1/2e of G (.;µ), with e ∈ E1

and m(e1, u1) = 0, satisfies

Gτ (u1;µ) = −1

2
(µ− λ̃1)2 < −1

2
(µ− λ̃j)2 = Gτ (uj;µ)

for any critical point uj in C(λ̃j;µ), j ≥ 2. Also from (3.16)

Gτ (u1;µ) < −1

2
(µ− λ̃1)2 + τ(µ− λ̃1)

for any value of τ , so that (iii) now follows.

Theorem 3.7 shows that when λ1 is a simple eigenvalue of (a,m), τ > λ2−λ1, and

µ > µc, then the minimizers of Gτ (.;µ) are eigenvectors of (a,m) corresponding to the

eigenvalue λ2. That is, this penalized functional provides an unconstrained variational

problem whose minimizers yield the second eigenvalue and associated eigenvectors,

and we point out that the difference between the value of the penalized problem (Pµ,τ )

and that of (Pµ) is a function of the difference d := λ2 − λ1 between the first two

eigenvalues of (a,m), in the case λ1 is simple.
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3.3 THE SECOND AND HIGHER POSITIVE EIGENVALUES

3.3.2 Constrained Variational Principles

Suppose now that we know a finite sequence EJ := {e1, e2, . . . , eJ} of m-normalized

eigenvectors corresponding to the first J successive, smallest, strictly positive eigen-

values λ1 ≤ λ2 ≤ · · · ≤ λJ of (a,m), which obey

m(ei, ej) = δij for 1 ≤ i, j ≤ J. (3.17)

Let VJ := span EJ . Then there is a penalized functional similar to Gτ with the prop-

erty that when µ and τ are sufficiently large, the minimizers of the functional will be

eigenvectors of (a,m) that are m-orthogonal to VJ . This yields unconstrained varia-

tional principles for higher eigenvalues. Instead of writing down such unconstrained

problems, we consider the following constrained variational principles so that a com-

parison may be made.

Define WJ to be the m-orthogonal complement of VJ . That is, let

WJ = {u ∈ V : m(u, ej) = 0, ∀ 1 ≤ j ≤ J}, (3.18)

and consider the problem (Pµ(J)) of minimizing the functional G (.;µ) given by (3.1)

restricted to the subspace WJ and finding

αJ(µ) = inf
u∈WJ

G (u;µ). (3.19)

Minimizers of this variational principle will be eigenvectors of the pair (a,m) corre-

sponding to the next smallest strictly positive eigenvalue of (a,m), when these exist.

The results about this constrained variational principle are as follow.
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3.3 THE SECOND AND HIGHER POSITIVE EIGENVALUES

Theorem 3.8. Assume (A1)-(A3) hold, and G , WJ , αJ(µ) are given by (3.1), (3.18),

(3.19), respectively. If there exists w ∈ WJ with m(w,w) > 0, then there is another

positive eigenvalue λJ+1 of (a,m), with λJ+1 ≥ λJ , and a corresponding eigenvector

e in WJ . In this case,

(i) the value of the problem (Pµ(J)) is αJ(µ) = 0 when µ ≤ λJ+1, and αJ(µ) =

−1
2
(µ− λJ+1)2 when µ > λJ+1, and

(ii) the minimizers of (Pµ(J)) are 0 when µ ≤ λJ+1, and (µ − λJ+1)1/2e when

µ > λJ+1, with e an m-normalized eigenvector in WJ corresponding to λJ+1.

Proof. When such a w ∈ WJ exists, Theorem 4.2 of Auchmuty [7] gives the existence

of a next smallest eigenvalue λJ+1 ≥ λJ , and corresponding eigenvector e in WJ .

By (i) of Theorem 3.1, the functional G (.;µ) is continuous, coercive and weakly

l.s.c. on the closed subspace WJ . Hence, G (.;µ) attains a finite infimum on WJ .

Let ũ ∈ WJ be a minimizer of G (.;µ) on WJ . For v ∈ WJ we always have

ũ + tv ∈ WJ for any t ∈ R as WJ is a subspace of V , so part (ii) of Theorem 3.1

implies the function ϕ(t) = G (ũ + tv;µ) is a differentiable function with t = 0 a

critical point. By definition of first variation we then have

δG (ũ; v;µ) =
d

dt
ϕ(t)

∣∣
t=0

= 0

holding for each v ∈ WJ .

By the Lagrange multiplier rule, the minimizer ũ of G (.;µ) on WJ satisfies

δG (ũ; v;µ) =
J∑
j=1

βjm(ũ, v) for all v ∈ V.
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3.3 THE SECOND AND HIGHER POSITIVE EIGENVALUES

Thus, for v ∈ VJ we obtain δG (ũ; v;µ) = 0 as ũ ∈ WJ . Hence,

δG (ũ; v;µ) = 0 for all v ∈ V,

so that ũ is a critical point of G (.;µ) on V . Since ũ ∈ WJ , the desired results follow

as in the proof of Theorem 3.2

As in the end of the Section 3.1, the constrained variational principle (Pµ(J))

can be used to find both upper and lower bounds on λJ+1; this is given in the next

corollary whose proof is similar to that of Corollary 3.3.

Corollary 3.9. Assume (A1)-(A3) hold, and G , WJ , and αJ(µ) are given by (3.1),

(3.18), and (3.19), respectively.

(i) If αJ(µ) = 0, then µ ≤ λJ+1.

(ii) If there exists ṽ ∈ WJ with G (ṽ;µ) < 0, then

λJ+1 = inf
G (v;µ)<0
v∈WJ

[
µ−

√
−2G (v;µ)

]
≤ µ−

√
−2G (ṽ;µ). (3.20)
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Chapter 4

Morse and Null Indices of Critical

Points of G (.;µ)

We point out that the results obtained in Chapter 3 were all based on an analysis

which relied only on first variations of the functional G (.;µ). In this chapter, the func-

tional G (.;µ) is shown to be twice Gâteaux differentiable on V and then an analysis

based on second variations will enable a Morse index theory and the identification of

the type of a critical point for G (.;µ).

In particular, it is shown that a critical point of G (.;µ) associated to an eigenvalue

λ of (a,m) is non-degenerate if and only if λ is simple. Furthermore, the Morse index

of the critical point is related to the number of eigenvalues that are less than λ.

This may be compared to the Courant-Fischer-Weyl min-max results for variational

methods associated with Rayleigh quotients.

Consequently, these results supplement those previously presented in Section 3.2

on the bifurcation of critical points of the functional G (.;µ).

37



4.1 MORSE AND NULL INDICES

4.1 Morse and Null Indices

To enable a Morse index theory, the following formula for the Hessian form of G (.;µ)

will needed; the result complements Theorem 3.1.

Theorem 4.1. Assume (A1), (A2) hold, and G (.;µ) is given by (3.1). Then G (.;µ)

is twice Gâteaux differentiable on V with second variation at u in the directions v, w

given by

δ2G (u; v, w;µ) = 2a(v, w) + 2
[
m(u, u)− µ

]
m(v, w) + 4m(u, v)m(u,w). (4.1)

Proof. Fix v ∈ V and consider the functionals F1, F2, and F3 defined on V by

F1(u) = 2a(u, v), F2(u) = 2
[
m(u, u)− µ

]
, and F3(u) = m(u, v).

For u,w ∈ V , a computation then gives

δF1(u;w) = 2a(v, w), δF2(u;w) = 4m(u,w), and δF3(u;w) = 2m(v, w).

This, the classical product rule and definitions of first and second variations give

δ2G (u; v, w) =
∂2

∂t2dt1
G (u+ t1v + t2w)

∣∣∣
t1=t2=0

=
∂

∂t2

[
δG (u+ t2w; v)

]
t2=0

=δF1(u;w) + 2
[
m(u, u)− µ

]
δF3(u;w) +

[
δF2(u;w)

]
m(u, v)

=2a(v, w) + 2
[
m(u, u)− µ

]
m(v, w) + 4m(u, v)m(u,w),

as (3.3) holds, so that we obtain (4.1). Here we have suppressed the parameter µ at
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4.1 MORSE AND NULL INDICES

certain places. It then follows that G (.;µ) is twice Gâteaux differentiable on V as

each term of the Hessian δ2G (u; ., .) is a continuous bilinear form on V .

When (A1) and (A2) hold, Theorem 4.1 shows the Hessian δG (u; ., .;µ) of G (.;µ)

in (4.1) satisfies (M1). The next result shows the Hessian also satisfies (M2) at

critical points of G (.;µ) provided (A1)-(A4) hold. Thus, in this case, the Hessian is

a semi-coercive bilinear form on V , so the results of Theorem 2.3 may be used.

As we started doing so in Section 3.2, we denote the eigenvalues of (a,m) by λj

when counting multiplicities, and the distinct eigenvalues by λ̃j. The multiplicity of

the jth distinct eigenvalue λ̃j of (a,m) is denoted mj. Moreover, we now let σ(a,m)

denote the set of distinct eigenvalues of (a,m) and is called the spectrum of (a,m).

Theorem 4.2. Assume (A1)-(A4) hold, and G is given by (3.1).

(i) 0 is a non-degenerate critical point of G (.;µ) if and only if µ /∈ σ(a,m). The

Morse and null index of 0 are, respectively,

i(0;µ) =


0 if µ ≤ λ1,∑

λ̃j<µ
mj if µ > λ1,

and i0(0;µ) =


0 if µ /∈ σ(a,m),

mj if µ = λ̃j.

(4.2)

(ii) When uk = (µ − λ̃k)
1/2e is a non-zero critical point of G (.;µ), with e an m-

normalized eigenvector associated to λ̃k ∈ (0, µ), then uk is non-degenerate if and

only if λ̃k is a simple eigenvalue of (a,m). The Morse and null index of uk are,

respectively,

i(uk;µ) =


0 if k = 1,∑k−1

j=1 mj if k > 1,

and i0(uk;µ) = mk − 1. (4.3)
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4.1 MORSE AND NULL INDICES

Proof. By Theorem 1.1 there is an m-orthonormal basis E := {ej : j ≥ 1} of V

consisting of eigenvectors corresponding to strictly positive eigenvalues λ1 ≤ λ2 ≤ · · ·

of (a,m), counting multiplicities.

Taking u = 0 in (4.1) yields

δ2G (0; v, w;µ) = 2a(v, w)− 2µm(v, w) (4.4)

for all v, w ∈ V . Denote this Hessian form by h0(µ), so then h0(µ) is seen to satisfy

(M1) in Section 2.1.2 as it is a sum of continuous, symmetric bilinear forms on V .

When w is set to be equal to v in (4.4) we get

h0(µ)(v, v) ≥ 2k0‖v‖2
V − 2µM (v)

by the coercivity of a(., .), where M (v) := m(v, v). Thus the Hessian h0(µ) of G (.;µ)

at the origin satisfies a G̊arding type inequality of the form (2.3), i.e., it satisfies (M2)

in Section 2.1.2. The results in Theorem 2.3 then apply to the pair of bilinear forms

(h0(µ),m).

By taking v = ej in (4.4), with ej ∈ E , we obtain

h0(µ)(ej, w) = 2(λj − µ)m(ej, w)

for all w ∈ V , so that E := {ej : j ≥ 1} is an m-orthonormal set of eigenvectors for

the pair (h0(µ),m) corresponding to the eigenvalues 2(λj − µ). By Theorem 2.3, the

Hessian form h0(µ) is non-degenerate if and only if λj − µ 6= 0 for all j ≥ 1. Hence,

0 is a non-degenerate critical point of G (.;µ) if and only if µ is not an eigenvalue

of (a,m). Also from Theorem 2.3, the Morse index of 0 is equal to the number of
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4.1 MORSE AND NULL INDICES

negative eigenvalues 2(λj − µ), counting multiplicities, of (h0(µ),m), and the null

index of 0 is equal to the multiplicity of 0 as an eigenvalue of (h0(µ),m). This yields

the quantities in (4.2), so that (i) holds.

Taking u in (4.1) to be a non-zero critical point uk = (µ− λ̃k)1/2e corresponding

to an eigenvalue λ̃k ∈ (0, µ) and e an associated m-normalized eigenvector gives

δ2G (uk; v, w;µ) = 2a(v, w)− 2λ̃km(v, w) + 4m(uk, v)m(uk, w) (4.5)

for all v, w ∈ V . Denoting this Hessian form by hk(µ), we thus have that hk(µ)

satisfies (M1) in Section 2.1.2. By setting w = v in (4.5) we obtain

hk(µ)(v, v) ≥ 2k0‖v‖2
V − 2λ̃kM (v)

by the coercivity of a(., .). The Hessian hk(µ) of G (.;µ) at a non-zero critical point

uk therefore satisfies (M2), so that the results in Theorem 2.3 may be applied to the

pair (hk(µ),m).

Without loss of generality we may assume the eigenvector e in uk is e = ej, for

some eigenvector ej ∈ E associated to the eigenvalue λj = λ̃k. Taking v = ei in (4.5)

gives

hk(µ)(ei, w) = 2(λi − λj)m(ei, w) + 4(µ− λj)δijm(ej, w)

=


4(µ− λj)m(ei, w) if i = j

2(λi − λj)m(ei, w) if i 6= j

.

This shows E is an m-orthonormal set of eigenvectors for the pair (hk(µ),m) corre-

41



4.2 MORE ON THE BIFURCATION OF CRITICAL POINTS

sponding to the eigenvalue 4(µ − λj) plus the eigenvalues 2(λi − λj) for i 6= j. By

Theorem 2.3, the Hessian form hk(µ) is non-degenerate if and only if λi − λj 6= 0 for

all i 6= j. Thus, uk is a non-degenerate critical point of G (.;µ) if and only if λj is a

simple eigenvalue of (a,m). Also from Theorem 2.3 the Morse index of uk is equal

to the number of negative eigenvalues 2(λi − λj) of (hk(µ),m), which is precisely the

number of eigenvalues, counting multiplicies, of the pair (a,m) which are strictly less

than λj = λ̃k. Furthermore, the null index of uk is equal to the multiplicity of 0 as an

eigenvalue of (hk(µ),m), which is precisely (mk − 1). Assertion (ii) then holds.

4.2 More on the Bifurcation of Critical Points

As we shall now see, for each distinct eigenvalue λ̃j of (a,m), Theorem 4.2 character-

izes the points belonging to the set C(λ̃j;µ).

From Theorems 3.2 and 4.2, when µ > λ1, we see that points u1 in the set C(λ1;µ)

are minimizers of G (.;µ) with Morse and null index, respectively,

i(u1;µ) = 0 and i0(u1;µ) = m1 − 1.

Considering the bifurcation diagram in Figure 3.1, we have that these indices are

invariant as C(λ1;µ) moves along the branch C1. That is, for any value of µ > λ1,

the Morse index is the same for all points in set C(λ1;µ); the set C(λ1;µ) is considered

a point on the bifurcation branch C1. The same is true for null indices. Thus, when

λ1 is a simple eigenvalue, i.e., m1 = 1, then the set C(λ1;µ) will consist of two

non-degenerate critical points of G (.;µ) with zero Morse index.

When µ > λ̃j, where λ̃j ∈ σ(a,m) and j ≥ 2, each of the points uj on the sphere
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C(λ̃j;µ) is a saddle point of G (.;µ) with Morse and null index, respectively,

i(uj;µ) =

j−1∑
k=1

mk and i0(uj;µ) = mj − 1.

These indices are invariant as C(λ̃j;µ) moves along the branch Cj. That is, for any

value µ > λ̃j, the Morse index and null index are the same for each of the points in

the set C(λ̃j;µ). As in the case for C(λ1;µ), when λ̃j is simple we see that the set

C(λ̃j;µ) will consist of two non-degenerate critical points of G (.;µ), but, in this case,

with Morse index equal to the number of eigenvalues strictly less than λ̃j, counting

multiplicities.

For the trivial branch, part (i) of Theorem 4.2 shows that when µ = λ̃j the null

index of 0 is i0(0;µ) = mj, so that the origin will be a degenerate critical point of

G (.; λ̃j) for any λ̃j ∈ σ(a,m). As µ passes through λ̃j, that is, λ̃j < µ < λ̃j+1, an

(mj − 1)-dimensional sphere in V bifurcates from 0 and the null index of 0 is zero,

while the Morse index of 0 is equal to the number of eigenvalues strictly less than µ,

counting multiplicities. In other words, as µ passes through a distinct eigenvalue λ̃j,

the Morse index of the origin 0 increases by mj.
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Chapter 5

Indefinite Weighted Eigenproblems

So far in this dissertation, we have considered the (a,m) eigenproblem in the case

where the functional M , that is, the quadratic form associated to m, is positive on

the entire space V . In this chapter we shall show our analysis extends to the case

where M is allowed to take both positive and negative values, so we will generally

require the bilinear form m to satisfy the following condition:

(A5): There exist v1, v2 ∈ V such that M (v1) < 0 < M (v2).

An eigenproblem for (a,m) where a and m satisfies (A1), (A2), and (A5) will be

called an indefinite eigenproblem.

5.1 Eigenvalues λ+
1 and λ−1 Closest to the Origin

Assume we have an indefinite eigenproblem for (a,m). Results in [7] show there

are sets of positive and negative eigenvalues for the pair (a,m). Thus we let λ+
1 be

the least, strictly positive eigenvalue of (a,m) and λ−1 the greatest, strictly negative
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eigenvalue of (a,m), so that the eigenvalues of (a,m) satisfy

· · · ≤ λ−2 ≤ λ−1 < 0 < λ+
1 ≤ λ+

2 ≤ · · ·

These exist from Theorem 3.1 of [7].

Consider the problem (P(µ)) of minimizing the functional G (.;µ) defined by (3.1)

on V and finding the value α(µ) given by (3.2). As the results in Theorem 3.1 hold

when conditions (A1) and (A2) are satisfied, they remain valid when (A5) also holds,

and the analogue of Theorem 3.2 is as follows for the unconstrained problem (P(µ)).

Theorem 5.1. Assume (A1), (A2), and (A5) hold, and G is defined by (3.1). Let

λ+
1 be the least positive eigenvalue of (a,m).

(i) 0 is the unique critical point of G (.;µ) when 0 < µ ≤ λ+
1 , and 0 and the points

(µ−λ+
j )1/2e are the critical points of G (.;µ) when µ > λ+

1 , where e is an m-normalized

eigenvector corresponding to the eigenvalue λ+
j in the interval (0, µ).

(ii) The critical values of G (.;µ) are 0 for any value of µ > 0, and 0 and −1
2
(µ−λ+

j )2

when µ > λ+
1 and λ+

j is in the interval (0, µ).

(iii) The minimizers of G (.;µ) on V are 0 when 0 < µ ≤ λ+
1 , and (µ − λ+

1 )1/2e

when µ > λ+
1 , with e an m-normalized eigenvector of (a,m) corresponding to λ+

1 .

(iii) The value α(µ) of the problem (P(µ)) is of the same form as that of (Pµ) for all

values of µ ∈ (0,∞). That is, α(µ) = 0 when 0 < µ ≤ λ+
1 , and α(µ) = −1

2
(µ− λ+

1 )2

when µ > λ+
1 .

Proof. As in the proofs of Theorem 3.2 we see that a critical point u of G (.;µ) satisfies

a(u, v) = [µ−m(u, u)]m(u, v) for all v ∈ V. (5.1)
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Thus 0 is always a critical point, and non-zero critical points u are eigenvectors corre-

sponding to eigenvalues λ = µ−m(u, u). By the coercivity of a(., .), the eigenvalues

of (a,m) are non-zero. If λ = λ+ is a strictly positive eigenvalue of (a,m), then put

v = u in (5.1) to find

a(u, u) = [µ−m(u, u)]m(u, u) = λ+(µ− λ+)

which implies λ+(µ − λ+) > 0 as a(., .) is coercive on V . This shows λ+ < µ. From

(5.1), we also see that if u an eigenvector associated with a positive eigenvalue λ+ of

(a,m), then m(u, u) > 0.

If λ = λ− is a strictly negative eigenvalue of (a,m), then substituting a corre-

sponding eigenvector u for v in (5.1) gives λ−(µ − λ−) > 0, again, by the coercivity

of a(., .). This implies µ < λ−, which then implies µ < λ− < 0 < µ, a contradic-

tion. Therefore, the only possible non-zero critical points of G (.;µ) are eigenvectors

of (a,m) corresponding to strictly positive eigenvalues λj that are strictly less than

µ, and then (i) holds as in the proof of Theorem 3.2.

Also as in Theorem 3.2, minimizers of G (.;µ) exist and are critical points. There-

fore, when µ ∈ (0, λ+
1 ], we conclude from the above work that 0 is the only critical

point of G (.;µ) with value zero. When µ > λ+
1 , the non-zero critical points of G (.;µ)

are the points (µ − λ+
j )1/2e with e an m-normalized eigenvector corresponding to

the jth smallest, strictly positive eigenvalue λ+
j (counting multiplicities) of (a,m) less

than µ. By considering the corresponding critical values, assertions (ii), (iii), and

(iv) then follow.

For an indefinite eigenproblem, the negative eigenvalues λ−j of (a,m) are precisely

the positive eigenvalues of (a,−m). Thus negative eigenvalues of (a,m) may be found
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by considering the problem (P−(µ)) of minimizing G−(.;µ), with µ > 0, defined by

G−(u;µ) := a(u, u) + µm(u, u) +
1

2
m(u, u)2 (5.2)

and finding

α−(µ) := inf
u∈V

G−(u;µ). (5.3)

The following results about this unconstrained problem for finding the greatest neg-

ative eigenvalue of (a,m) follow from the previous theorem.

Corollary 5.2. Assume (A1), (A2), and (A5) hold, and G− is defined by (5.2). Let

λ−1 be the negative eigenvalue of (a,m) closest to zero.

(i) 0 is the unique critical point of G−(.;µ) when 0 < µ ≤ −λ−1 , and 0 and the

points (µ + λ−j )1/2e are the critical points of G−(.;µ) when µ > −λ−1 , where e is

an eigenvector of (a,m) corresponding to the eigenvalue λ−j in the interval (−µ, 0)

satisfying m(e, e) = −1, .

(ii) The critical values of G−(.;µ) are 0 for any µ > 0, and 0 and −1
2
(µ + λ−j )2

when µ > −λ−1 and λ−j is in the interval (−µ, 0).

(iii) The minimizer(s) of G−(.;µ) on V are 0 when 0 < µ ≤ −λ−1 , and the vectors

(µ+ λ−1 )1/2e when µ > −λ−1 , where e is an eigenvector of (a,m) corresponding to λ−1

satisfying m(e, e) = −1.

(iv) The value α−(µ) of the problem (P−(µ)) is α−(µ) = 0 when 0 < µ ≤ −λ−1 , and

α−(µ) = −1
2
(µ+ λ−1 )2, when µ > −λ−1 .
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5.2 Morse and Null Indices for the Indefinite Case

For indefinite eigenproblems, we shall evaluate Morse and null indices of critical points

of functionals associated to these problems by restricting the domain of these functi-

nals to a certain subspace of V . In particular, we shall consider the restricted domain

to be the closed subspace generated by the collection of eigenvectors of (a,m).

Consider the following decomposition

V = V+ ⊕a V0 ⊕a V− (5.4)

given by Corollary 4.5 of [7] in the case of an indefinite eigenproblem for (a,m), i.e.,

when conditions (A1), (A2) and (A5) hold. Here ⊕a indicates an a-orhogonal direct

sum, V+ is the closed subspace of V generated by the eigenvectors E+ := {e+
j : j ∈ J+}

associated with strictly positive eigenvalues λ+
j of (a,m), V− is the closed subspace

of V generated by eigenvectors E− := {e−j : j ∈ J−} associated with strictly negative

eigenvalues λ−j of (a,m), and V0 = N(m) is the null space of m. Now let

W := V+ ⊕a V− (5.5)

be the closed subspace generated by the eigenvectors of (a,m), and let σ+(a,m) and

σ−(a,m) denote, respectively, the collection of distinct strictly positive and strictly

negative eigenvalues λ̃+
j and λ̃−j of (a,m). Thus the spectrum σ(a,m) becomes

σ(a,m) = σ+(a,m) ∪ σ−(a,m) (5.6)

the union of its positive and negative parts. Also let m+
j and m−j denote, respectively,
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the multiplicity of the jth-distinct strictly positive and strictly negative eigenvalue λ̃+
j ,

λ̃−j of (a,m). The analogue of Theorem 4.2 is as follows.

Theorem 5.3. Assume (A1), (A2), and (A5) hold, the subspace W is given by (5.5),

and G : W × (0,∞)→ R is defined by (3.1).

(i) 0 is a non-degenerate critical point of G (.;µ) if and only if µ /∈ σ+(a,m). The

Morse and null index of 0 are, respectively,

i(0;µ) =


0 if µ ≤ λ̃+

1∑
λ̃+j <µ

m+
j if µ > λ̃+

1

and i0(0;µ) =


0 if µ /∈ σ+(a,m)

m+
j if µ = λ̃+

j

.

(5.7)

(ii) When u+
k = (µ − λ̃+

k )1/2e is a non-zero critical point of G (.;µ), with e an m

normalized eigenvector associated to λ̃+
k ∈ (0, µ), then u+

k is non-degenerate if and

only if λ̃+
k is a simple eigenvalue of (a,m). The Morse and null index of u+

k are,

respectively,

i(u+
k ;µ) =


0 if k = 1∑k−1

j=1 m
+
j if k > 1

and i0(u+
k ;µ) = m+

k − 1. (5.8)

Proof. Define the bilinear form |m| : W ×W → R, the absolute value of the bilinear

form m, as follows. For an eigenvector e corresponding to the eigenvalue λ, let

|m|(e, e) :=


m(e, e) if λ > 0

−m(e, e) if λ < 0

and extend the definition of |m| to the entire space W using the bilinearity of m. We
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note that for all w ∈ W ,

a(e, w) = λm(e, w) =


λ|m|(e, w) if λ > 0,

|λ| |m|(e, w) if λ < 0.

Thus, the eigenvalues of (a, |m|) are the eigenvalues of (a,m) in absolute value. More-

over, the quadratic form |M | associated to |m| is strictly positive on W and

M (u) ≤ |M |(u) for all u ∈ V.

Denote the Hessian form δ2G (0; ., .;µ) of G (.;µ) : W → R at 0 by h0(µ). Then we

have

h0(µ)(v, v) = 2a(v, v)− 2µm(v, v) ≥ 2k0‖v‖2
V − 2µ|m|(v, v)

for all v ∈ W , so that h0(µ) satisfies (M1)-(M2) on W with respect to the bilinear

form |m|. Taking e+
j ∈ E+ for v in h0(µ)(v, w) yields

h0(µ)(e+
j , w) = 2(λ+

j − µ)m(e+
j , w)

and by taking e−j ∈ E− for v instead we obtain

h0(µ)(e−j , w) = 2(|λ−j |+ µ)|m|(e−j , w).

A similar argument as in the proof of Theorem 3.2 now yields (i) as E+ ∪ E− is a set

of eigenvectors for the pair (h0(µ), |m|).

When u+
j = (µ− λ̃+

j )1/2e is a critical point of G (.;µ) corresponding to λ̃+
j ∈ (0, µ),
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the Hessian form hj(µ)(., .) := δ2G (u+
j ; ., .;µ) of G (.;µ) at uj satisfies

hj(µ)(v, v) = 2a(v, v)− 2λ̃+
j m(v, v) ≥ 2k0‖v‖2

V − 2λ̃+
j |m|(v, v)

for all v ∈ W . Thus hj(µ) satisfies (M1)-(M2) with respect to the bilinear form |m|.

Without loss of generality, suppose e = ek for some ek ∈ E+ ∩ Eλ̃+j Taking e+
i ∈ E+

for v in hj(µ)(v, w) yields

hj(µ)(e+
j , w) =


4(µ− λ̃+

j )|m|(e+
i , w) if i = k

2(λ+
i − λ̃+

j )|m|(e+
i , w) if i 6= k.

Taking v = e−i instead results in

hj(µ)(e−i , w) = 2(|λ−j |+ λ̃+
j )|m|(e−i , w).

Hence, E+ ∪ E− is a set of eigenvectors for (hj(µ), |m|), and a similar argument as in

the proof of Theorem 3.2 now yields (ii).

With an appropriate substitution of positive signs with negative signs, one obtains

a similar result for the functional G−(.;µ) : W → R defined by (5.2).

Moreover, higher positive, respectively negative, eigenvalues of (a,m) may be

found using penalty methods for G (.;µ), respectively G−(.;µ), as done at the end of

Chapter 3.
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Chapter 6

Applications to Linear Elliptic

Eigenvalue Problems

In this chapter, the methods and analyses presented in this dissertation will first be

used to obtain results for sequences of Robin eigenfunctions and eigenvalues of second-

order, divergence form, elliptic systems. Then Steklov eigenproblems are considered,

which are problems where the eigenparameter appears in the boundary equation

instead of the differential equation. Finally, general linear elliptic eigenvalue problems,

where the eigenparameter appears both in the differential equation as well as in the

boundary equation, are discussed. The analysis of such problems demonstrates the

advantages of using bilinear forms instead of the associated linear operators and

dual spaces. Some of the eigenproblems considered here are problems as studied in

Auchmuty [7] where the analysis there is based on constrained variational principles.
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6.1 Notation for the Applications

In order to discuss the particular applications, we introduce the following notation

and terminology. For the following sections, 〈., .〉 will denote the usual Euclidean inner

product on RN , and |.| the corresponding Euclidean norm. A region Ω is a non-empty

connected set in RN and σ, dσ, respectively represent Hausdorff (N − 1)-dimensional

measure and integration with respect to this measure. The following conditions on

the region Ω enables the use of trace results in Auchmuty [6].

(B1): Ω is a bounded region in RN and its boundary ∂Ω is the union of a finite

number of disjoint closed Lipschitz surfaces; each having finite surface area.

When (B1) holds, there is an outward unit normal ν at σ-a.e. point of the bound-

ary ∂Ω. Definitions and terminology of Evans and Gariepy [9] will be used here, except

for surface measure σ as given above. Functions will take values in R := [−∞,∞],

and derivatives should be taken in a weak sense. The gradient of the function u is

denoted ∇u.

Let Lp(Ω), Lq(∂Ω, dσ) be the usual real Lebesgue spaces on Ω and ∂Ω with norm

‖.‖p and ‖.‖q,∂Ω, respectively. Let H1(Ω) be the real Sobolev space on Ω that is a real

Hilbert space with the standard H1-inner product

[u, v]1 :=

∫
Ω

[
u(x)v(x) +∇u(x) · ∇v(x)

]
dx.

The associated H1-norm is denoted ‖.‖1,2. In the applications, we shall work exclu-

sively in the case where V is the Hilbert-Sobolev space H1(Ω).
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The region Ω is said to satisfy the Rellich-Kondrachov theorem provided the imbed-

ding of H1(Ω) into Lp(Ω) is compact for 1 ≤ p < pS for pS = 2N/(N−2) when N ≥ 3,

or pS =∞ when N = 2.

The region Ω is said to satisfy the L2-compact trace theorem provided the trace

map of H1(Ω) into L2(∂Ω, dσ) is compact. Here we shall always require that the

region Ω satisfies

(B2): Ω is a region such that (B1), the Rellich-Kondrachov theorem, and the

L2-compact trace theorem hold.

6.2 Robin Eigenvalue Problems

Consider the problem of finding non-trivial solutions (λ, u) of

Lu(x) := −div
(
A(x)∇u(x)

)
+ c(x)u(x) = λm0(x)u(x) on Ω (6.1)

subject to (
A(x)∇u(x)

)
· ν(x) + b(x)u(x) = 0 on ∂Ω, (6.2)

where c,m0, b are given functions and A a given matrix-valued field. Here we shall

require the following conditions on these coefficients.

(B3): A(x) := (aij(x)) is a real, symmetric matrix whose components are bounded,

Lebesgue-measurable functions on Ω and there exist constants 0 < k2 ≤ k3 such that

k2|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ k3|ξ|2 for all ξ ∈ RN , x ∈ Ω. (6.3)
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6.2 ROBIN EIGENVALUE PROBLEMS

(B4): c ≥ 0 and c ∈ Lp(Ω) for some p ≥ N/2 when N ≥ 3, or p > 1 when N = 2.

(B5): b ∈ L∞(∂Ω) with b ≥ 0 σ-a.e. on ∂Ω, and

∫
Ω

cdx+

∫
∂Ω

bdσ = b0 > 0. (6.4)

(B6): m0 ∈ Lq(Ω) for some q > N/2 with m0 positive on Ω and ‖m0‖1 > 0.

When b ≡ 0, this is the Neumann eigenproblem for the formal operator L on Ω;

otherwise, it is called the Robin eigenproblem.

We consider the weak form of the boundary value problem (6.1)-(6.2), which is

the eigenproblem of finding non-trivial solutions (λ, u) ∈ R×H1(Ω) satisfying

∫
Ω

[(A∇u) · ∇v + cuv]dx+

∫
∂Ω

buvdσ = λ

∫
Ω

m0uvdx for all v ∈ H1(Ω). (6.5)

The associated bilinear forms for this eigenvalue problem are, with u, v ∈ H1(Ω),

a(u, v) :=

∫
Ω

[(A∇u) · ∇v + cuv]dx+

∫
∂Ω

buvdσ (6.6)

m(u, v) :=

∫
Ω

m0uvdx. (6.7)

When (B2)-(B6) hold, Lemma 7.1 and Theorem 7.2 of [7] show the pair (a,m) above

satisfies conditions (A1)-(A3) in Section 1.2.1 of this work, with V being the Hilbert-

Sobolev space H1(Ω). The cited theorem also gives the existence of an increasing

sequence of strictly positive eigenvalues Λ := {λj : j ∈ N}, counting multiplicities,

and an associated sequence E := {ej : j ∈ N} of m-orthonormal eigenfunctions (after

a renormalization) for the pair (a,m) in (6.6)-(6.7). Thus there is a least strictly
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6.2 ROBIN EIGENVALUE PROBLEMS

positive eigenvalue λ1 of (6.5), and a corresponding eigenvector.

The functional for this problem is R : H1(Ω)× (0,∞)→ R with

R(u;µ) =

∫
Ω

[(A∇u) · ∇u+ (c− µm0)u2]dx+

∫
∂Ω

bu2dσ +
1

2

[∫
Ω

m0u
2dx

]2

. (6.8)

The unconstrained variational principle here is the problem (Rµ) of minimizing the

functional R(.;µ) on H1(Ω) and finding the value

α(µ) = inf
u∈H1(Ω)

R(u;µ). (6.9)

Theorem 4.1 in our Section 3.1 now turns into the following result that provides the

properties of R(.;µ) needed for the analysis of this unconstrained problem.

Theorem 6.1. Assume (B2)-(B6) hold, and R(.;µ) is given by (6.8). Then

(i) R(.;µ) is continuous, coercive and weakly l.s.c. on H1(Ω),

(ii) R(.;µ) is Gâteaux differentiable on H1(Ω) with first variation at u in the direc-

tion v given by

δR(u; v;µ) = 2

∫
Ω

[(A∇u)·∇v+cuv]dx+2

∫
∂Ω

buvdσ+2

[∫
Ω

m0u
2dx− µ

] ∫
Ω

m0uvdx.

(6.10)

Proof. As discussed above, the pair of bilinear forms (a,m) satisfy (A1)-(A3). Hence

assertion (i) follows just as in the proof of Theorem 3.1, and a computation shows

the first variation of R(.;µ) at u is given by (6.10).

This yields the following results about the unconstrained problem (Rµ), whose

proof is similar to the proof of Theorem 3.2.
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Theorem 6.2. Assume (B2)-(B6) hold, and R is given by (6.8).

(i) 0 is the unique critical point of R(.;µ) when µ ≤ λ1, and 0 and eigenfunctions uj

corresponding to the eigenvalue λj ∈ (0, µ) of (6.5) that satisfy
∫

Ω
m0u

2
jdx = µ− λj,

are the critical points of R(.;µ) when µ > λ1.

(ii) The critical values of R(.;µ) are 0 for any value of µ > 0, and 0 and −1
2
(µ−λj)2

when µ > λ1 and λj is in the interval (0, µ).

(iii) The minimizer(s) of R(.;µ) on H1(Ω) are 0 when µ ≤ λ1, and the eigenfunc-

tions u1 corresponding to λ1 that satisfy
∫

Ω
m0u

2
1dx = µ− λ1 when µ > λ1.

(iv) The value of the problem (Rµ) is α(µ) = 0 when µ ≤ λ1, and the value is

α(µ) = −1
2
(µ− λ1)2 when µ > λ1.

As in Section 3.3, the following unconstrained variational principles can be used

to obtain the next successive smallest eigenvalue λ2 and corresponding eigenfunctions

of the Robin eigenproblem (6.5).

Suppose that we know an eigenfunction e1 corresponding to the first eigenvalue

λ1 of (6.5) that also satisfies ∫
Ω

m0e
2
1dx = 1

That is, suppose we know u1 as in the theorem and consider e1 = (µ − λ1)−1/2u1.

Consider the problem of (Rµ,τ ) of minimizing, over H1(Ω), the penalty functional

Rτ (.;µ) given by

Rτ (u;µ) := R(u;µ) + τ

[∫
Ω

m0e1udx

]2

, (6.11)

where R is as in (6.8), and of finding

α(µ, τ) = inf
u∈H1(Ω)

Rτ (u;µ). (6.12)
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Again, this is an unconstrained problem, and a calculation similar to that taken for

obtaining first variations of the functional G (.;µ) in Section 3.1 yields that the first

variation of Rτ (.;µ) at u in the direction v is given by

δRτ (u; v;µ) = δR(u; v;µ) + 2τ

∫
Ω

m0e1udx

∫
Ω

m0e1vdx, (6.13)

where δR(u; v;µ) is as in (6.10).

Let µc := min{λ1 + τ, λ2}. Denote the distinct eigenvalues of (6.5) by λ̃1 < λ̃2 <

· · · , and let mj denote the multiplicity of the jth distinct eigenvalue of (6.5). The

results from Theorem 3.2 now translate into the following for the functional Rτ .

Theorem 6.3. Assume (B2)-(B6) hold, and Rτ is defined by (6.11).

(i) If 0 < µ ≤ µc and λ̃1 is a simple eigenvalue of (6.5), then 0 is the unique mini-

mizer of Rτ (.;µ) on H1(Ω) and the value of the problem (Rµ,τ ) is α(µ, τ) = 0.

(ii) If µ > µc, τ > λ̃2− λ̃1 and λ̃1 is a simple eigenvalue of (6.5), then the minimiz-

ers of Rτ (.;µ) on H1(Ω) are eigenfunctions ũ2 corresponding to λ̃2 that also satisfy∫
Ω
m0ũ

2
2dx = µ− λ̃2. In this case, the value α(µ, τ) of the problem (Rµ,τ ) satisfies

α(µ, τ) = −1

2
(µ− λ̃2)2 > α(µ). (6.14)

(iii) If µ > µc and λ̃1 is an eigenvalue of multiplicity m1 ≥ 2, then the minimizers

of Rτ (.;µ) on H1(Ω) are the eigenfunctions u2 corresponding to λ̃1 that satisfy

∫
Ω

m0u
2
2dx = µ− λ̃1 and

∫
Ω

m0e1u2dx = 0. (6.15)

In this case, the value of the problems (Rµ,τ ) and (Rµ) are the same: α(µ, τ) = α(µ).
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Proof. Lemma 7.1 in [7] shows m is strictly positive on an infinite dimensional sub-

space of H1(Ω), so that the proof is similar to that of Theorem 3.7 as the pair of

bilinear forms (a,m) satisfy (A1)-(A3).

As described in Section 3.3.2, there is a penalized functional similar to Rτ for

finding higher eigenvalues and eigenfunctions when one knows a finite sequence of

this data, or alternatively, one may use contrained variational principles such as those

provided in that section for finding such eigenvalues.

Up to now, the analysis of the Robin eigenproblem has relied merely on first

variations of the Robin functional R(.;µ) in (6.8). To initiate a Morse index theory for

R(.;µ) the next lemma shows that the functional has a well-defined second derivative.

Lemma 6.4. Assume (B2)-(B6) hold, and R(.;µ) is given by (6.8). Then R(.;µ)

is twice Gâteaux differentiable on H1(Ω) with second variation at u in the directions

v, w ∈ H1(Ω) given by

δ2R(u; v, w;µ) = 2a(v, w)+2

[∫
Ω

m0u
2dx− µ

] ∫
Ω

m0vwdx+4

∫
Ω

m0uvdx

∫
Ω

m0uwdx

(6.16)

where a(., .) is defined by (6.6).

Proof. The steps taken in the proof of Theorem 4.1 give (6.16) so that R(.;µ) is twice

Gâteaux differentiable on H1(Ω) as each term in (6.16) is a symmetric continuous

bilinear form on H1(Ω).

In order to describe the degeneracy of critical points of R(.;µ) and to compute

their Morse and null index, we shall require the weight function m0 in (B6) to also

obey ∫
Ω

m0u
2dx > 0 for all non-zero u ∈ H1(Ω). (6.17)
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That is, we shall require the bilinear form m in (6.7) to also satisfy (A4). When

this holds, taking b in (M1)-(M2) of Section 2.1.2 to be equal to the Hessian form

(v, w) 7→ δ2R(u; v, w;µ) defined by (6.16) allows us to use Theorem 2.3 to obtain the

following results. Recall we are denoting the distinct strictly positive eigenvalues of

(6.5) by λ̃1 < λ̃2 < · · · , and now the collection of all such eigenvalues is called the

spectrum of the pair (a,m) and denoted σ(a,m). Also, the multiplicity of the jth

such eigenvalue λ̃j is denoted by mj.

Theorem 6.5. Assume (B2)-(B6), (6.17) hold, and R(.;µ) is given by (6.8).

(i) 0 is a non-degenerate critical point of R(.;µ) if and only if µ /∈ σ(a,m). The

Morse and null index of 0 are, respectively,

i(0;µ) =


0 if µ ≤ λ̃1,∑

λ̃j<µ
mj if µ > λ̃1,

and i0(0;µ) =


0 if µ /∈ σ(a,m),

mj if µ = λ̃j.

(6.18)

(ii) When ũk is a critical point of R(.;µ) associated to λ̃k, that is, ũk is an eigen-

function of (6.5) associated to λ̃k that satisfies
∫

Ω
m0ũ

2
kdx = µ− λ̃k, then ũk is non-

degenerate if and only if λ̃k is a simple eigenvalue of (6.5). The Morse and null index

of ũk are, respectively,

i(ũk;µ) =


0 if k = 1,∑k−1

j=1 mj if k > 1,

and i0(ũk;µ) = mk − 1. (6.19)

Proof. As mentioned above, when the function m0 also satisfies (6.17) the Hessian

form δ2R(u; ., .;µ) in Lemma 6.4 satisfies (M1) and (M2), and the proof of Theorem

4.2 gives the desired results.
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If we instead assume that the coefficient function m0 in (6.7) satisfies

(B7): m0 ∈ L∞(Ω) and there is a constant k4 such that m0(x) ≥ k4 > 0 for all

points x in Ω.

then the results in Theorem 6.5 also follow as the bilinear form m again satisfies (A2)

and (A4) in this case. We point out that Theorem 7.2 in [7] shows that in this case

the sequence of eigenfunctions of (6.5) forms a basis of L2(Ω).

From the above results, the bifurcation diagram in Figure 3.1 can be used for the

Robin eigenproblem to obtain a bifurcation description of the functional R(.;µ) in

(6.8) as discussed in Section 3.2 and also in Section 4.2.

We point out that results obtained here for Robin eigenproblems parallel with

most results obtained in [4] Section 8 for linear second-order elliptic boundary value

eigenproblems with homogeneous Dirichlet condition.

6.3 Steklov Eigenvalue Problems

In this section, results analogous to those obtained in the previous section will be

described for Steklov eigenproblems, where the Steklov eigenproblem is that of finding

non-trivial solutions (λ, u) of

Lu(x) := −div
(
A(x)∇u(x)

)
+ c(x)u(x) = 0 on Ω (6.20)

subject to (
A(x)∇u(x)

)
· ν(x) + b(x)u(x) = λρ(x)u(x) on ∂Ω. (6.21)
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Here L is a formal operator on Ω, and we shall require the function ρ : ∂Ω→ (0,∞]

and the boundary ∂Ω of Ω to satisfy

(B8): ρ ∈ Lq(∂Ω, dσ) with ρ ≥ ρ0 > 0 σ-a.e. and q > N − 1, ∂Ω satisfies (B2)

and the trace map of H1(Ω) into Lp(∂Ω, dσ) is compact for p < 2(N−1)
N−2

when N ≥ 3

(p <∞ when N = 2).

We consider the weak form of the boundary value problem (6.20)-(6.21), which is

the eigenproblem of finding non-trivial solutions (λ, u) ∈ R×H1(Ω) satisfying

∫
Ω

[(A∇u) · ∇v + cuv]dx+

∫
∂Ω

buvdσ = λ

∫
∂Ω

ρuvdσ for all v ∈ H1(Ω). (6.22)

The corresponding bilinear forms are a : H1(Ω) × H1(Ω) → R defined by (6.6) and

m : H1(Ω)×H1(Ω)→ R given

m(u, v) :=

∫
∂Ω

ρuvdσ. (6.23)

When (B8) holds, Lemma 8.1 and Theorem 8.2 of [7] show the bilinear form m

in (6.23) satisfies (B2) and (B3), and they also give the existence of an increasing

sequence of strictly positive Steklov eigenvalues {λj : j ∈ N}, with limj→∞ λj = ∞,

and a corresponding sequence E := {ej : j ∈ N} of eigenfunctions of (6.22). Thus,

there is a least positive eigenvalue λ1 and a corresponding eigenvector of (6.22).

The functional for this problem is S : H1(Ω)× (0,∞)→ R with

S (u;µ) =

∫
Ω

[(A∇u) · ∇u+ cu2]dx+

∫
∂Ω

(b− µρ)u2dσ +
1

2

[∫
∂Ω

ρu2dσ

]2

(6.24)
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The variational principle here is the unconstrained problem (Sµ) of minimizing S (.;µ)

on H1(Ω) and finding

α(µ) = inf
u∈H1(Ω)

S (u;µ). (6.25)

The following theorem summarizes the properties of this unconstrained variational

problem and functional S (.;µ).

Theorem 6.6. Assume (B3)-(B5) and (B8) hold, and S (.;µ) is given by (6.24).

Then the following hold.

(i) S (.;µ) is continuous, coercive and weakly l.s.c. on H1(Ω).

(ii) S (.;µ) is Gâteaux differentiable on H1(Ω) with first variation at u in the di-

rection v given by

δS (u; v;µ) = 2

∫
Ω

[(A∇u) ·∇v+cuv]dx+2

∫
∂Ω

buvdσ+2

[∫
∂Ω

ρu2dσ − µ
] ∫

∂Ω

ρuvdσ.

(6.26)

(iii) The value of the problem (Sµ) is given by α(µ) =


0 if µ ≤ λ1

−1
2
(µ− λ1)2 if µ > λ1

.

(iv) S (.;µ) attains its infimum on H1(Ω). When µ ≤ λ1, the minimizer of S (.;µ)

is 0, and when µ > λ1, the minimizers of S (.;µ) are eigenfunctions ũ corresponding

to λ1 with
∫
∂Ω
ρũ2dσ = µ− λ1.

Proof. When (B8) holds, the bilinear form m in (6.23) satisfies (A2) and (A3) from

Lemma 8.1 in [7], and the assumptions here imply the bilinear form a in (6.6) satisfies

(A1). The results follow as in Theorem 3.2

Successive Steklov eigenvalues and eigenfunctions may be found using variational

principles as explained for the case of the Robin eigenproblem. Here we show how

some constrained variational principles look like.
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Assume that the first k eigenvalues are 0 < λ1 ≤ λ2 ≤ · · · ≤ λk and that Ek :=

{e1, e2, . . . , ek} is a corresponding family of ρ-orthonormal eigenfunctions of (6.22),

i.e., ∫
∂Ω

ρeiejdσ = δij for 1 ≤ i, j ≤ k. (6.27)

To find λk+1, let

Wk =
{
u ∈ H1(Ω) :

∫
∂Ω

ρejudσ = 0, 1 ≤ j ≤ k
}

(6.28)

Consider the variational problem (Sµ,k) of minimizing S (.;µ) on Wk and finding

αk(µ) = inf
u∈Wk

S (u;µ). (6.29)

Theorem 6.7. Assume (B3)-(B5), (B8) hold, and S (.;µ) is given by (6.24). Then

(i) the value of the problem (Sµ,k) is given by

αk(µ) =


0 if µ ≤ λk+1

−1
2
(µ− λk+1)2 if µ > λk+1

(ii) the minimizers ũ for the problem (Sµ,k) are

ũ =


0 if µ ≤ λk+1,

(µ− λk+1)1/2e if µ > λk+1,

with e ∈ Wk an eigenfunction of (6.22) corresponding to λk+1 with
∫
∂Ω
ρe2dσ = 1.

Proof. Lemma 8.1 in [7] shows the bilinear form m is strictly positive on an infinite
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dimensional subspace of H1(Ω), so there is w ∈ Wk with
∫
∂Ω
ρwdσ > 0. The proof is

then just as in the proof of Theorem 3.8.

The next lemma, whose proof is similar to that of Theorem 4.1, allows for a Morse

index theory to be developed for the functional S (.;µ) in (6.24).

Lemma 6.8. Assume (B3)-(B5) and (B8) hold, and S (.;µ) is given by (6.24).

Then S (.;µ) is twice Gâteaux differentiable on H1(Ω) with second variation at u in

the directions v, w ∈ H1(Ω) given by

δ2S (u; v, w;µ) = 2a(v, w) + 2
[ ∫

∂Ω

ρu2dσ − µ
] ∫

∂Ω

ρvwdσ + 4

∫
∂Ω

ρuvdσ

∫
∂Ω

ρuwdσ

(6.30)

where a(·, ·) is defined by (6.6).

When (B8) holds, we have the a-orthogonal decomposition

H1(Ω) = H1
0 (Ω)⊕a N(L),

where N(L) is the subspace of all H1-solutions of the equation Lu = 0 on Ω, i.e.,

u ∈ N(L) provided

a(u, v) = 0 for all v ∈ H1
0 (Ω).

From Theorem 8.2 in Auchmuty [7], the Steklov eigenfunctions of (6.22) form a ρ-

orthonormal basis of N(L), the a-orthogonal complement of H1
0 (Ω). To provide a

Morse index theory for the Steklov eigenproblem, we therefore restrict the domain of

the pair of bilinear forms (a,m) to the closed subspace N(L) of H1(Ω).

As we have done so previously, the distinct strictly positive eigenvalues of (6.22)

are denoted λ̃1 < λ̃2 < · · · , the collection of all such eigenvalues is the spectrum of

65



6.3 STEKLOV EIGENVALUE PROBLEMS

(a,m) and denoted σ(a,m), and the multiplicity of the jth distinct eigenvalue is mj.

Theorem 6.9. Assume (B3)-(B5) and (B8) hold, and S (.;µ) : N(L)→ R is given

by (6.24).

(i) Then 0 is a non-degenerate critical point of S (.;µ) : N(L) → R if and only if

µ /∈ σ(a,m). The Morse and null index of 0 are, respectively,

i(0;µ) =


0 if µ ≤ λ̃1∑

λ̃j<µ
mj if µ > λ̃1

and i0(0;µ) =


0 if µ /∈ σ(a,m)

mj if µ = λ̃j

.

(6.31)

(ii) When ũk is a critical point of S (.;µ) : N(L)→ R associated to λ̃k, that is, ũk

is an eigenfunction of (6.22) associated to λ̃k that satisfies
∫
∂Ω
ρũ2

kdσ = µ− λ̃k, then

ũ is non-degenerate if and only if λ̃k is a simple eigenvalue of (6.22). The Morse and

null index of ũk are, respectively,

i(ũk;µ) =


0 if k = 1∑k−1

j=1 mj if k > 1

and i0(ũk;µ) = mk − 1. (6.32)

Proof. When H1(Ω) is replaced by N(L), the results of Theorem 6.6, Theorem 6.7

and Lemma 6.8 hold for the functional S (·;µ) : N(L)→ R defined by (6.24) as N(L)

is a closed subspace of H1(Ω) and the Steklov eigenfunctions of (6.22) are in N(L).

Moreover, the bilinear form m in (6.23) is strictly positive on N(L), so that Theorem

2.3 gives the desired results as in the proof of Theorem 4.2.

As in the Robin eigenproblem, Figure 3.1 and the bifurcation results at the end of

Section 3.2 and Section 4.2 apply to the Steklov eigenproblem, where the schematic

diagram is on the space (0,∞)×N(L) instead of (0,∞)×H1(Ω).
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6.4 General Eigenvalue Problems

The general eigenproblem to be studied in this section is that of finding non-trivial

solutions (λ, u) of

−div(A(x)∇u(x)) + c(x)u(x) = λm0(x) on Ω (6.33)

subject to

(A(x)∇u(x)) · ν(x) + b(x)u(x) = λρ(x)u(x) on ∂Ω. (6.34)

Here the eigenparameter is in both the differential equation and boundary condition.

For discussions, analysis, and applications of these problems see Auchmuty [7] and

references cited there.

The weak form of (6.33)-(6.34) is the eigenproblem of finding non-trivial solutions

(λ, u) ∈ R×H1(Ω) satisfying

∫
Ω

[(A∇u)·∇v+cuv]dx+

∫
∂Ω

buvdσ = λ
[ ∫

Ω

m0uvdx+

∫
∂Ω

ρuvdσ
]

for all v ∈ H1(Ω).

(6.35)

The associated bilinear forms are a : H1(Ω) × H1(Ω) → R as in equation (6.6) and

m : H1(Ω)×H1(Ω)→ R given by

m(u, v) =

∫
Ω

m0uvdx+

∫
∂Ω

ρuvdσ. (6.36)

When (B7) and (B8) hold, the bilinear form m satisfies (A2) and (A4) as seen in

Lemma 9.1 of [7]. Then Theorem 9.2 of [7] gives the existence of an m-orthonormal

basis of H1(Ω) (after a renormalization) consisting of eigenfunctions E = {ej : j ∈ N}
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of (6.35), and an associated increasing sequence of strictly positive eigenvalues {λj :

j ∈ N} when the assumptions of that theorem are satisfied.

The functional for this problem is L : H1(Ω)× (0,∞)→ R given by

L (u;µ) =

∫
Ω

[(A∇u)·∇u+(c−µm0)u2]dx+

∫
∂Ω

(b−µρ)u2dσ+
1

2

[∫
Ω

m0u
2dx+

∫
∂Ω

ρu2dσ

]2

(6.37)

The variational principle (Lµ) is to minimize L (.;µ) on H1(Ω) and to find

α(µ) = inf
u∈H1(Ω)

L (u;µ). (6.38)

Results for this unconstrained variational principle and properties of the functional

L (·;µ) are summarized as follow.

Theorem 6.10. Assume (B2)-(B8) hold, and L (.;µ) is given by (6.37). Then the

following hold.

(i) L (.;µ) is continuous, coercive, and weakly l.s.c. on H1(Ω). (ii) L (.;µ) is

Gâteaux differentiable on H1(Ω) with first variation at u in the direction v given by

δL (u; v;µ) = 2a(u, v) + 2

[∫
Ω

m0u
2dx+

∫
∂Ω

ρu2dσ − µ
] [∫

Ω

m0uvdx+

∫
∂Ω

ρuvdσ

]
(6.39)

where a(., .) is defined by (6.6).

(iii) The value of the problem (Lµ) is given by α(µ) =


0 if µ ≤ λ1

−1
2
(µ− λ1)2 if µ > λ1

.

(iv) L (.;µ) attains its infimum on H1(Ω). When µ ≤ λ1, the minimizer of L (.;µ)

is 0, and when µ > λ1, the minimizers of L (.;µ) are eigenfunctions ũ corresponding

to the smallest eigenvalue λ1 with
∫

Ω
m0ũ

2dx+
∫
∂Ω
ρũ2dσ = µ− λ1.
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Proof. As the bilinear forms a and m satisfy (A1) and (B2), (B4), the proof is similar

to that of Theorem 3.2.

As in the case for Robin and Steklov eigenproblems, the iterative construction of

Section 3.3.2 yields successive eigenvalues and eigenfunctions for the general eigen-

problem studied in this section.

Let Ek = {ej : 1 ≤ j ≤ k} be a set of eigenfunctions of (6.35) corresponding to

the successive strictly positive eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λk which obey

∫
Ω

m0eiejdx+

∫
∂Ω

ρeiejdσ = δij for 1 ≤ i, j ≤ k. (6.40)

To find λk+1 define

Wk =

{
u ∈ H1(Ω) :

∫
Ω

m0ejudx+

∫
∂Ω

ρejudσ = 0, for 1 ≤ j ≤ k

}
. (6.41)

Consider the problem (Lµ,k) of minimizing L (.;µ) on Wk and finding

αk(µ) = inf
u∈Wk

L (u;µ). (6.42)

The next theorem describes the minimizers and the value of this variational principle.

Theorem 6.11. Assume (B2)-(B8) hold, and L (.;µ) is given by (6.37). Then

(i) the value of the problem (Lµ,k) is given by αk(µ) =


0 if µ ≤ λk+1

−1
2
(µ− λk+1)2 if µ > λk+1

,

and

(ii) the minimizers ũ for the problem (Lµ,k) are ũ =


0 if µ ≤ λk+1

(µ− λk+1)1/2e if µ > λk+1

,
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where e ∈ Wk is an eigenfunction of (6.35) corresponding to λk+1 that obeys
∫

Ω
m0e

2dx+∫
∂Ω
ρe2dσ = 1.

Proof. Since the bilinear form m in (6.36) satisfies (A2) and (A4), there exists w ∈ Wk

with ∫
Ω

m0wdx+

∫
∂Ω

ρwdσ > 0,

so the results follow as in the proof of Theorem 3.8.

That L (.;µ) defined by (6.37) has a well-defined second derivative is given by the

next lemma.

Lemma 6.12. Assume (B2)-(B8) hold, and L (.;µ) is given by (6.37). Then L (.;µ)

is twice Gâteaux differentiable on H1(Ω) with second variation at u in the directions

v, w ∈ H1(Ω) given by

δ2L (u; v, w;µ) = 2a(v, w) + 2
[ ∫

Ω
m0u

2dx+
∫
∂Ω
ρu2dσ − µ

][ ∫
Ω
m0vwdx+

∫
∂Ω
ρvwdσ

]
+4
[ ∫

Ω
m0uvdx+

∫
∂Ω
ρuvdσ

][ ∫
Ω
m0uwdx+

∫
∂Ω
ρuwdσ

]
(6.43)

where a(., .) is defined by (6.6).

Proof. The proof is similar to that of Theorem 4.1.

This result enables a Morse index theory for the functional L (.;µ). In the next

theorem, the distinct strictly positive eigenvalues of (6.35) are denoted λ̃1 < λ̃2 < · · · ,

the collection of all such eigenvalues is the spectrum of (a,m) and denoted σ(a,m),

and the multiplicity of the jth distinct eigenvalue is mj.

Theorem 6.13. Assume (B2)-(B8) hold, and L (.;µ) is given by (6.37).

(i) 0 is a nondegenerate critical point of L (.;µ) if and only if µ /∈ σ(a,m). The
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Morse and null index of 0 are, respectively,

i(0;µ) =


0 if µ ≤ λ̃1∑

λ̃j<µ
mj if µ > λ̃1

and i0(0;µ) =


0 if µ /∈ σ(a,m)

mj if µ = λ̃j

(6.44)

(ii) When ũk is a critical point of L (.;µ) associated to λ̃k, that is, ũk is an eigen-

function of (6.35) associated to λ̃k that satisfies
∫

Ω
m0ũ

2
kdx+

∫
∂Ω
ρũkdσ = µ− λ̃k, then

ũk is non-degenerate if and only if λ̃k is a simple eigenvalue of (6.35). The Morse

and null index of ũk are, respectively,

i(ũk;µ) =


0 if k = 1∑k−1

j=1 mj if k > 1

and i0(ũk;µ) = mk − 1. (6.45)

Proof. Since the bilinear form m in (6.36) satisfies (A2) and (A4), it implies m satisfies

(M2), and since the Hessian form (v, w) 7→ δ2L (u; v, w;µ) given by (6.43) satisfies

(M1), the results follow as in the proof of Theorem 4.2.
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