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Abstract

Shearlets emerged in recent years in applied harmonic analysis as a general framework

to provide sparse representations of multidimensional data. This construction was moti-

vated by the need to provide more efficient algorithms for data analysis and processing,

overcoming the limitations of traditional multiscale methods. Particularly, shearlets have

proved to be very effective in handling directional features compared to ideas based on

separable extension, used in multi-dimensional Fourier and wavelet analysis. In order to

efficiently deal with the edges and the other directionally sensitive (anisotropic) informa-

tion, the analyzing shearlet elements are defined not only at various locations and scales

but also at various orientations.

Many important results about the theory and applications of shearlets have been derived

during the past 5 years. Yet, there is a need to extend this approach and its applications

to higher dimensions, especially 3D, where important problems such as video processing

and analysis of biological data in native resolution require the use of 3D representations.

The focus of this thesis is the study of shearlet representations in 3D, including their

numerical implementation and application to problems of data denoising and enhancement.

Compared to other competing methods like 3D curvelet and surfacelet, our numerical

experiments show better Peak Signal to Noise Ratio (abbreviated as PSNR) and visual

quality.

In addition, to further explore the ability of shearlets to provide an ideal framework for

sparse data representations, we have introduced and analyzed a new class of smoothness

spaces associated with the shearlet decomposition and their relationship with Besov and

curvelet spaces. Smoothness spaces associated to a multi-scale representation system are

important for analysis and design of better image processing algorithms.
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Chapter 1
Introduction

Over the past twenty years, wavelets and multiscale methods have been extremely suc-

cessful in applications from harmonic analysis, approximation theory, numerical analysis,

and image processing. However, it is now well established that, despite their remarkable

success, wavelets are not very efficient when dealing with multidimensional functions and

signals. This limitation is due to their poor directional sensitivity and limited capability in

dealing with the anisotropic features which are frequently dominant in multidimensional

applications. To overcome this limitation, a variety of methods have been recently intro-

duced to better capture the geometry of multidimensional data, leading to reformulate

wavelet theory and applied Fourier analysis within the setting of an emerging theory of

sparse representations. It is indicative of this change of perspective that the latest edi-

tion of the classical wavelet textbook by S. Mallat was titled “A wavelet tour of signal

processing. The sparse way.”

The shearlet representation, originally introduced in [1, 2], has emerged in recent years

as one of the most effective frameworks for the analysis and processing of multidimensional

1



data. This representation is part of a new class of multiscale methods introduced during

the last 10 years with the goal to overcome the limitations of wavelets and other traditional

methods through a framework which combines the standard multiscale decomposition and

the ability to efficiently capture anisotropic features. Other notable such methods include

the curvelets [3] and the contourlets [4]. Similar to the curvelets of Donoho and Candès [3],

the elements of the shearlet system form a pyramid of well localized waveforms ranging not

only across various scales and locations, like wavelets, but also at various orientations and

with highly anisotropic shapes. In particular, the directionality of the shearlet systems is

controlled through the use of shearing matrices rather than rotations, which are employed

by curvelets. This offers the advantage of preserving the discrete integer lattice and en-

ables a natural transition from the continuous to the discrete setting. The contourlets,

on the other hand, are a purely discrete framework, with the emphasis in the numerical

implementation rather than the continuous construction.

Indeed, both curvelets and shearlets have been shown to form Parseval frames of L2(R2)

which are (nearly) optimally sparse in the class of cartoon-like images, a standard model

for images with edges [3, 5]. Specifically, if fM is the M term approximation obtained by

selecting the M largest coefficients in the shearlet or curvelet expansion of a cartoon-like

image f , then the approximation error satisfies the asymptotic estimate

||f − fSM ||22 ≍M−2(logM)3, as M → ∞.

Up to the log-like factor, this is the optimal approximation rate, in the sense that no other

orthonormal systems or even frames can achieve a rate better than M−2. By contrast,

wavelet approximations can only achieve a rate M−1 for functions in this class [3]. Con-

cerning the topic of sparse approximations, it is important to recall that the relevance of

this notion goes far beyond the applications to compression. In fact, constructing sparse
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representations for data in a certain class entails the intimate understanding of their true

nature and structure, so that sparse representations also provide the most effective tool for

tasks such as feature extraction and pattern recognition [6, 7].

The special properties of the shearlet approach have been successfully exploited in

several imaging application. For example, the combination of multiscale and directional

decomposition using shearing transformations is used to design powerful algorithms for im-

age denoising in [7, 8]; the directional selectivity of the shearlet representation is exploited

to derive very competitive algorithms for edge detection and analysis in [9]; the sparsity

of the shearlet representation is used to derive a very effective algorithm for the regular-

ized inversion of the Radon transform in [10]. We also recall that a recent construction

of compactly supported shearlet appears to be especially promising in PDE’s and other

applications [11, 12].

While directional multiscale systems such as curvelet and shearlet have emerged several

years ago, only very recently the analysis of sparse representations using these represen-

tations has been extended beyond dimension 2. This extension is of great interest since

many applications from areas such as medical diagnosis, video surveillance and seismic

imaging require to process 3D data sets, and sparse 3D representations are very useful for

the design of improved algorithms for data analysis and processing.

Notice that the formal extension of the construction of multiscale directional systems

from 2D to 3D is not the major challenge. In fact, 3D versions of curvelet have been in-

troduced in [13], with the focus being on their discrete implementations. Another discrete

method is based on the system of surfacelets that were introduced as 3D extensions of con-

tourlets in [14]. However, the analysis of the sparsity properties of curvelet or shearlet (or

any other similar systems) in the 3D setting does not follow directly from the 2D argument.
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Only very recently [15, 16] it was shown that 3D shearlet representations exhibit essentially

optimal approximation properties for piecewise smooth functions of 3 variables. Namely,

for 3D functions f which are smooth away from discontinuities along C2 surfaces, it was

shown that the M term approximation fSM obtained by selecting the N largest coefficients

in the 3D Parseval frame shearlet expansion of f satisfies the asymptotic estimate

||f − fSM ||22 ≍M−1(logM)2, as M → ∞. (1.0.1)

Up to the logarithmic factor, this is the optimal decay rate and significantly outperforms

wavelet approximations, which only yield a M−1/2 rate for functions in this class.

It is useful to recall that optimal approximation properties for a large class of images

can also be achieved using adaptive methods by using, for example, the bandelets [17] or

the grouplets [18]. The shearlet approach, on the other hand, is non-adaptive. Remarkably,

shearlet are able to achieve approximation properties which are essentially as good as an

adaptive approach when dealing with the class of cartoon-like images.

Many basic questions concerning the study of sparse and efficient representations are

closely related to the study of the function spaces associated with these representations. For

example, wavelets are ‘naturally’ associated with Besov spaces, and the notion of sparseness

in the wavelet expansion is equivalent to an appropriate smoothness measure in Besov

spaces [50]. Similarly, the Gabor systems, which are widely used in time-frequency analysis,

are naturally associated to the class of modulation spaces [34, 45]. In the case of shearlets,

a sequence of papers by Dahlke, Kutyniok, Steidl and Teschke [40, 53, 54] have recently

introduced a class of shearlet spaces within the framework of the coorbit space theory

of Feichtinger and Gröchenig [43, 44]. This approach exploits the fact that the shearlet

transform stems from a square integrable group representation to derive an appropriate

notion of shearlet coorbit spaces. In particular, it is shown that all the conditions needed
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in the general coorbit space theory to obtain atomic decompositions and Banach frames

can be satisfied in the new shearlet setting, and that the shearlet coorbit spaces of function

on R
2 are embedded into Besov spaces.

We explore an alternative approach to the construction of smoothness spaces associated

with the shearlet representation. Unlike the theory of shearlet coorbit spaces, our approach

does not require any group structure and is closely associated with the geometrical prop-

erties of the spatial-frequency decomposition of the shearlet construction.

Outline of the thesis:

This thesis is organized as follows:

In Chapter 2 we review the basics of decomposition spaces recently introduced by

L. Borup and M. Nielsen [35]. This theory is the backbone of the results about Shearlet

Smoothness Spaces which are presented in this chapter. Section 2.2 lists all the preliminary

result from [35]. Section 2.4 contains results obtained in collaboration with Mantovani

about shearlet smoothness spaces. This work is currently part of a submitted paper [65].

In Chapter 3 the theory of 3D Shearlet Representation is presented. 3D shearlet are

constructed as a system of waveform that are well localized, bandlimited, orientable and

highly elongated at fine scale due to action of anisotropic dilation matrix.

In Chapter 4 the discrete implementation of the 3D system of shearlet is introduced.

One main focus is the construction of directional shearing filters associated to this mul-

tiscale transform. This work was published in a proceeding paper [66] and a journal

paper [67].

Chapter 5 contains the application of 3D Shearlet transform to 3D data denoising

and enhancement. Two different methods are considered: data processing using a fixed
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shearlet dictionary and also processing using combinations of sparse dictionaries including

3D Shearlet and 3D DCT (Discrete Cosine Transform). This work is part of a published

journal paper [67] and part of a submitted paper [68].
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Chapter 2
Shearlet Smoothness Spaces

The introduction of smoothness spaces is motivated by recent results in image processing

showing the advantage of using smoothness spaces associated with directional multiscale

representations for the design and performance analysis of improved image restoration al-

gorithms. Method presented in current work is derived from the theory of decomposition

spaces originally introduced by Feichtinger and Gröbner [41, 42] and recently revisited in

the recent work by Borup and Nielsen [35], who have adapted the theory of decomposi-

tion spaces to design a very elegant framework for the construction of smoothness spaces

closely associated with particular structured decompositions in the Fourier domain. As

will be made clear below, this approach can be considered as a refinement of the classical

construction of Besov spaces, which are associated with the dyadic decomposition of the

Fourier space. Beside its mathematical interest, the construction of the shearlet smooth-

ness spaces presented in this work is also motivated by some recent applications in image

restoration where it is shown that the introduction of these smoothness spaces allows one to
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2.1. NOTATION AND DEFINITIONS

take advantage of the optimally sparse approximation properties of directional representa-

tions such as shearlets and curvelets when dealing with images and other multidimensional

data [37, 51]. In [37] for example, a denoising procedure based on Stein-block thresholding

is applied within the class of piecewise C2 images away from piecewise C2 singularities,

a function space which can be precisely described using curvelet or shearlet smoothness

spaces.

The chapter is organized as follows. After recalling the basic definitions and results

from the theory of decomposition spaces (Section 2.2) and from the theory of shearlets

(Section 2.3), the new shearlet decomposition spaces for functions on R
2 are introduced

in Section 2.4. In particular, we show that there is a Parseval frame forming an atomic

decomposition for these spaces and that they are completely characterized by appropriate

smoothness conditions on the frame coefficients. We also examine the embeddings of

shearlet smoothness spaces into Besov spaces and their relationship with the so-called

curvelet spaces.

2.1 Notation and definitions

Before proceeding, it is useful to establish some notation and definitions which are used in

the following.

Let us adopt the convention that x ∈ R
d is a column vector, i.e., x =

(
x1, . . . , xd

)t

,

and that ξ ∈ R̂
d (in the frequency domain) is a row vector, i.e., ξ = (ξ1, . . . , ξd). A vector x

multiplying a matrix a ∈ GLd(R) on the right is understood to be a column vector, while

a vector ξ multiplying a on the left is a row vector. Thus, ax ∈ R
d and ξa ∈ R̂

d. The
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2.2. DECOMPOSITION SPACES

Fourier transform of f ∈ L1(Rd) is defined as

f̂(ξ) =

∫

Rd

f(x) e−2πiξx dx,

where ξ ∈ R̂
d, and the inverse Fourier transform is

f̌(x) =

∫

R̂d

f(ξ) e2πiξx dξ.

Recall that a countable collection {ψi}i∈I in a Hilbert space H is a Parseval frame

(sometimes called a tight frame) for H if

∑

i∈I

|〈f, ψi〉|2 = ‖f‖2, for all f ∈ H.

This is equivalent to the reproducing formula f =
∑

i〈f, ψi〉ψi, for all f ∈ H, where the

series converges in the norm of H. This shows that a Parseval frame provides a basis-like

representation even though a Parseval frame need not be a basis in general. The reader

can follow [36, 38] for more details about frames.

2.2 Decomposition spaces

The following sections contain the main facts from the theory of Decomposition Spaces

originally introduced by Feichtinger and Gröbner [41, 42], which will be used to introduce

our new definition of Shearlet Smoothness Spaces in Sec. 2.4.

2.2.1 Coverings in Banach spaces

A collection {Qi : i ∈ I} of measurable and limited sets in R
d is an admissible covering

if ∪i∈IQi = R
d, and if there is a n0 ∈ N such that #{j ∈ I : Qi ∩ Qj 6= 0} ≤ n0 for all

9



2.2. DECOMPOSITION SPACES

i ∈ I. Given an admissible covering {Qi : i ∈ I} of Rd, a bounded admissible partition

of unity (BAPU) is a family of functions Γ = {γi : i ∈ I} satisfying:

• supp γi ⊂ Qi ∀i ∈ I,

• ∑i∈I γi(ξ) = 1, ξ ∈ R
d,

• supi∈I |Qi|1/p−1 ‖F−1γi‖Lp <∞, ∀p ∈ (0, 1].

Given γi ∈ Γ, let us define the multiplier γi(D)f = F−1(γiFf), f ∈ L2(Rd). The conditions

in the above definition ensure that γi(D) defines a bounded operator for band limited

functions in Lp(Rd), 0 < p ≤ ∞, uniformly in i ∈ I (cf. Prop.1.5.1 in [55]).

The following definitions will also be needed. Let Q = {Qi : i ∈ I} be an admissible

covering. A normed sequence space Y on I is called solid if b = bi ∈ Y and |ai| ≤ |bi| for

all i ∈ I implies that a = ai ∈ Y ; the same space is called Q-regular if h ∈ Y implies that,

for each i ∈ I, h̃(i) =
∑

j∈ĩ h(j) ∈ Y , with ĩ := {j ∈ I : Qi ∩Qj 6= ∅}; the space is called

symmetric if it is invariant under permutations ρ : I → I.

Let Q = {Qi : i ∈ I} be an admissible covering. A strictly positive function w on R
d

is called Q-moderate if there exists C > 0 such that w(x) ≤ C w(y) for all x, y ∈ Qi and

all i ∈ I. A strictly positive Q-moderate weight on I (derived from w) is a sequence

vi = w(xi), i ∈ I, with xi ∈ Qi and w a Q-moderate function.

For a solid (quasi-)Banach sequence space Y on I, we define the weighted space Yv as

Yv = {{di}i∈I : {di vi}i∈I ∈ Y } . (2.2.1)

Given a subset J of the index set I, we use the notation J̃ := {i ∈ I : ∃j ∈ J s.t. Qi ∩

Qj 6= ∅}. We also define inductively J̃ (k+1) :=
˜̃
J (k) , k ≥ 0, where we set J̃ (0) be equal to

10



2.2. DECOMPOSITION SPACES

J . Observe that for a single element i ∈ I we have ĩ := {j ∈ I : Qi ∩Qj 6= ∅}. Now define

Q̃i
(k)

:=
⋃

j∈ĩ(k)

Qj, and γ̃i :=
∑

j∈ĩ

γj ,

where {γi : i ∈ I} is an associated BAPU.

Finally, a notion of equivalence for coverings is also needed. Let Q = {Qi : i ∈ I}

and P = {Ph : h ∈ H} be two admissible coverings. Q is called subordinate to P if for

every index i ∈ I there exists j ∈ J such that Qi ⊂ Pj . Q is called almost subordinate

to P, and will be denoted by Q ≤ P, if there exists k ∈ N such that Q is subordinate to

{P̃ (k)
j : j ∈ J}. If Q ≤ P and P ≤ Q, we say that Q and P are two equivalent coverings,

and we will denote with Q ∼ P. As shown in the next section, this notion is related to a

notion of equivalence for functions spaces.

2.2.2 Decomposition spaces and smoothness spaces

There is a natural way of defining a function space associated with an admissible covering

which was originally introduced in [42]. Specifically, let Q = {Qi : i ∈ I} be an admissible

covering and Γ a corresponding BAPU. Let Y be a solid (quasi-) Banach sequence space

on I, for which ℓ0(I) (the finite sequences on I) is dense in Y . Then for p ∈ (0,∞], the

decomposition space D(Q, Lp, Y ) is defined as the set of elements f ∈ S ′(Rd) such that

‖f‖D(Q,Lp,Y ) =
∥∥{‖γi(D) f‖Lp}i∈I

∥∥
Y
<∞.

It follows from the definition that, for p ∈ 0,∞), S(Rd) is dense in D(Q, Lp, Y ). Also, one

can show that the definition of decomposition space is independent of the particular BAPU,

provided that Y is Q-regular [42]. Following is an important result about the equivalence

of decomposition spaces (cf. [35, Theorem 2.11]).
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2.2. DECOMPOSITION SPACES

Theorem 1. Let P = {Pi : i ∈ I} and Q = {Qj : j ∈ J} be two equivalent admissible

coverings, and Γ = {γi : i ∈ I} and Φ = {φj : j ∈ J} be corresponding BAPUs. If

{vi ; i ∈ I} and {uj : j ∈ J} are weights derived from the same moderate function w, then

D(Q, Lp, Yv) = D(P, Lp, Yu)

with equivalent norms.

In this work, the main interest is in a special class of admissible coverings of the

frequency space R̂
d which are generated from the action of affine maps on an open set.

This idea was originally developed in [35] where a detailed treatment can be found. This

section briefly reviews the aspects of this theory which are useful to derive results in the

following sections.

Let T = {Ak · +ck}k∈N be a family of invertible affine transformations on R̂
d and

suppose that there are two bounded open set P , Q ∈ R̂
d, with P compactly contained in

Q such that the sets {QT : T ∈ T } and {P T : T ∈ T } are admissible coverings. If, in

addition, there is a constant K such that

(QAk + ck) ∩ (QAk′ + ck′) 6= 0 ⇒ ‖A−1
k′ Ak‖ℓ∞ < K, (2.2.2)

then Q = {TQ : T ∈ T } is a structured admissible covering and T a structured

family of affine transformations. Following result about structured admissible covering

and structured family of affine transformations holds :

Proposition 2 ([35]). Let Q = {QT : T ∈ T } be a structured admissible covering and T

a structured family of affine transformations. Then there exist:

(a) a BAPU {γT : T ∈ T } ⊂ S(R̂d) corresponding to Q;

(b) a system {φT : T ∈ T } ⊂ S(R̂d) satisfying:

12



2.2. DECOMPOSITION SPACES

• suppφT ⊂ QT, ∀T ∈ T ,

• ∑T∈T φ
2
T (ξ) = 1, ξ ∈ R̂

d,

• supT∈T |T |1/p−1 ‖F−1φT ‖Lp <∞, ∀ p ∈ (0, 1].

A family of function fulfilling the three conditions in point b) of Proposition 2 will be

called a squared BAPU .

Remark 2.2.1. Notice that in the case of structured admissible coverings the charac-

terization of equivalent coverings is simplified. In fact, let P = {PT : T ∈ T }

and Q = {QT : T ∈ T } be two admissible structured covering with respect to the

same family of transformation T . Then P ∼ Q if #NP < ∞ an #NQ < ∞, where

NP := {T ∈ T : P ∩ QT 6= ∅} and NQ := {T ∈ T : Q ∩ PT 6= ∅}. In fact,

that means that P ⊂ ⋃
T∈NP

QT and Q ⊂ ⋃
T∈NQ

PT , hence PS ⊂ ⋃
T∈NP

QTS and

QS ⊂ ⋃T∈NQ
PTS,∀S ∈ T .

Let Q = {QT : T ∈ T } be a structured admissible covering and T a structured family

of affine transformations. Suppose that Ka is a cube in R̂
d (aligned with the coordinate

axes) with side-length 2a satisfying Q ⊂ Ka. Corresponding to Ka, we define the system

{ηn,T = (φT en,T )
∨ : n ∈ Z

d, T ∈ T }, (2.2.3)

where

en,T (ξ) = (2a)−d/2|T |−1/2 χKa(ξT
−1) ei

π
a
nξT−1

, n ∈ Z
d, T ∈ T ,

and φT is a squared BAPU. The following fact is easy to verify.

Proposition 3. The system {ηn,T : n ∈ Z
2, T ∈ T } is a Parseval frame of L2(Rd).

13



2.2. DECOMPOSITION SPACES

When the affine transformations T are invertible linear transformations (i.e., all trans-

lations factors are ck = 0), then the Parseval frame {ηn,T } is in fact a collection of Meyer-

type wavelets. Furthermore, one can go beyond the construction of Parseval frames of

L2(Rd), and use the frame coefficients {〈f, ηn,T 〉} to characterize the decomposition spaces

D(Q, Lp, Yv). For that, it is useful to introduce the notation:

η
(p)
n,T = |T |1/2−1/p ηn,T (2.2.4)

Then the following result from [35] holds.

Proposition 4. Let Q = {TQ : T ∈ T } be a structured admissible covering, Y a solid

(quasi-)Banach sequence space on T and v a Q-moderate weight. For 0 < p ≤ ∞ we have

the characterization

‖f‖D(Q,Lp,Yv) ≈

∥∥∥∥∥∥∥






∑

n∈Zd

|〈f, η(p)n,T 〉|p



1/p




T∈T

∥∥∥∥∥∥∥
Yv

.

Usual modifications apply when p = ∞.

Notice that the constants in the above characterization are uniform with respect p ∈

[p0,∞] for any p0 > 0.

As Proposition 4 indicates, there is a coefficient space associated with the decomposi-

tion spaces D(Q, Lp, Yv). Hence, we define the coefficient space d(Q, ℓp, Yv) as the set of

coefficients c = {cn,T : n ∈ Z
d, T ∈ T } ⊂ C, satisfying

‖c‖d(Q,ℓp,Yv) =

∥∥∥∥∥∥∥






∑

n∈Zd

|cn,T |p



1/p




T∈T

∥∥∥∥∥∥∥
Yv

.

Using this notation, we can define the operators between these spaces. For f ∈ D(Q, Lp, Yv)

the coefficient operator is the operator C : D(Q, Lp, Yv) → d(Q, ℓp, Yv) defined by

C f = {〈f, η(p)n,T 〉}n,T .

14



2.2. DECOMPOSITION SPACES

For {cn,T }n,T ∈ d(Q, ℓp, Yv) the reconstruction operator is the mappingR : d(Q, ℓp, Yv) →

D(Q, Lp, Yv) defined by

R {cn,T }n,T =
∑

n∈Zd

cn,T η
(p)
n,T .

Then as per [35, Thm.2]):

Theorem 5. For 0 < p ≤ ∞, the coefficient operator and the reconstruction operators are

both bounded. This makes D(Q, Lp, Yv) a retract of d(Q, ℓp, Yv), that is, RC = IdD(Q,Lp,Yv).

In particular:

‖f‖D(Q,Lp,Yv) ≈ inf



‖{cn,T }n,T ‖d(Q,ℓp,Yv) : f =

∑

n,T

cn,T |T |
1
p
− 1

2 ηn,T



 . (2.2.5)

As a special case of decomposition spaces, let us consider the situation where T is a

structured family of affine transformations, Yv = (ℓq)vw,β
, w is a Q-moderate function,

β ∈ R and vw,β = {(w(bT ))β}AT ·+bT∈T . In this case, the space is called a smoothness

space and one use the notation:

Sβ
p,q(T , w) := D(Q, Lp, (ℓq)vw,β

).

Let {ηn,T } be the Meyer-type Parseval frame associated with Meyer wavelet [69] and

T as given by (2.2.3). By the notation introduced in (2.2.4)

|〈f, η(τ)n,T 〉| = |T |
1
p
− 1

τ |〈f, η(p)n,T 〉|, 0 < τ, p ≤ ∞.

Thus, if there is a δ > 0 such that w(bT ) = w(T ) ≈ |T |1/δ , for T ∈ T , then

‖f‖
Sβ
p,q

≈



∑

T∈T

|T |βq
δ


∑

n∈Zd

|〈f, η(p)n,T 〉|p



q/p



1/p

≈



∑

T∈T


∑

n∈Zd

|〈f, η(r)n,T 〉|p



q/p



1/p

,
β

δ
=

1

p
− 1

r
.
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2.3. THE SHEARLET REPRESENTATION

The spaces Sβ
p,q(T , w) provide a natural setting for the analysis of nonlinear approxi-

mations. For example, using (2.2.5), one obtains the Jackson-type inequality [70]:

inf
g∈Σn

‖f − g‖
Sβ
p,p

≤ C ‖f‖Sγ
τ,τ
n−(γ−β)/δ ,

1

τ
− 1

p
=
γ − β

δ
, (2.2.6)

where

Σn = {g =
∑

n,T∈Λ

cn,T ηn,T : #Λ ≤ n}.

Notice that, using d-dimensional (separable) dyadic wavelets {ηn,j}, with T = {2jId :

j ∈ Z}, where Id is the d-dimensional identity matrix and Q is an appropriate structured

admissible covering, one obtain that

‖f‖
Sβ
p,q

≈


∑

j∈Z

2jq
d
2
(β/δ+1/2−1/p)

(
∑

n∈Z

|〈f, ηn,j〉|p
)q/p




1/p

,

which can be identified with the Besov space norm of the Besov space B
β
δ
p,q(Rd).

2.3 The shearlet representation

In this section, we recall the construction of the Parseval frames of shearlets in dimension

d = 2.

This construction, which is a modification of the original approach in [1, 5], produces

smooth Parseval frames of shearlets for L2(R2) as appropriate combinations of shearlet

systems defined in cone-shaped regions in the Fourier domain R̂
2. Hence, R̂2 is partitioned

into the following cone-shaped regions:

P1 =

{
(ξ1, ξ2) ∈ R

2 : |ξ2
ξ1
| ≤ 1

}
, P2 =

{
(ξ1, ξ2) ∈ R

2 : |ξ2
ξ1
| > 1

}
.

To define the shearlet systems associated with these regions, for ξ = (ξ1, ξ2) ∈ R̂
2, let

φ ∈ C∞(R) be a function such that φ̂(ξ) ∈ [0, 1], φ̂ ⊂ [−1/4, 1/4] and φ̂ |[−1/8,1/8]= 1 and

16



2.3. THE SHEARLET REPRESENTATION

let also

Φ̂(ξ) = Φ̂(ξ1, ξ2) = φ̂(ξ1) φ̂(ξ2) (2.3.7)

and

W (ξ) =W (ξ1, ξ2) =

√
Φ̂2(2−1ξ1, 2−1ξ2)− Φ̂2(ξ1, ξ2).

It follows that

Φ̂2(ξ1, ξ2) +
∑

j≥0

W 2(2−jξ1, 2
−jξ2) = 1 for (ξ1, ξ2) ∈ R̂

2. (2.3.8)

Notice that each function W 2
j =W 2(2−j ·) has support in the Cartesian corona

Cj = [−2j−1, 2j−1]2 \ [−2j−3, 2j−3]2

and that the functions W 2
j , j ≥ 0, produce a smooth tiling of the frequency plane into a

Cartesian corona:

∑

j≥0

W 2(2−jξ) = 1 for ξ ∈ R
2 \ [−1

4
,
1

4
]2 ⊂ R̂

2. (2.3.9)

Next, let v ∈ C∞(R) be chosen so that supp v ⊂ [−1, 1] and

|v(u− 1)|2 + |v(u)|2 + |v(u + 1)|2 = 1 for |u| ≤ 1. (2.3.10)

In addition, we will assume that v(0) = 1 and that v(n)(0) = 0 for all n ≥ 1.

Hence, for V(1)(ξ1, ξ2) = v( ξ2ξ1 ) and V(2)(ξ1, ξ2) = v( ξ1ξ2 ), the shearlet systems associated

with the cone-shaped regions Ph, h = 1, 2 are defined as the countable collection of functions

{ψ(h)
j,ℓ,k : j ≥ 0,−2[j/2] ≤ ℓ ≤ 2[j/2], k ∈ Z

2}, (2.3.11)

where

ψ̂
(h)
j,ℓ,k(ξ) = |detA(h)|−j/2W (2−jξ)V(h)(ξA

−j
(h)B

−ℓ
(h)) e

2πiξA−j
(h)

B−ℓ
(h)

k
, (2.3.12)
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2.3. THE SHEARLET REPRESENTATION

and

A(1) =



2 0

0
√
2


 , B(1) =



1 1

0 1


 , A(2) =



√
2 0

0 2


 , B(2) =



1 0

1 1


 . (2.3.13)

Notice that the dilation matrices A(1), A(2) are associated with anisotropic dilations and,

more specifically, parabolic scaling dilations; by contrast, the shearing matrices B(1), B(2)

are non-expanding and their integer powers control the directional features of the shearlet

system. Hence, the systems (2.3.11) form collections of well-localized functions defined

at various scales, orientations and locations, controlled by the indices j, ℓ, k respectively.

In particular, the functions ψ̂
(1)
j,ℓ,k, given by (2.3.12), are supported inside the trapezoidal

regions

Σj,ℓ := {(ξ1, ξ2) : ξ1 ∈ [−2j−1,−2j−3] ∪ [2j−3, 2j−1], |ξ2
ξ1

− ℓ2−j/2| ≤ 2−j/2} (2.3.14)

inside the Fourier plane, with a similar condition holding for the functions ψ̂
(2)
j,ℓ,k. This is

illustrated in Fig. 2.1.

As shown in [19], a smooth Parseval frame for L2(R2) is obtained by combining the

two shearlet systems associated with the cone-based regions P1 and P2 together with a

coarse scale system, which takes care of the low frequency region. To ensure that all

elements of this combined shearlet system are C∞
c in the frequency domain, the elements

whose supports overlap the boundaries of the cone regions in the frequency domain are

appropriately modified. Namely one defines shearlet system for L2(R2) as the collection

{
ψ̃−1,k : k ∈ Z

2
}⋃{

ψ̃j,ℓ,k,h : j ≥ 0, |ℓ| < 2[j/2], k ∈ Z
2, h = 1, 2

}⋃{
ψ̃j,ℓ,k : j ≥ 0, ℓ = ±2[j/2], k ∈ Z

2
}
,

(2.3.15)

consisting of:

• the coarse-scale shearlets {ψ̃−1,k = Φ(· − k) : k ∈ Z
2}, where Φ is given by (2.3.7);

• the interior shearlets {ψ̃j,ℓ,k,h = ψ
(h)
j,ℓ,k : j ≥ 0, |ℓ| < 2[j/2], k ∈ Z

2, h = 1, 2}, where the

functions ψ
(h)
j,ℓ,k are given by (2.3.12);
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2.3. THE SHEARLET REPRESENTATION

(a)

ξ1

ξ2

(b)

-�

∼ 5 2j−3

6

?

∼ 2j/2

Figure 2.1: (a) The tiling of the frequency plane R̂2 induced by the shearlets. (b) Frequency
support Σj,ℓ of a shearlet ψj,ℓ,k, for ξ1 > 0. The other half of the support, for ξ1 < 0, is
symmetrical.

• the boundary shearlets {ψ̃j,ℓ,k : j ≥ 0, ℓ = ±2[j/2], k ∈ Z
2}, obtained by joining

together slightly modified versions of ψ
(1)
j,ℓ,k and ψ

(2)
j,ℓ,k, for ℓ = ±2[j/2], after that they

have been restricted in the Fourier domain to the cones P1 and P2, respectively. The

precise definition is given below.

For j ≥ 1, ℓ = ±2[j/2], k ∈ Z
2, define

(ψ̃j,ℓ,k)
∧(ξ) =





2−
3
4
j− 1

2 W (2−jξ1, 2
−jξ2) v

(
2j/2 ξ2ξ1 − ℓ

)
e
2πiξ2−1A−j

(1)
B−ℓ

(1)
k
, if ξ ∈ P1

2−
3
4
j− 1

2 W (2−jξ1, 2
−jξ2) v

(
2j/2 ξ1ξ2 − ℓ

)
e
2πiξ2−1A−j

(1)
B−ℓ

(1)
k
, if ξ ∈ P2.

For j = 0, k ∈ Z
2, ℓ = ±1, define

(ψ̃0,ℓ,k)
∧(ξ) =





W (ξ1, ξ2) v
(
ξ2
ξ1

− ℓ
)
e2πiξk, if ξ ∈ P1

W (ξ1, ξ2) v
(
ξ1
ξ2

− ℓ
)
e2πiξk, if ξ ∈ P2.
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2.3. THE SHEARLET REPRESENTATION

For brevity, let us denote the system (2.3.15) using the compact notation

{ψ̃µ, µ ∈M}, (2.3.16)

where M =MC ∪MI ∪MB are the indices associated with coarse scale shearlets, interior

shearlets, and boundary shearlets, respectively, given by

• MC = {µ = (j, k) : j = −1, k ∈ Z
2} (coarse scale shearlets)

• MI = {µ = (j, ℓ, k, h) : j ≥ 0, |ℓ| < 2[j/2], k ∈ Z
2, h = 1, 2} (interior shearlets)

• MB = {µ = (j, ℓ, k) : j ≥ 0, ℓ = ±2[j/2], k ∈ Z
2} (boundary shearlets).

We have the following result from [19]:

Theorem 6. The system of shearlets (2.3.15) is a Parseval frame for L2(R2). In addition,

the elements of this system are C∞ and compactly supported in the Fourier domain.

Proof. We first show that the system of shearlets (2.3.11) is a Parseval frame for L2(P1)
∨.

Notice that

(ξ1, ξ2)A
−j
(1)B

(1)
−ℓ = (2−2jξ1,−ℓ2−2jξ1 + 2−jξ2).

Hence, we can write the elements of the system of shearlets (2.3.11) as

ψ̂
(1)
j,ℓ,k(ξ1, ξ2) = 2−

3
2
j W (2−2jξ1, 2

−2jξ2) v
(
2j
ξ2
ξ1

− ℓ
)
e
2πiξA−j

(1)
B

(1)
−ℓ k.
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2.3. THE SHEARLET REPRESENTATION

Using the change of variable η = ξA−j
(1)B

(1)
−ℓ and the notation Q = [−1

2 ,
1
2 ]

2, we have:

∑

j≥0

2j∑

ℓ=−2j

∑

k∈Z2

|〈f̂ , ψ̂(1)
j,ℓ,k〉|2

=
∑

j≥0

2j∑

ℓ=−2j

∑

k∈Z2

∣∣∣∣
∫

R2

2−
3
2
j f̂(ξ)W (2−2jξ1, 2

−2jξ2) v
(
2j
ξ2
ξ1

− ℓ
)
e
2πiξA−j

(1)
B

(1)
−ℓ k dξ

∣∣∣∣
2

=
∑

j≥0

2j∑

ℓ=−2j

∑

k∈Z2

∣∣∣∣
∫

Q
2

3
2
j f̂(ηB

(1)
ℓ Aj

(1))W (η1, 2
−j(η2 + ℓη1)) v

(η2
η1

)
e2πiηk dη

∣∣∣∣
2

=
∑

j≥0

2j∑

ℓ=−2j

∫

Q
23j |f̂(ηB(1)

ℓ Aj
(1)

)|2 |W (η1, 2
−j(η2 + ℓη1))|2 |v

(η2
η1

)
|2 dη

=
∑

j≥0

2j∑

ℓ=−2j

∫

R2

|f̂(ξ)|2 |W (2−2jξ1, 2
−2jξ2)|2 |v

(
2j
ξ2
ξ1

− ℓ
)
|2 dξ

=

∫

R2

|f̂(ξ)|2
∑

j≥0

2j∑

ℓ=−2j

|W (2−2jξ1, 2
−2jξ2)|2 |v

(
2j
ξ2
ξ1

− ℓ
)
|2 dξ.

In the computation above, we have used the fact that the function

W (η1, 2
−j(η2 + ℓη1)) v

(η2
η1

)

is supported inside Q since v(η2η1 ) is supported inside the cone |η2η1 | ≤ 1 and W (η1, 2
−j(η2 +

ℓη1)) is supported inside the strip |η1| ≤ 1
2 .

Finally, using the properties of W and v, we observe that

∑

j≥0

2
j∑

ℓ=−2j

|W (2−2jξ1, 2
−2jξ2)|2 |v

(
2j
ξ2
ξ1

− ℓ
)
|2 =

∑

j≥0

|W (2−2jξ1, 2
−2jξ2)|2

2
j∑

ℓ=−2j

|v
(
2j
ξ2
ξ1

− ℓ
)
|2

=
∑

j≥0

|W (2−2jξ1, 2
−2jξ2)|2 = 1 for (ξ1, ξ2) ∈ P1.

Thus, we conclude that for each f ∈ L2(P1)
∨

∑

j≥0

2j∑

ℓ=−2j

∑

k∈Z2

|〈f, ψ̂(1)
j,ℓ,k(ξ1, ξ2)〉|2 = ‖f‖2.

A similar construction yields a Parseval frame for L2(P2)
∨. Namely, let

{ψ(2)
j,ℓ,k : j ≥ 0,−2j ≤ 2j , k ∈ Z

2}, (2.3.17)
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2.3. THE SHEARLET REPRESENTATION

where

ψ̂
(2)
j,ℓ,k(ξ) = |detA(2)|−j/2W (2−2jξ)V (ξA−j

(2)B
(2)
−ℓ ) e

2πiξA−j
(2)

B
(2)
−ℓ k,

A(2) = ( 2 0
0 4 ), B

(2)
ℓ =

(
0 1
1 ℓ

)
. Noticing that

(ξ1, ξ2)A
−j
(2)B

(2)
−ℓ = (2−2jξ2, 2

−jξ1 − ℓ2−2jξ2),

similar to the case above, we can write the elements of the system of vertical shearlets

(2.3.17) as

ψ̂
(2)
j,ℓ,k(ξ1, ξ2) = 2−

3
2
j W (2−2jξ1, 2

−2jξ2) v
(
2j
ξ1
ξ2

− ℓ
)
e
2πiξA−j

(2)
B

(2)
−ℓ k.

Since

∑

j≥0

2
j∑

ℓ=−2j

|W (2−2jξ1, 2
−2jξ2)|2 |v

(
2j
ξ1
ξ2

− ℓ
)
|2 =

∑

j≥0

|W (2−2jξ1, 2
−2jξ2)|2

2
j∑

ℓ=−2j

|v
(
2j
ξ1
ξ2

− ℓ
)
|2

=
∑

j≥0

|W (2−2jξ1, 2
−2jξ2)|2 = 1 for (ξ1, ξ2) ∈ P2,

a computation essentially identical to the one above shows that for each f ∈ L2(P2)
∨

∑

j≥0

2j∑

ℓ=−2j

∑

k∈Z2

|〈f, ψ̂(2)
j,ℓ,k(ξ1, ξ2)〉|2 = ‖f‖2.

To obtain a Parseval frame of shearlets for L2(R2), we will take a combination of

horizontal and vertical shearlets, together with a coarse scale system which will account

for the low frequency region. Notice that it is possible to build such a system in a way

that all element are well localized. This cannot be achieved using the “standard” system

of shearlets since, at the boundary of the cone regions, its shearlet elements are continuous

but not differentiable.

The shearlet system for L2(R2) is defined as the union of the coarse scale shearlets, the

interior shearlets, and the boundary shearlets, given by

{
ψ̃−1,k : k ∈ Z

2

}⋃{
ψ̃j,ℓ,k,d : j ≥ 0, |ℓ| < 2j, k ∈ Z

2, d = 1, 2
}⋃{

ψ̃j,ℓ,k : j ≥ 0, ℓ = ±2j, k ∈ Z
2

}
,
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2.3. THE SHEARLET REPRESENTATION

where the coarse scale shearlets are the elements ψ̃−1,k = Φ(· − k), the interior shearlets

are the elements ψ̃j,ℓ,k,d = ψ
(d)
j,ℓ,k (defined for |ℓ| < 2j) and the boundary shearlets ψ̃j,ℓ,k,

where ℓ = ±2j , are defined by joining together ψ
(1)
j,ℓ,k and ψ

(2)
j,ℓ,k after that they have been

restricted to the cones P1and P2, respectively, in the Fourier domain. That is, for j ≥ 1,

we define

(ψ̃j,2j ,k)
∧(ξ) =





2−
3
2
j− 1

2 W (2−2jξ1, 2
−2jξ2) v

(
2j( ξ2ξ1 − 1)

)
e
2πiξ2−1A−j

(1)
B

(1)
−ℓ k, if ξ ∈ P1

, 2−
3
2
j− 1

2 W (2−2jξ1, 2
−2jξ2) v

(
2j( ξ1ξ2 − 1)

)
e
2πiξ2−1A−j

(1)
B

(1)
−ℓ k, if ξ ∈ P2,

with a similar definition for ℓ = −2j . For j = 0, ℓ = ±1, we define

(ψ̃0,ℓ,k,d)
∧(ξ) =





2−
1
2 W (ξ1, ξ2) v

(
ξ2
ξ1

− ℓ
)
e2πiξk, if ξ ∈ P1

2−
1
2 W (ξ1, ξ2) v

(
ξ1
ξ2

− ℓ
)
e2πiξk, if ξ ∈ P2,

It turns out that the boundary elements ψ̃j,2j ,k are smooth compactly supported func-

tions in the frequency domain. The support condition follows trivially from the definition.

It is also easy to verify that (ψ̃j,2j ,k)
∧(ξ1, ξ2) is continuous since the two parts of the piece-

wise defined function are equal for ξ1 = ξ2. To verify the smoothness, notice that

∂

∂ξ1
W (2−2jξ) v

(
2j(

ξ2
ξ1

− 1)
)
e
2πiξ2−1A

−j
(1)

B
(1)
−ℓ

k
|ξ2=ξ1 = 2−2jW ′(2−2jξ1, 2

−2jξ1) v(0) e
2πi2−2j−1ξ1k1

+ 2jξ1W (2−2jξ1, 2
−2jξ1) v

′(0) e2πi2−2j−1ξ1k1

+ 2πi(2−2j−1k1 − 2−j−1k2)W (2−2jξ1, 2
−2jξ1)×

v(0) e2πi2−2j−1ξ1k1 ,

∂

∂ξ1
W (2−2jξ) v

(
2j(

ξ1
ξ2

− 1)
)
e
2πiξ2−1A

−j
(1)

B
(1)
−ℓ

k
|ξ2=ξ1 = 2−2jW ′(2−2jξ1, 2

−2jξ1) v(0) e
2πi2−2j−1ξ1k1

+
2j

ξ1
2−

3
2
j W (2−2jξ1, 2

−2jξ1) v
′(0) e2πi2−2j−1ξ1k1

+ 2πi(2−2j−1k1 − 2−j−1k2)W (2−2jξ1, 2
−2jξ1)×

v(0) e2πi2−2j−1ξ1k1 .

Since v′(0) = 0, the two partial derivatives agree for ξ1 = ξ2. A very similar calculation

shows that also the partial derivatives with respect to ξ2 agree for ξ1 = ξ2. It follows from
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2.3. THE SHEARLET REPRESENTATION

these calculations that the boundary elements ψ̃j,2j ,k are smooth functions in the frequency

domain.

We can now show that we have a Parseval frame for L2(R2).

First, we will examine the tiling properties of the boundary elements. We have:

∑

j≥0

∑

k∈Z2

|〈f̂ , (ψ̃j,2j ,k)
∧〉|2

=
∑

j≥0

∑

k∈Z2

∣∣∣∣
∫

P1

2−
3
2
j− 1

2 f̂(ξ)W (2−2jξ1, 2
−2jξ2) v

(
2j(

ξ2
ξ1

− 1)
)
e
2πiξ2−1A−j

(1)
B

(1)

(−2j )
k
dξ

∣∣∣∣
2

+
∑

j≥0

∑

k∈Z2

∣∣∣∣
∫

P2

2−
3
2
j− 1

2 f̂(ξ)W (2−2jξ1, 2
−2jξ2) v

(
2j(

ξ1
ξ2

− 1)
)
e
2πiξ2−1A−j

(1)
B

(1)

(−2j )
k
dξ

∣∣∣∣
2

(2.3.18)

We will use the change of variable η = ξ2−1A−j
(1)B

(1)
−ℓ . Notice that

v
(
2j
ξ1
ξ2

− ℓ
)
= V (ξA−j

(2)B
(2)
−ℓ ) = V (η2B

(1)
ℓ Aj

(1)A
−j
(2)B

(2)
−ℓ ).

Since B
(1)
ℓ Aj

(1)
A−j

(2)
B

(2)
−ℓ =

(
ℓ2−j 2j−ℓ22−j

2−j −ℓ2−j

)
, then

V (η2B
(1)
(2j )

Aj
(1)A

−j
(2)B

(2)
(−2j)

) = v

( −η2
η1 + 2−jη2

)
(2.3.19)

The support condition of v implies that

∣∣∣∣
η2

η1 + 2−jη2

∣∣∣∣ ≤ 1

This implies that ∣∣∣∣
η2
η1

∣∣∣∣ ≤
∣∣∣∣1 + 2−j η2

η1

∣∣∣∣ ≤ 1 + 2−j

∣∣∣∣
η2
η1

∣∣∣∣

and, thus,

(1− 2−j)

∣∣∣∣
η2
η1

∣∣∣∣ ≤ 1

∣∣∣∣
η2
η1

∣∣∣∣ ≤ (1− 2−j)−1 ≤ 2 for j ≥ 1.
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2.3. THE SHEARLET REPRESENTATION

This shows that, if |η1| ≤ 1
4 , then |η2| ≤ 2|η1| ≤ 1

2 and, thus, the function (2.3.19) is

supported inside Q. Using these observations, we have:

∑

j≥0

∑

k∈Z2

|〈f̂ , (ψ̃j,2j ,k)
∧〉|2

=
∑

j≥0

∑

k∈Z2

∣∣∣∣
∫

P1

2−
3
2
j− 1

2 f̂(ξ)W (2−2jξ1, 2
−2jξ2) v

(
2j(

ξ2
ξ1

− 1)
)
e
2πiξ2−1A−j

(1)
B

(1)

(−2j )
k
dξ

∣∣∣∣
2

+
∑

j≥0

∑

k∈Z2

∣∣∣∣
∫

P2

2−
3
2
j− 1

2 f̂(ξ)W (2−2jξ1, 2
−2jξ2) v

(
2j(

ξ1
ξ2

− 1)
)
e
2πiξ2−1A−j

(1)
B

(1)

(−2j )
k
dξ

∣∣∣∣
2

=
∑

j≥0

∑

k∈Z2

∣∣∣∣
∫

Q
2

3
2
j+ 1

2 f̂(2ηB
(1)
2j
Aj

(1))W (2η1, 2
−j+1(η2 + 2jη1)) v

(η2
η1

)
e2πiηk dη

∣∣∣∣
2

+
∑

j≥0

∑

k∈Z2

∣∣∣∣
∫

Q
2

3
2
j+ 1

2 f̂(2ηB
(1)
2j
Aj

(1))W (2η1, 2
−j+1(η2 + 2jη1)) v

( −η2
η1 + 2−jη2

)
e2πiηk dη

∣∣∣∣
2

=
∑

j≥0

∫

Q
23j+1|f̂(2ηB(1)

ℓ Aj
(1))|

2 |W (2η1, 2
−j+1(η2 + 2jη1))|2 |v

(η2
η1

)
|2 dη

+
∑

j≥0

∫

Q
23j+1|f̂(2ηB(1)

ℓ Aj
(1))|2 |W (2η1, 2

−j+1(η2 + 2jη1))|2 |v
( −η2
η1 + 2−jη2

)
|2 dη

=
∑

j≥0

∫

P1

|f̂(ξ)|2 |W (2−2jξ1, 2
−2jξ2)|2 |v

(
2j(

ξ2
ξ1

− 1)
)
|2 dξ

+
∑

j≥0

∫

P2

|f̂(ξ)|2 |W (2−2jξ1, 2
−2jξ2)|2 |v

(
2j(

ξ1
ξ2

− 1)
)
|2 dξ.

An analogous result holds for the boundary elements along the line ξ1 = −ξ2, corre-

sponding to ℓ = −2j .

Combining all the results above, we have:
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2.3. THE SHEARLET REPRESENTATION

2∑

d=1

∑

j≥0

∑

|ℓ|<2j

∑

k∈Z2

|〈f, ψ̃j,ℓ,k,d〉|2 +
∑

j≥0

∑

ℓ=±2j

∑

k∈Z2

|〈f, ψ̃j,ℓ,k〉|2

=
∑

j≥0

∑

|ℓ|<2j

∑

k∈Z2

|〈f̂ , ψ̂(1)
j,ℓ,k〉|2 +

∑

j≥0

∑

|ℓ|<2j

∑

k∈Z2

|〈f̂ , ψ̂(2)
j,ℓ,k〉|2 +

∑

j≥0

∑

ℓ=±2j

∑

k∈Z2

|〈f, (ψ̃j,ℓ,k)
∧〉|2

=

∫

R2

|f̂(ξ)|2
∑

j≥0

|W (2−2jξ1, 2
−2jξ2)|2


∑

|ℓ|<2j

|v
(
2j
ξ2
ξ1

− ℓ
)
|2 +

∑

|ℓ|<2j

|v
(
2j
ξ1
ξ2

− ℓ
)
|2

 dξ

+

∫

P1

|f̂(ξ)|2
∑

j≥0

|W (2−2jξ1, 2
−2jξ2)|2 |v

(
2j(

ξ1
ξ2

− 1)
)
|2 dξ

+

∫

P2

|f̂(ξ)|2
∑

j≥0

|W (2−2jξ1, 2
−2jξ2)|2 |v

(
2j(

ξ1
ξ2

− 1)
)
|2 dξ

+

∫

P1

|f̂(ξ)|2
∑

j≥0

|W (2−2jξ1, 2
−2jξ2)|2 |v

(
2j(

ξ1
ξ2

+ 1)
)
|2 dξ

+

∫

P2

|f̂(ξ)|2
∑

j≥0

|W (2−2jξ1, 2
−2jξ2)|2 |v

(
2j(

ξ1
ξ2

+ 1)
)
|2 dξ

=

∫

R2

|f̂(ξ)|2
∑

j≥0

|W (2−2jξ)|2

∑

|ℓ|≤2j

|v
(
2j
ξ2
ξ1

− ℓ
)
|2χP1(ξ) +

∑

|ℓ|≤2j

|v
(
2j
ξ1
ξ2

− ℓ
)
|2χP2(ξ)


 dξ

=

∫

R2

|f̂(ξ)|2
∑

j≥0

|W (2−2jξ)|2dξ

Finally:

∑

k∈Z2

|〈f, ψ̃−1,k〉|2 +
2∑

d=1

∑

j≥0

∑

|ℓ|<2j

∑

k∈Z2

|〈f, ψ̃j,ℓ,k,d〉|2 +
∑

j≥0

∑

ℓ=±2j

∑

k∈Z2

|〈f, ψ̃j,ℓ,k〉|2

=

∫

R2

|f̂(ξ)|2 |Φ(ξ)|2dξ +
∫

R2

|f̂(ξ)|2
∑

j≥0

|W (2−2jξ)|2dξ

=

∫

R2

|f̂(ξ)|2

|Φ(ξ)|2 +

∑

j≥0

|W (2−2jξ)|2

 dξ =

∫

R2

|f̂(ξ)|2 dξ. (2.3.20)

Due to the symmetry of the construction, in the following it will be usually sufficient
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2.4. SHEARLET-TYPE DECOMPOSITION

to specialize our to the shearlets in P1. In that case, we will indicate the matrices A(1) and

B(1) with A and B, and the shearlets in P1 simply with ψj,ℓ,k.

2.4 Shearlet-type decomposition

In this section, we define a class of smoothness spaces associated with the shearlet-type

decomposition of the frequency plane R̂
2 presented in Section 2.3.

2.4.1 Shearlet-type covering

We start by constructing a structured admissible covering of R̂2 associated with the struc-

tured family of affine transformations generating the shearlet systems of Section 2.3.

For A = A1 and B = B1 given by (2.3.13), consider the family of affine transformations

{T(j,ℓ) : (j, ℓ) ∈ M} on R̂
2 by

ξ T(j,ℓ) = ξBℓAj , (j, ℓ) ∈ M, (2.4.21)

where M = {(j, ℓ) : j ≥ 0, −2⌊j/2⌋ ≤ ℓ ≤ 2⌊j/2⌋}. Next, we choose two bounded sets P

and Q in R̂
2 defined by V ∪ V − and U ∪ U−, respectively, where V is the trapezoid with

vertices (1/4, 1/4), (1/2, 1/2), (1/2,−1/2), (1/4,−1/4), V − = {ξ ∈ R
2 : −ξ ∈ V }, U is the

trapezoid with vertices (1/8, 3/8), (5/8, 5/8), (1/8,−3/8), (5/8,−5/8) and U− = {ξ ∈ R
2 :

−ξ ∈ V }. Also, let U0 be the cube [−1/2, 1/2]2 , T0 to be the affine transformation such

that U0 = T0 (V ∪ V −) and R =



0 1

1 0


. Hence, let us consider the structured family of

affine transformations:

TM =
{
T0, T(j,ℓ), R T(j,ℓ) : (j, ℓ) ∈ M

}
. (2.4.22)
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2.4. SHEARLET-TYPE DECOMPOSITION

We have the following:

Proposition 7. The set Q = {QT : T ∈ TM}, where TM is given by (2.4.22), is a

structured admissible covering of R̂2.

Proof. It is easy to verify that:

R̂
2 = U0 ∪


 ⋃

(j,ℓ)∈M

PT(j,ℓ)


 ∪


 ⋃

(j,ℓ)∈M

P T(j,ℓ)R


 .

In fact, the right hand side of the above expression describes the shearlet tiling of the

frequency plane illustrated in Fig. 2.1(a). Obviously, the family {U0, QT(j,ℓ), QT(j,ℓ)R :

(j, ℓ) ∈ M} is also a covering of R̂2. To conclude that {QT : T ∈ TM} is a structured

admissible covering of R̂2 it remains to show that the condition (2.2.2) is satisfied. Due

to the symmetry of the construction, it is sufficient to specialize our argument to the

cone-shaped region P1.

Let us examine the action of a linear mapping Tj,ℓ ∈ TM on the trapezoid U . We have

that

U(j,ℓ) := U T(j,ℓ) = U



1 ℓ

0 1






2j 0

0 2j/2


 = U



2j ℓ2j/2

0 2j/2


 .

Hence T(j,ℓ) maps the trapezoid U into another trapezoids where (ξ1, ξ2) 7→ (2jξ1, 2
j/2(ℓξ1+

ξ2)).

Since the first coordinate ξ1 ∈ U ranges over [1/8, 5/8], under the action of T(j,ℓ)

this interval is mapped into [2j−3, 5 2j−3]. Hence, since 2j−3 < 5 2(j−1)−3 < 5 2j−3, each

trapezoid U(j,ℓ) can intersect horizontally only the similar sets corresponding to the scales

indices j − 1 and j + 1.

To estimate the number of vertical intersections, observe that, for j fixed, all trapezoids

U(j,ℓ) have the same vertical extension, independently of the parameter ℓ. Specifically, for j
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fixed, the trapezoids U(j,ℓ) (which are defined for ξ1 ∈ [2j−3, 52j−3]) has vertically extension

equal to 2 3
8 2

j/2 = 32j/2−2 on the left side and 25
82

j/2 = 52j/2−2 right side. The shearing

matrix B produce a vertical displacement by 2j/2ξ1. This implies that the left side of a

trapezoid U(j,ℓ) is displaced by 2j/2−3 and the right side by 5 2j/2−3. It follows that, inside

the strip [2j−3, 5 2j−3], the maximum number of trapezoids intersecting the trapezoid U(j,ℓ)

is less than or equal to the maximum between 2
([

3 2j/2−2

2j/2−3

]
+ 1
)

and 2
([

5 2j/2−2

5 2j/2−3

]
+ 1
)
;

that is, 2([3 · 2] + 1) = 14.

We can now estimate the number of trapezoids U(j′,ℓ′) intersecting the trapezoid U(j,ℓ),

where j and ℓ are fixed. As we observed, it must be j′ − 1 ≤ j′ ≤ j + 1. Also, as we

already know, the right side of the trapezoid U(j,ℓ), for ξ1 = 52j−3 = 2j+1 5 2−4, extends

vertically by 5 2j/2−2. For the same value of ξ1, a generic trapezoid of the form U(j+1,ℓ′)

will be displaced vertically by 2(j+1)/2 5 2−4 under the action of the shearing matrix B.

It follows that the number of trapezoids U(j+1,ℓ′) intersecting U(j,ℓ) is less than or equal

to 2
([

5 2j/2−2

5 2(j+1)/2−4

]
+ 1
)

= 2[23/2] + 2 = 6. On the other side, a trapezoid of the form

U(j−1,ℓ′) at ξ1 = 2j−3 = 2j−12−2 is displaced by 2j/2−5/2 under the action of a shearing

matrix B. Thus, the number of trapezoids U(j−1,ℓ′) intersecting U(j,ℓ) is less than or equal

2
([

3 2j/2−2

2j/2−5/2

]
+ 1
)
= 2[3 21/2] + 2 = 10.

Combining the above observations, it follows that the total number of trapezoids inter-

secting the trapezoid U(j,ℓ) is less than or equal to 14 + 6 + 10 = 30.

In the following, we will refer to the structured admissible covering of Proposition 7 as

the shearlet-type covering. By Proposition 2, there is at least a BAPU associated with

this admissible covering. In Section 2.4.3 we will analyze the relation between the (Fourier

transform of the) Parseval frame of shearlets introducted in Section 3 and one such BAPU.
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2.4. SHEARLET-TYPE DECOMPOSITION

2.4.2 Minimal admissible covering

Given T := {Ti} a set of invertible affine transformations, we say that {TiQ} is a minimal

admissible covering if there is no Q′ s.t. Q′ compactly contained in Q and {TiQ′} is an

admissible covering.

Let us consider the trapezoid

P ′ = {(ξ1, ξ2) : |ξ2| ≤ ξ1/2, ξ1 ∈ [1/4, 1/2]}

and

P ′′ := P ′ ∪ P ′− .

Theorem 8. The tiling {P ′′T : T ∈ TM}, where TM is given by (2.4.22), satisfies the

property of minimality. In addition, it is equivalent to any possible structured admissible

covering with respect to the family TM.

Proof. As above, it is sufficient to specialize our argument to the cone-shaped region

P1.

Let C be a generic set in the cone P1. Recall that our family of transformation acts on

a generic element of R2 in the following way:

(ξ1, ξ2)B
ℓAj = (2jξ1, 2

j/2(ℓξ1 + ξ2)).

It follows that the first coordinate is moved only by a dyadic dilation of 2j . Since j ≥ 0,

we are bound to consider the first coordinate varying in [1/4, 1/2]. That means that C is

contained in the strip {(ξ1, ξ2) : ξ1 ∈ [1/4, 1/2], |ξ2 | ≤ ξ1}.

We can also observe that the actions of the shearing matrix Bℓ consist in lifting up by

ℓ ξ1 the second coordinate of each point (ξ1, ξ2). Since the set {P ′BℓAj : |ℓ| ≤ 2j/2}, with j
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2.4. SHEARLET-TYPE DECOMPOSITION

fixed, must cover the whole strip {(ξ1ξ2) : ξ1 ∈ [2j−2, 2j−1], |ξ2| ≤ ξ1}, for each fixed value

ξ1,0 of the first coordinate the following equation must be satisfied: 2j/2ξ1,0 + 2j/2ξ2,b ≤

2j/2ξ2,a, where ξ2,a and ξ2,b are respectively the lower and the highest values of the second

coordinate in the set C corresponding to the value ξ1 = ξ1,0. That means that ξ2,b and ξ2,a

must satisfy |ξ2,b − ξ2,a| ≥ ξ1,0. Hence, the minimal choice we can get is |ξ2,b − ξ2,a| = ξ1,0.

This condition is clearly satisfied by taking ξ2,b = ξ1/2 and ξ2,a = −ξ1/2.

Next, we can show that any structured admissible covering with respect to the family of

transformation TM is equivalent to the covering P ′ := {P ′T : T ∈ TM}. That means that,

if Q′ := {Q′T : T ∈ TM} is an admissible structured covering for R̂2, with Q′ compact in

R̂
2, then Q′ and P ′ are equivalent. Thanks to Theorem 1 and our observations above, it

is sufficient to prove that #{T ∈ TM : P ′T ∩Q′ 6= ∅} < ∞ and #{T ∈ TM : Q′T ∩ P ′ 6=

∅} <∞.

Again, we only need to examine the cone-shaped region P1. Let Q′ := {Q′T : T ∈

TM} be an admissible structured covering, with Q′ a generic compact subset of P1. As

observed above, for Q′ to be an admissible structured covering, Q′ must cover at least

the strip domain {(ξ1, ξ2) : ξ1 ∈ [1/4, 1/2], |ξ2 | ≤ ξ1}. Furthermore, we notice that Q′

cannot contain the origin. Indeed, if 0 ∈ Q′, then ∀j ≥ 0 we have that 0 ∈ Q′Aj, hence

#{j ∈ N : Q′ ∩ Q′Aj 6= ∅} = ∞, which makes Q′ non admissible. Thus, we have that

Q′ is contained or equal (in the worst case) to {(ξ1, ξ2) : ξ1 ∈ [m,M ], |ξ2| ≤ ξ1}, with

0 < m ≤ 1/4 < 1/2 ≤ M . In the worst case, there exists k ∈ N so that M ≤ 2k; that

means that Q′ is contained in k + 2 strips of the form {(ξ1, ξ2) : ξ1 ∈ [2j , 2j+1], |ξ2| ≤ ξ1}.

In each of these strips we have at most 2j/2+1 trapezoids. It follows that Q′ is contained

in U0 ∪
⋃1

ℓ=−1 P
′Bℓ ∪⋃k+1

j=1

⋃
|ℓ|≤2j/2 P

′BℓAj , that is, the number of overlapping sets is at

most 1+3+
∑k+1

j=1 2
j/2+1 <∞. Otherwise, we know that P ′ must be contained in Q̃′, since
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2.4. SHEARLET-TYPE DECOMPOSITION

P ′ is minimal.

2.4.3 Shearlet smoothness spaces

Having established the existence of a structured admissible covering associated with the

shearlet decomposition, we can now define the associated smoothness spaces. Specifically,

letting Q be the shearlet-type covering with TM the corresponding family of affine trans-

formations (given in Proposition 7) and choosing w(j, ℓ) = 2j , (j, ℓ) ∈ M, to be the

Q-moderate weight1, the shearlet smoothness spaces are defined by

Sβ
p,q(TM, w) := D(Q, Lp, (ℓq)2β ).

As observed above, these spaces are independent from the choice of a particular BAPU.

Not surprisingly, the systems of shearlets {ψ̃µ : µ ∈ M} introduced in Section 2.3

are closely associated with the shearlet smoothness spaces. Specifically, let us write the

elements of the shearlet system in P1, in the Fourier domain, as

ψ̂j,ℓ,k(ξ) = ψ̂(ξA−jB−ℓ)uj,ℓ,k(ξ),

where uj,ℓ,k(ξ) = |detA|−j/2 e2πiξA
−jB−ℓk. We can proceed similarly for the other elements

of the shearlet system (2.3.16). Hence, using the notation of Section 2.4.1 we can write

each element of the shearlet system, in the Fourier domain, in the form ψ̂T (ξ)uj,ℓ,k,h(ξ),

where ψ̂T (ξ) = ψ̂(ξT−1), for T ∈ TM and TM given by (2.4.22).

We have the following observation.

Proposition 9. The functions {ψ̂T : T ∈ TM} given above form a squared BAPU with

respect to the shearlet-type covering Q.

1Here the Q-moderate function w is the first axis projection, and the sequence of points xi ∈ Qi is given
by xi = (2j , 0).
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2.4. SHEARLET-TYPE DECOMPOSITION

Proof.

It will be sufficient to consider the elements in the cone region P1; a similar argument

holds for the other elements. In this case, we consider the set of transformations T(j,ℓ) =

A−jB−ℓ, (j, ℓ) ∈ M and the corresponding functions ψ̂T(j,ℓ)
(ξ) = ψ̂(ξA−jB−ℓ).

Notice that ψ̂(ξA−jB−ℓ) is supported in the set Σj,l given by (2.3.14). Also, using

equations (2.3.7), (2.3.8) and the definition of ψ itself, we have that, for ξ ∈ P1,

∑

j ≥ 0

|ℓ| ≤ 2[j/2]

|ψ̂(ξA−jB−ℓ)|2 =
∑

j ≥ 0

|ℓ| ≤ 2[j/2]

|W 2(ξA−j)| |V 2(ξA−jB−ℓ)|

=
∑

j≥0

|W 2(ξA−j)|
∑

|ℓ|≤2[j/2]

|V 2(ξA−jB−ℓ)| = 1 .

A direct computations shows that, for p ∈ [0,∞] and T ∈ GL2(R),

‖ψT ‖p = |detT |1−
1
p ‖ψ‖p.

Hence,

‖ψT(j,ℓ)
‖p = |detA|j(1−

1
p ) ‖ψ‖p = 2

3j
2 (1−

1
p ) ‖ψ‖p,

and we observe that, whenever we consider 0 ≤ p ≤ 1, this quantity is uniformly bounded

for all j, ℓ. In other words, ψ̂(D) is a bounded operator on Lp(R2) for 0 < p ≤ 1.

The result presented above shows that the family of shearlets {ψ̃µ : µ ∈M} is a system

of form (2.2.3). Hence, thanks to Proposition 4, we have that

‖f‖
Sβ
p,q

≈



∑

j,ℓ,d

2jq(β+
3
2
( 1
2
− 1

p
))


∑

k∈Z2

|〈f, ψ(d)
j,ℓ,k〉|p




q/p



1/q

.
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2.4. SHEARLET-TYPE DECOMPOSITION

2.4.4 Embedding results

As mentioned at the end of Sec. 2.2, the dyadic covering of the Fourier space is associated

with the Besov spaces. In dimensions D = 2, let us consider the dyadic partition of the

Fourier plane into the Cartesian coronae R̂
2 =

⋃
j∈ZCj, where

Cj = [−2j+1, 2j+1]2 \ [−2j , 2j ]2. (2.4.23)

It is intuitive that the shearlet-type covering can be considered as refinement of the dyadic

covering of R2, suggesting the existence of a close relationship between Besov spaces and

shearlet smoothness spaces. Indeed, we have the following observation which is similar to

Lemma 7.4 in [34].

Proposition 10. For 0 < p ≤ ∞, 0 < q <∞ and β ∈ R we have

B
β+ 1

2q
p,q (R2) →֒ Sβ

p,q(R
2).

Likewise:

Sβ−s
p,q (R2) →֒ Bβ

p,q(R
2),

where s = 1
2 (max(1, 1/p) −min(1, 1/q)).

Proof. Let {φj,ℓ} be a BAPU corresponding to the shearlet-type covering TM given

in Proposition 7, and Ω = {ωj}j∈N be a partition of unity with support on the dyadic

frequency bands (2.4.23), satisfying

‖f‖
Bβ

p,q
≈


∑

j∈N

(2βj ‖ωj(D) f‖p)q



1/q

.

By the properties of the shearlet-like covering, it is clear that we can choose Ω such that

supp (φj,ℓ) ⊂ supp (ω̃j), ℓ ∈ Lj, and supp (ωj) ⊂ ∪ℓ∈Lj
supp (φ̃j,l),
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2.4. SHEARLET-TYPE DECOMPOSITION

for all j ∈ N, where Lj = {ℓ : −2⌊j/2⌋ ≤ ℓ ≤ 2⌊j/2⌋}. Observe that the cardinality of Lj is

2 (2⌊j/2⌋+1 +1) (recall that there are 2 sets of shearlets: horizontal and vertical). Thus, for

each level j there are about C 2j/2 trapezoids in the covering of {φj,l}, for some constant

C > 0. It follows that:

∑

j∈N

∑

ℓ∈Lj

2βqj ‖φj,ℓ(D) f‖qp =
∑

j∈N

∑

ℓ∈Lj

2βqj ‖φj,ℓ(D) ω̃j(D) f‖qp

≤ C
∑

j∈N

∑

ℓ∈Lj

2βqj ‖ω̃j(D) f‖qp

≤ C
∑

j∈N

2j/2 2βqj ‖ω̃j(D) f‖qp.

Using a similar calculation, for p ≥ 1 and q < 1 we have:

∑

j∈N

(2βj ‖ωj(D) f‖p)q =
∑

j∈N


2βj ‖ωj(D)

∑

l∈Lj

φ̃j,ℓ(D) f‖p




q

≤ C
∑

j∈N


2βj ‖

∑

ℓ∈Lj

φ̃j,ℓ(D) f‖p




q

≤ C
∑

j∈N


2βj

∑

ℓ∈Lj

‖φ̃j,ℓ(D) f‖p




q

≤ C
∑

j∈N

∑

ℓ∈Lj

(
2βj ‖φ̃j,ℓ(D) f‖p

)q
.

The other cases follow similarly by using Hölder inequality and the bound on the sums

over ℓ.

2.4.5 Equivalence with curvelet spaces

As mentioned in the introduction, curvelets provide an approach alternative to shearlets

for the construction of sparse multidimensional representations. Using the same approach

adopted in this work, a notion of curvelet spaces is introduced in [34] which is associated
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2.4. SHEARLET-TYPE DECOMPOSITION

with a structured family of affine transformations including rotations and dilations. We

can show that the shearlet smoothness spaces defined in Section 2.4.3 are equivalent the

curvelet smoothness spaces with equivalent norm.

In order to state our result, let us recall the definition of curvelet covering in dimen-

sion two. This is defined as the collection of the sets
{
Sj,l := {(ρ, θ) ∈ R

∗ × R : 2j−3 ≤ ρ ≤ 2j−2, θ ∈ [l 2π

2[j/2]
, (l + 1) 2π

2[j/2]
]} , j ∈ N, l = 0, . . . , 2[j/2] − 1

}
∪

∪
{
S0 := C(0,0)(1/8)

}
,

where C(0,0)(1/8) is the circumference of radium 1/8 centered in (0, 0). This covering can

be obtained from the family of affine transformations

TC := {Dj,l : j ∈ N, l = 0, . . . , 2[j/2] − 1} ∪ {D0}

acting on S0,0, where Dj,l is the affine transformation that brings the element (ρ, θ) into

the element (ρ, θ)diag(2j , 2−[j/2]) + cj,l, with cj,l = (0, l 2π
2[j/2]

) and D0 denoting the affine

transformation that maps S0 in S1,0. In fact, {Dj,lS0,0 : j ∈ N, l = 0, . . . , 2[j/2] − 1} ∪

{D0S̃1,0} is a covering for R2. By construction, the set S0,0 is compactly contained in S̃0,0,

which is also a covering of R2. Thus we have an admissible structured covering of R2.

As in [34], the curvelet spaces are defined as the decomposition spaces which are associ-

ated with them curvelet-type covering of R2. We can now state the following observation.

Proposition 11. The shearlet and curvelet spaces are identical as decomposition space

with equivalent norms.

Proof. By Theorem 1 it is sufficient to show that the curvelet-type covering and the

shearlet-type covering are equivalent. For that, we need to show that each trapezoid of the

form Qj,ℓ = QBℓAj intersects a finite number of curvelet type tiles and, vice versa, that
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2.4. SHEARLET-TYPE DECOMPOSITION

each set Sj,l is covered by a finite number of shearlet type tiles. As usual, owing to the

symmetry of the construction, it is sufficient to consider the cone-shaped region P1.

Figure 2.2: Equivalence of shearlet and curvelet coverings.

As illustrated in Figure 2.2, any set Sj,l, at level j, extends horizontally from the value

cos(θ1)2
j−1 ≤ 2j−1 (i.e., the ξ1-coordinate of the point B in the figure) up to cos(θ2)2

j−2 ≥

2j−2 cos(π/4) = 2j−3+1/2 (i.e., the ξ1-coordinate of the point D in the figure). Hence, to

cover this curvelet-type tile, we need shearlet-type tiles associated with scale parameters

ranging from j−1 to j (so that the ξ1 axis is covered between 2j−3 and 2j−1). Next, observe

that if a generic angle θ ∈ [0, π/4] is split into two equal size angles θ1 = θ/2, the following

inequality is satisfied: 1/2 < tan(θ)− tan(θ1) < 3/4. As we repeat the subdivision of the

angle into equal size angles we use same observations so that ∀j ≥ 0, N = 1, . . . , 2j/2 − 1,

we have that

(1/2)[j/2] ≤
[
tan(N

2π

2[j/2]
)− tan((N − 1)

2π

2[j/2]
)

]
< (3/4)[j/2] ≤

(
2

4

)[j/2]

= 2−[j/2] ≤ 2−j/2+1 .

We can now estimate the number of shearlet-type tiles needed to cover a given curvelet-type
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2.4. SHEARLET-TYPE DECOMPOSITION

tile. By the above observation, we have that

2j−1

[
tan(N

2π

2[j/2]
)− tan((N − 1)

2π

2[j/2]
)

]
< 2j−12−j/2+1 = 2j/2 .

This implies that, for ξ1 ∈ [2j−2, 2j−1], we need less than [ 2j/2

2j/2−1 ] + 2 ≤ 4 shearlet-type

tiles to cover the curvelet-type tile Sj,l. Similarly, for ξ1 ∈ [2j−3, 2j−2], we need less than

[2
j/2−3/2

2j/2−3/2 ] + 2 ≤ 3 shearlet type tiles to cover Sj,l. Finally, since the boundary of the set

Sj,k contains points with ξ1 = 2j−1, we include two more shearlet-type tiles to cover those

points. In conclusion, we need 9 shearlet-type tiles to cover the set Sj,l.

Vice versa, the argument is similar. A fixed shearlet-type tile Qj,ℓ is supported in the

strip-domain ξ1 ∈ [2j−2, 2j−1], and has left height 2j/2−1 and right height 2j/2. Inside

the corona 2j−2 ≤ |ξ| ≤ 2j−1 there are less than 2[ 2j/2−1

2j−12−j/2 ] + 2 = 4 curvelet-type tiles

intersecting Qj,ℓ. In fact, we have that

2j−1[tan(N
2π

2[j/2]
)− tan((N − 1)

2π

2[j/2]
)] ≥ 2j−1(1/2)[j/2] ≥ 2j/2−1 .

Using the same argument, we have that inside the corona 2j−1 ≤ |ξ| ≤ 2j at most

2[ 2j/2

2j2−[(j+1)/2] ] + 2 ≥ 2[ 2j/2

2j2−(j+1)/2 ] + 2 = 4 curvelet-type tiles intersect the set Qj,ℓ. Fi-

nally, the trapezoid Qj,ℓ can intersect the corona 2j−3 ≤ |ξ| ≤ 2j−2 at most in one point,

so it is sufficient to include at most 2 additional curvelet-type tiles. In conclusion, we need

4 + 4 + 2 = 10 curvelet-type tiles to cover one fixed shearlet-type tile.
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Chapter 3
3D Shearlet Representations

The shearlets were originally introduced in [1, 2] within a larger class of affine-like systems

called wavelets with composite dilations. Additionally, unlike curvelets and other direc-

tional systems recently introduced in the literature, the elements of the shearlet system

form an affine-like system whose elements are generated from the action of translation and

dilation operators on a finite set of generators. This property provides additional simplicity

of construction and a connection with the theory of square integrable group representations

of the affine group [39, 48]. The shearlet approach provides a general method for the con-

struction of function systems ranging at various scales, locations and orientations according

to various orthogonal transformations controlled by shearing matrices. 3D shearlets are

particularly useful in video denoising and the processing of many types of scientific data,

such as biological data, where it is important to process data in native resolution.
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3.1. SHEARLET IN 3D
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Figure 3.1: From left to right, the figure illustrates the pyramidal regions P1, P2, and P3

in the frequency space R̂
3.

3.1 Shearlet in 3D

In dimension D = 3, a shearlet system is obtained by appropriately combining 3 systems

of functions associated with the pyramidal regions

P1 =

{
(ξ1, ξ2, ξ3) ∈ R

3 : |ξ2
ξ1
| ≤ 1, |ξ3

ξ1
| ≤ 1

}
,

P2 =

{
(ξ1, ξ2, ξ3) ∈ R

3 : |ξ1
ξ2
| < 1, |ξ3

ξ2
| ≤ 1

}
,

P3 =

{
(ξ1, ξ2, ξ3) ∈ R

3 : |ξ1
ξ3
| < 1, |ξ2

ξ3
| < 1

}
,

in which the Fourier space R̂
3 is partitioned (see Fig. 3.1).

To define such systems, let φ be a C∞ univariate function such that 0 ≤ φ̂ ≤ 1, φ̂ = 1

on [− 1
16 ,

1
16 ] and φ̂ = 0 outside the interval [−1

8 ,
1
8 ]. That is, φ is the scaling function of a

Meyer wavelet, rescaled so that its frequency support is contained the interval [−1
8 ,

1
8 ]. For

ξ = (ξ1, ξ2, ξ3) ∈ R̂
3, define

Φ̂(ξ) = Φ̂(ξ1, ξ2, ξ3) = φ̂(ξ1) φ̂(ξ2) φ̂(ξ3) (3.1.1)
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3.1. SHEARLET IN 3D

and let W (ξ) =

√
Φ̂2(2−2ξ)− Φ̂2(ξ). It follows that

Φ̂2(ξ) +
∑

j≥0

W 2(2−2jξ) = 1 for ξ ∈ R
3. (3.1.2)

Notice that each function Wj =W (2−2j ·), j ≥ 0, is supported inside the Cartesian corona

[−22j−1, 22j−1]3 \ [−22j−4, 22j−4]3 ⊂ R̂
3,

and the functions W 2
j , j ≥ 0, produce a smooth tiling of R̂3. Next, let V ∈ C∞(R) be such

that suppV ⊂ [−1, 1] and

|V (u− 1)|2 + |V (u)|2 + |V (u+ 1)|2 = 1 for |u| ≤ 1. (3.1.3)

In addition, we will assume that V (0) = 1 and that V (n)(0) = 0 for all n ≥ 1. It was shown

in [5] that there are several examples of functions satisfying these properties. It follows

from equation (3.1.3) that, for any j ≥ 0,

2j∑

m=−2j

|V (2j u−m)|2 = 1, for |u| ≤ 1. (3.1.4)

For d = 1, 2, 3, ℓ = (ℓ1, ℓ2) ∈ Z
2, the 3D shearlet systems associated with the pyramidal

regions Pd are defined as the collections

{ψ(d)
j,ℓ,k : j ≥ 0,−2j ≤ ℓ1, ℓ2 ≤ 2j , k ∈ Z

3}, (3.1.5)

where

ψ̂
(d)
j,ℓ,k(ξ) = |detA(d)|−j/2W (2−2jξ)F(d)(ξA

−j
(d)B

[−ℓ]
(d) ) e

2πiξA−j
(d)

B
[−ℓ]
(d)

k
, (3.1.6)

F(1)(ξ1, ξ2, ξ3) = V ( ξ2ξ1 )V ( ξ3ξ1 ), F(2)(ξ1, ξ2, ξ3) = V ( ξ1ξ2 )V ( ξ3ξ2 ), F(3)(ξ1, ξ2, ξ3) = V ( ξ1ξ3 )V ( ξ2ξ3 ),

the anisotropic dilation matrices A(d) are given by

A(1) =




4 0 0

0 2 0

0 0 2



, A(2) =




2 0 0

0 4 0

0 0 2



, A(3) =




2 0 0

0 2 0

0 0 4



,
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and the shear matrices are defined by

B
[ℓ]
(1) =




1 ℓ1 ℓ2

0 1 0

0 0 1



, B

[ℓ]
(2) =




1 0 0

ℓ1 1 ℓ2

0 0 1



, B

[ℓ]
(3) =




1 0 0

0 1 0

ℓ1 ℓ2 1



.

Due to the assumptions on W and v, the elements of the system of shearlets (3.1.5) are

well localized and bandlimited. In particular, the shearlets ψ̂
(1)
j,ℓ,k(ξ) can be written more

explicitly as

ψ̂
(1)
j,ℓ1,ℓ2,k

(ξ) = 2−2j W (2−2jξ)V
(
2j
ξ2
ξ1

− ℓ1

)
V
(
2j
ξ3
ξ1

− ℓ2

)
e
2πiξA−j

(1)
B

[−ℓ1,−ℓ2]

(1)
k
, (3.1.7)

showing that their supports are contained inside the trapezoidal regions

{(ξ1, ξ2, ξ3) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], |ξ2
ξ1

− ℓ12
−j | ≤ 2−j , |ξ3

ξ1
− ℓ22

−j | ≤ 2−j}.

This expression shows that these support regions become increasingly more elongated at

fine scales, due to the action of the anisotropic dilation matrices Aj
(1), with the orientations

of these regions controlled by the shearing parameters ℓ1, ℓ2. A typical support region is

illustrated in Fig. 3.2. Similar properties hold for the elements associated with the regions

P2 and P3.

A Parseval frame of shearlets for L2(R3) is obtained by using an appropriate combi-

nation of the systems of shearlets associated with the 3 pyramidal regions Pd, d = 1, 2, 3,

together with a coarse scale system, which will take care of the low frequency region. In

order to build such system in a way that all its elements are smooth in the Fourier do-

main, one has to appropriately define the elements of the shearlet systems overlapping the

boundaries of the pyramidal regions Pd in the Fourier domain.
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Figure 3.2: Frequency support of a representative shearlet function ψj,ℓ,k, inside the pyra-
midal region P1. The orientation of the support region is controlled by ℓ = (ℓ1, ℓ2); its
shape is becoming more elongated as j increases (j = 4 in this plot).

Hence, we define the 3D shearlet systems for L2(R3) as the collections

{
ψ̃−1,k : k ∈ Z

3
}⋃{

ψ̃j,ℓ,k,d : j ≥ 0, |ℓ1| < 2j , |ℓ2| ≤ 2j , k ∈ Z
3, d = 1, 2, 3

}

⋃{
ψ̃j,ℓ,k : j ≥ 0, ℓ1, ℓ2 = ±2j, k ∈ Z

3
}

(3.1.8)

consisting of:

• the coarse scale shearlets {ψ̃−1,k = Φ(· − k) : k ∈ Z
3}, where Φ is given by (3.1.1);

• the interior shearlets {ψ̃j,ℓ,k,d = ψ
(d)
j,ℓ,k : j ≥ 0, |ℓ1||ℓ2| < 2j , k ∈ Z

3, d = 1, 2, 3}, where

ψ
(d)
j,ℓ,k are given by (3.1.6);

• the boundary shearlets {ψ̃j,ℓ,k,d : j ≥ 0, |ℓ1| ≤ 2j , ℓ2 = ±2j , k ∈ Z
3, d = 1, 2, 3}.

These boundary shearlets are obtained by adding together the functions ψ
(1)
j,ℓ,k, ψ

(2)
j,ℓ,k and

ψ
(3)
j,ℓ,k, for ℓ1 = ±2j or ℓ2 = ±2j, after they have been restricted to their respective pyramidal
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regions. For example (see [19] for all cases and additional detail), when ℓ1 = ±2j, |ℓ2| < 2j ,

we define

(ψ̃j,ℓ1,ℓ2,k,1)
∧(ξ) =





2−2j W (2−2jξ)V
(
2j ξ2ξ1 − ℓ1

)
V
(
2j ξ3ξ1 − ℓ2

)
e
2πiξA−j

(1)
B

[−(ℓ1,ℓ2)]

(1)
k
, if ξ ∈ P1,

2−2j W (2−2jξ)V
(
2j ξ1ξ2 − ℓ1

)
V
(
2j ξ3ξ2 − ℓ2

)
e
2πiξA−j

(1)
B

[−(ℓ1,ℓ2)]

(1)
k
, if ξ ∈ P2;

when ℓ1, ℓ2 = ±2j, we define

(ψ̃j,ℓ1,ℓ2,k)
∧(ξ) =





2−2j W (2−2jξ)V
(
2j ξ2ξ1 − ℓ1

)
V
(
2j ξ3ξ1 − ℓ2

)
e
2πiξA−j

(1)
B

[−(ℓ1,ℓ2)]

(1)
k
, if ξ ∈ P1,

2−2j W (2−2jξ)V
(
2j ξ1ξ2 − ℓ1

)
V
(
2j ξ3ξ2 − ℓ2

)
e
2πiξA−j

(1)
B

[−(ℓ1,ℓ2)]

(1)
k
, if ξ ∈ P2,

2−2j W (2−2jξ)V
(
2j ξ1ξ3 − ℓ1

)
V
(
2j ξ2ξ3 − ℓ2

)
e
2πiξA−j

(1)
B

[−(ℓ1,ℓ2)]

(1)
k
, if ξ ∈ P3.

Notice that, thanks on the assumptions on W and V , the piecewise defined boundary

shearlet functions are smooth and compactly supported in the Fourier domain (see [16, 19]

for additional detail). In addition, the system of shearlets (3.1.8) is a Parseval frame. To

state this result, let us introduce the following compact notation to write the 3D shearlet

system (3.1.8) as

{ψ̃µ, µ ∈ M}, (3.1.9)

where M = MC ∪MI ∪MB are the indices associated with the coarse scale shearlets, the

interior shearlets and the boundary shearlets given by

• MC = {µ = (j, k) : j = −1, k ∈ Z
3};

• MI = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ 0, |ℓ1|, |ℓ2| < 2j , k ∈ Z
3, d = 1, 2, 3};

• MB = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ 0, |ℓ1| ≤ 2j , ℓ2 ± 2j , k ∈ Z
3, d = 1, 2, 3}.

Hence we have the following result whose proof is found in [19]:
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3.1. SHEARLET IN 3D

Theorem 12. The 3D system of shearlets (3.1.9) is a Parseval frame of L2(R3). That is,

for any f ∈ L2(R3),
∑

µ∈M

|〈f, ψ̃µ〉|2 = ‖f‖2.

The mapping from f ∈ L2(R3) into the elements 〈f, ψ̃µ〉, µ ∈ M, is called the 3D

shearlet transform.

As mentioned above, it is proved in [15, 16] that the 3D Parseval frame of shearlets

{ψ̃µ, µ ∈ M} achieves the essentially optimal approximation rate (1.0.1) for functions of

3 variables which are C2 regular away from discontinuities along C2 surfaces.
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Chapter 4
3D Discrete Shearlet Transform(3D DShT)

In this section, we present a digital implementation of the 3D shearlet transform introduced

above. Following essentially the same architecture as the algorithm of the 2D Discrete

Shearlet Transform in [8], this new implementation can be described as the cascade of a

multiscale decomposition, based on a version of the Laplacian pyramid filter, followed by

a stage of directional filtering. The main novelty of the 3D approach consists in the design

of the directional filtering stage, which attempts to reproduce the frequency decomposition

faithfully provided by the corresponding mathematical transform by using a method based

on the pseudo-spherical Fourier transform.

Let us start by expressing the elements of the shearlet system in a form that is more

convenient for deriving an algorithmic implementation of the shearlet transform. For ξ =

(ξ1, ξ2, ξ3) in R̂
3, j ≥ 0, and −2j ≤ ℓ1, ℓ2 ≤ 2j , we define the directional windowing

functions

U
(1)
j,ℓ (ξ) =
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=





V (2j ξ2ξ1 − ℓ1)V (2j ξ3ξ1 − ℓ2) if |ℓ1|, |ℓ2| < 2j ,

V (2j ξ2ξ1 − ℓ1)V (2j ξ3ξ1 − ℓ2)XP1(ξ) + V (2j ξ1ξ2 − ℓ1)V (2j ξ3ξ2 − ℓ2)XP2(ξ) if ℓ1 = ±2j , |ℓ2| < 2j ;

V (2j ξ2ξ1 − ℓ1)V (2j ξ3ξ1 − ℓ2)XP1(ξ) + V (2j ξ1ξ2 − ℓ1)V (2j ξ3ξ2 − ℓ2)XP2(ξ)

+V (2j ξ1ξ3 − ℓ1)V (2j ξ2ξ3 − ℓ2)XP3(ξ) if ℓ1, ℓ2 = ±2j .

Notice that only the elements U
(1)
j,ℓ with indices |ℓ1|, |ℓ2| < 2j are strictly contained inside

the region P1; the elements with indices ℓ1 = ±2j or ℓ2 = ±2j are supported across P1 and

some other pyramidal region. However, it is convenient to associate this family of functions

with the index 1. We define the functions U
(2)
j,ℓ and U

(3)
j,ℓ associated with the pyramidal

regions P2 and P3 in a similar way 1. Using this notation, we can write each element of

the 3D shearlet system as

ψ̂
(d)
j,ℓ,k = 2−2j W (2−2jξ)U

(d)
j,ℓ (ξ) e

−2πiξA−j
(d)

B
[−ℓ]
d k

.

It follows from the properties of the shearlet construction that

3∑

d=1

∑

j≥0

2j∑

ℓ1=−2j

2j∑

ℓ2=−2j

|W (2−2j(ξ)|2|U (d)
j,ℓ (ξ)|2 = 1, for |ξ1|, |ξ2|, |ξ3| ≥ 1

8 . (4.0.1)

The (fine scale) 3D shearlet transform of f ∈ L(R3) can be expressed as the mapping from

f into the shearlet coefficients

〈f, ψ(d)
j,ℓ,k〉 =

∫

R3

f̂(ξ)W (2−2jξ)U
(d)
j,ℓ (ξ) e

2πiξA−j
(d)

B
[−ℓ]
(d)

k
dξ, (4.0.2)

where j ≥ 0, ℓ = (ℓ1, ℓ2) with |ℓ1|, |ℓ2| ≤ 2j , k ∈ Z
3 and d = 1, 2, 3.

This expression shows that the shearlet transform of f , for j, ℓ, k and d fixed, can be

computed using the following steps:

1. In the frequency domain, compute the j-th subband decomposition of f as f̂j(ξ) =

f̂(ξ)W (2−2jξ).

1Notice however that they do not contain the boundary term for ℓ1, ℓ2 = ±2j , which only needs to be
included once.
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4.1. 3D DSHT ALGORITHM

2. Next (still in the frequency domain), compute the (j, ℓ, d)-th directional subband

decomposition of f as f̂j,ℓ,d(ξ) = f̂j(ξ)U
(d)
j,ℓ (ξ).

3. Compute the inverse Fourier transform. This step can be represented as a convolu-

tion of the j-th subband decomposition of f and the directional filter Ǔ
(d)
j,ℓ , that is,

〈f, ψ(d)
j,ℓ,k〉 = fj ∗ Ǔ (d)

j,ℓ (A
−j
d B−ℓ

d k).

Hence, the shearlet transform of f can be described as a cascade of a subband decomposition

with a directional filtering stage.

4.1 3D DShT algorithm

The new numerical algorithm for computing the digital values of the 3D shearlet transform,

which is called 3D DShT algorithm, will follow closely the 3 steps indicated above.

Before describing the numerical algorithm, let us recall that a digital 3D function f

is an element of ℓ2(Z3
N ), where N ∈ N, that is, it consists of a finite array of values

{f [n1, n2, n3]: n1, n2, n2 = 0, 1, 2, . . . , N − 1}. Here and in the following, we adopt the con-

vention that a bracket [·, ·, ·] denotes an array of indices whereas the standard parenthesis

(·, ·, ·) denotes a function evaluation. Given a 3D discrete function f ∈ ℓ2(Z3
N ), its Discrete

Fourier Transform is given by:

f̂ [k1, k2, k3] =
1

N
3
2

N−1∑

n1,n2,n3=0

f [n1, n2, n3] e
(−2πi(

n1
N

k1+
n2
N

k2+
n3
N

k3)),−N
2

≤ k1, k2, k3 <
N

2
.

We shall interpret the numbers f̂ [k1, k2, k3] as samples f̂ [k1, k2, k3] = f̂(k1, k2, k3) from the

trigonometric polynomial

f̂(ξ1, ξ2, ξ3) =
1

N3/2

N−1∑

n1,n2,n3=0

f [n1, n2, n3] e
(−2πi(

n1
N

ξ1+
n2
N

ξ2+
n3
N

ξ3)).
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4.1. 3D DSHT ALGORITHM

We can now proceed with the description of the implementation of the 3D DShT algo-

rithm.

First, to calculate f̂j(ξ) in the digital domain, we perform the computation in the DFT

domain as the product of the DFT of f and the DFT of the filters wj corresponding to the

bandpass functions W (2−2j ·). This step can be implemented using the Laplacian pyramid

algorithm [20], which results in the decomposition of the input signal f ∈ ℓ2(Z3
N ) into a low-

pass and high-pass components. After extensive testing, we found that a very satisfactory

performance is achieved using the modified version of the Laplacian pyramid algorithm

developed in [14]. For the first level of the decomposition, this algorithm downsamples the

low-pass output by a non-integer factor of 1.5 (upsampling by 2 followed by downsampling

by 3) along each dimension; the high-pass output is not downsampled. In the subsequent

decomposition stages, the low-pass output is downsampled by 2 along each dimension and

the high-pass output is not downsampled. Although the fractional sampling factor in the

first stage makes the algorithm slightly more redundant than the traditional Laplacian

pyramid, it was found that the added redundancy is very useful in reducing the frequency

domain aliasing (see [14] for more detail).

Next, one possible approach for computing the directional components f̂j,ℓ,d of f̂ consists

in resampling the j-th subband component of f into a pseudo-spherical grid and applying

a two-dimensional band-pass filter. Even though this is not the approach we will use for

our numerical experiments, the method that we will use is conceptually derived from this

one.

Recall that the pseudo-spherical grid is the 3D extension of the 2D pseudo-polar grid

and is parameterized by the planes going through the origin and their slopes. That is, the
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4.1. 3D DSHT ALGORITHM

pseudo-spherical coordinates (u, v, w) ∈ R
3 are given by

(u, v, w) =





(ξ1,
ξ2
ξ1
, ξ3ξ1 ) if (ξ1, ξ2, ξ3) ∈ DC1 ,

(ξ2,
ξ1
ξ2
, ξ3ξ2 ) if (ξ1, ξ2, ξ3) ∈ DC2 ,

(ξ3,
ξ1
ξ3
, ξ2ξ3 ) if (ξ1, ξ2, ξ3) ∈ DC3 .

Using this change of variables, it follows that f̂j,ℓ,d(ξ) can be written as

ĝj(u, v, w)U
(d)(u, 2jv − ℓ1, 2

jw − ℓ2), (4.1.3)

where ĝj(u, v, w) is the function f̂j(ξ), after the change of variables, and U (d) = U
(d)
0,0 .

Notice that U (d) does not depend on u. For example, when d = 1, the expression (4.1.3)

can be written as

ĝj(u, v, w)V (2jv − ℓ1)V (2jw − ℓ2),

showing that the different directional components of f̂j are obtained by simply translating

the window function V in the pseudo-spherical domain. In fact, this is a direct consequence

of using shearing matrices to control orientations and is its main advantage with respect to

rotations. As a result, the discrete samples gj [n1, n2, n3] = gj(n1, n2, n3) are the values of

the DFT of fj[n1, n2, n3] on the pseudo-spherical grid and they can be computed by direct

reassignment or by adapting the pseudo-polar DFT algorithm [21, 22] to the 3D setting.

The 3D pseudo-polar DFT evaluates the Fourier transform of the data on the pseudo-polar

grid and is formally defined as

P̂1(f)(k, l, j) := f̂(k,− 2l

N
k,−2

2j

N
k),

P̂2(f)(k, l, j) := f̂(− 2l

N
k, k,−2

2j

N
k),

P̂3(f)(k, l, j) := f̂(− 2l

N
k,−2

2j

N
k, k),

for k = −2N
2 , · · · , 2N2 and l, k = −N

2 , · · · , N2 .
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4.1. 3D DSHT ALGORITHM

Let {u(d)j,ℓ1,ℓ2
[n2, n3] : n2, n3 ∈ Z} be the sequence whose DFT gives the discrete samples

of the window functions U (d)(2jv − ℓ1, 2
jw − ℓ2). For example, when d = 1, we have that

u
(1)
j,ℓ1,ℓ2

[k2, k3] = V (2jk2 − ℓ1)V (2jk3 − ℓ2). Then, for fixed k1 ∈ Z, we have

F2

(
F−1
2 (ĝj) ∗ ǔ(d)j,ℓ1,ℓ2

[n2, n3]
)
[k1, k2, k3] = ĝj[k1, k2, k3]u

(d)
j,ℓ1,ℓ2

[k2, k3] (4.1.4)

where F2 is the two dimensional DFT, defined as

F2(f)[k2, k3] =
1

N

N−1∑

n2,n3=0

f [n2, n3] e
(−2πi(

n2
N

k2+
n3
N

k3)), −N
2

≤ k2, k3 <
N

2
. (4.1.5)

Equation (4.1.4) gives the algorithmic procedure for computing the discrete samples of the

right hand side of (4.1.3). That is, the 3D shearlet coefficients (4.0.2) can be calculated from

equation (4.1.4) by computing the inverse pseudo-spherical DFT by directly re-assembling

the Cartesian sampled values and applying the inverse 3-dimensional DFT.

In fact, the last observation suggests an alternative approach for computing the di-

rectional components f̂j,ℓ,d of f̂ . This approach was found to perform better and it was

used to produce the numerical results below. The main idea consists in mapping the filters

from the pseudo-spherical domain back into the Cartesian domain and then performing a

convolution with band-passed data, similar to one of the methods used for the 2D setting

in [8]. Specifically if φP is the mapping from Cartesian domain into the pseudo-spherical

domain then the 3D shearlet coefficients in the Fourier domain can be expressed as

φ−1
P

(
ĝj [k1, k2, k3]u

(d)
j,ℓ1,ℓ2

[k2, k3]
)
.

Following the approach in [8], this can be expressed as

φ−1
P (ĝj [k1, k2, k3]) φ

−1
P

(
δ̂P [k1, k2, k3]u

(d)
j,ℓ1,ℓ2

[k2, k3]
)
,

where δ̂P is the DFT of the (discrete) delta distribution in the pseudo-spherical grid. Thus

the 3D discrete shearlet coefficients in the Fourier domain can be expressed as

f̂j[k1, k2, k3] ĥ
(d)
j,ℓ1,ℓ2

[k1, k2, k3],
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where ĥ
(d)
j,ℓ1,ℓ2

[k1, k2, k3] = φ−1
P

(
δ̂P [k1, k2, k3]u

(d)
j,ℓ1,ℓ2

[k2, k3]
)
. Notice that the new filters

h
(d)
j,ℓ1,ℓ2

are not obtained by a simple change of variables, but by applying a resampling

which converts the pseudo-spherical grid to a Cartesian grid. This resampling is done

using a linear map where possibly several points from the polar grid are mapped to the

same point on the rectangular grid. Although these filters are not compactly supported,

they can be implemented with a matrix representation that is smaller than the size of the

data f , hence allowing to implement the computation of the 3D DShT using a convolution

in space domain. One benefit of this approach is that one does not need to resample the

DFT of the data into a pseudo-spherical grid, as required using the first method.

Since the computational effort is essentially determined by the FFT which is used to

transform data and compute convolutions, it follows that the 3D DShT algorithm runs in

O(N3 log(N)) operations.

4.2 Implementation issues

In principle, for the implementation of the 3D DShT algorithm one can choose any collec-

tion of filters U
(d)
j,ℓ as long as the tiling condition (4.0.1) is satisfied. The simplest solution

is to choose functions U
(d)
j,ℓ which are characteristic functions of appropriate trapezoidal

regions in the frequency domain, but this type of filters are poorly localized in space do-

main. To be faithful to the continuous construction and also to ensure well localized filters

in the space domain, our implementation uses filters of Meyer type. A similar choice was

also found effective in [8] for the 2D setting. As mentioned above, by taking the inverse

DFT, it is possible to implement these filters using matrix representations of size L3 with

L ≪ N , where N3 is the data size. In the numerical experiments considered below, we

have chosen L = 24, which was found to be a very good compromise between localization
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and computation times. Finally, for the number of directional bands, our algorithm allows

us to choose a different number of directional bands in each pyramidal region. The theory

prescribes to choose a number n of directional bands which, in each pyramidal region,

grows like 22j , hence giving n = 4, 16, 64, . . . directional bands, as the scale is becoming

finer. As will discuss below, we found it convenient to slightly modify this canonical choice

in the video denoising applications.

As a first illustration of the new 3D shearlet decomposition, we have run the 3D DShT

algorithm using the Tempete video, of size 1923 voxels. Fig. 4.1 shows some representative

2D frames reconstructed from the 3-level 3D DShT decomposition of the Tempete video

sequence. In particular, the figure shows a frame reconstructed from the approximation

levels and some frames reconstructed from some representative directional subbands. The

reconstruction from the directional subbands reported in this figure indicates that the

shearlet decomposition is very sensitive to directional features.

4.3 Correlation with theory

The numerical implementation of the 3D shearlet transform attempts to faithfully repro-

duce the frequency footprint associated with the 3D shearlet decomposition. Hence, it is

natural to ask how this numerical implementation behaves with respect to the theoretical

estimate (1.0.1).

To demonstrate that the approximation properties predicted by the theory are reflected

in the approximation properties of the digital implementation, we have run some numerical

experiments using a piece-wise constant radial function f with jump discontinuities of the
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4.3. CORRELATION WITH THEORY

form

f(x, y, z) = ci if ri ≤ x2 + y2 + z2 < ri+1 for given vector c = (ci) ∈ Rn, r = (ri) ∈ R
n+1.

For example, by choosing r = (1.0, 9.6, 18.3, 26.9, 35.5, 44.2, 52.8, 61.5, 70.1, 78.7, 87.4, 96.0),

and c = (50, 0, 120, 35, 100, 180, 5, 200, 20, 220, 1, 240), we found that the error ‖f − fSM‖

decays like M−0.6192 for our test image, as compared to a theoretical rate which is of the

order (logM)M−0.5. Here fM is the nonlinear approximation of f obtained using the M

largest shearlet coefficient in its 3D DShT expansion. The results of this test are plotted

in Fig. 4.2 showing the nonlinear approximation error ‖f − fSM‖ and comparing this plot

to the theoretical curve (logM)M−0.5.
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Original Approximation

1 level Detail. Band (ℓ1 = 4, ℓ2 = 4) 2 level Detail. Band(ℓ1 = 2, ℓ2 = 2) 3 rd level Detail. Band (ℓ1 = 2, ℓ2 = 2)

Figure 4.1: 3D DShT Decomposition of Tempete movie. The figure illustrates some rep-
resentative 2D frames reconstructed from the 3D DShT decomposition of the movie. All
detail frames are extracted from directional subbands contained in the pyramidal region
DC1 . Detail frames, which show highly directional features, are shown in inverted gray
scale.
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Figure 4.2: Analysis of the nonlinear approximation error using the 3D DShT algorithm. (a) Cross
section of the piecewise constant radial function f (on R

3). (b) Approximation error ‖f − fM‖2.
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Chapter 5
Application and Numerical Experiments

As in the 2D setting, the ability of the 3D shearlet transform to deal with geometric

information efficiently and its sparsity properties have the potential to produce significant

improvement in many 3D data processing applications. As examples of these applications,

we have developed algorithms for video denoising, enhancement, and mixed dictionary for

denoising which are based on the new 3D Discrete Shearlet Tranform presented above.

5.1 Video denoising

The denoising of video is highly desirable for enhanced perceptibility, better compression

and pattern recognition applications. While noise can have different distributions like

Poisson, Laplacian, or Gaussian distribution, we only considered the situation of zero-mean

additive white Gaussian noise, which offers a good model for many practical situations.

Hence, we assume that, for a given video f , we observe

y = f + n,
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5.1. VIDEO DENOISING

where n is Gaussian white noise with zero mean and standard deviation σ.

It is well known that the ability to sparsely represent data is very useful in decorrelating

the signal from the noise. This notion has been precisely formalized in the classical wavelet

shrinkage approach by Donoho and Johnstone [23, 24], which has led to many successful

denoising algorithms. In the following, we adapt this idea to design For the choice of the

threshold parameter, we adopt the same criterion which was found successful in the 2D

setting, based on the classical Bayes Shrink method [25]. This consists in choosing

Tj,ℓ =
σ2

σj,ℓ
,

where σj,ℓ is the standard deviation of the shearlet coefficients in the (j, ℓ)-th subband.

Although hard thresholding is a rather crude form of thresholding and more sophisticated

methods are available, still this method is a good indication of the potential of a transform

in denoising applications. Also notice that hard thresholding performs better when dealing

with data where it is important to preserve edges and sharp discontinuities (cf. [10, 26]).

For the 3D discrete shearlet decomposition, in all our tests we have applied a 3-level

decomposition according to the algorithm described above. For the number of directional

bands, we have chosen n = 16, 16, 64 (from the coarsest to the finest level) in each of the

pyramidal region. Even though this does not exactly respect the rule canonical choice

(n = 4, 16, 64) prescribed by the continuous model, we found that increasing the number

of directional subbands at the coarser level produces some improvement in the denoising

performance. Recall that, as indicated above, in our numerical implementation, down-

sampling occurs only at the bandpass level, and there is no anisotropic down-sampling.

Thus, the numerical implementation of the 3D DShT which we found most effective in the

denoising algorithm is highly redundant. Specifically, for data set of size N3, a 3-level 3D

DShT decomposition produces 3∗
(
64 ∗N3 + 16 ∗ (23N)3 + 16 ∗ (26N)3

)
+(26N)3 ≈ 208∗N3
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5.1. VIDEO DENOISING

coefficients. As we will see below (Table II), this requires a higher computational cost than

less redundant algorithms.

The 3D shearlet-based thresholding algorithm was tested on 3 video sequences, called

mobile, coastguard, and tempete, for various values of the standard deviation σ of the noise

(values σ = 30, 40, 50 were considered). All these video sequences, which have been resized

to 192×192×192, can be downloaded from the website http://www.cipr.rpi.edu. For a

baseline comparison, we tested the performance of the shearlet-based denoising algorithm

(denoted by 3DSHEAR) against the following state-of-the-art algorithms: 3D Curvelets

(denoted by 3DCURV, cf. [13]), Undecimated Discrete Wavelet Transform (denoted by

UDWT, based on symlet of length 16), Dual Tree Wavelet Transform (denoted by DTWT,

cf. [27]) and Surfacelets (denoted by SURF, cf. [14]). We also compared against the 2D

discrete shearlet transform (denoted by 2DSHEAR), which was applied frame by frame, in

order to illustrate the benefit of using a 3D transform, rather than a 2D transform acting

on each frame.

As a performance measure, we used the standard peak signal-to-noise ratio (PSNR),

measured in decibel(dB), which is defined by

PSNR = 20 log10
255N

‖f − f̃‖F

,

where ‖·‖F is the Frobenius norm and f is an array of size N ×N ×N.

The performance of the shearlet-based denoising algorithm 3DSHEAR relative to the

other algorithms is shown in Table I, with the numbers in bold indicating the best perfor-

mance. Notice that performance values for the algorithms 3DCURV, UDWT, and DTWT

are taken from [14].

The data in Table I show that the 3D Discrete Shearlet Denoising Algorithm 3DSHEAR
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Original frame Noisy frame

3D SHEAR SURF

2D SHEAR DWT

Figure 5.1: Video Denoising of Mobile Video Sequence. The figure compares the denoising
performance of the denoising algorithm based on the 3D DShT, denoted as 3DSHEAR, on a
representative frame of the video sequence Mobile against various video denoising routines.
Starting from the top left: original frame, noisy frame (PSNR=18.62 dB, corresponding to
σ = 30), denoised frame using 3DSHEAR (PSNR=28.68 dB), SURF (PSNR=28.39 dB),
2DSHEAR (PSNR=25.97 dB), and DWT (PSNR=24.93 dB).
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Table 5.1: Table I: Video denoising performance using different video sequences.

PSNR (dB) Mobile Coastguard Tempete

Noise σ 30 40 50 30 40 50 30 40 50

3DCURV 23.54 23.19 22.86 25.05 24.64 24.29

UDWT 24.02 22.99 22.23 25.95 24.95 24.2

DTWT 24.56 23.43 22.58 26.06 25.01 24.22

SURF 28.39 27.18 26.27 26.82 25.87 25.15 24.2 23.26 22.61

3DSHEAR 28.68 27.15 25.97 27.36 26.10 25.12 25.24 23.97 22.81

2DSHEAR 25.97 24.40 23.20 25.20 23.82 22.74 22.89 21.63 20.75

DWT 24.93 23.94 23.03 24.34 23.44 22.57 22.09 21.5 20.92

is highly competitive against both traditional and other state-of-the-art video denoising al-

gorithm. In particular, 3DSHEAR consistently outperforms the curvelet-based routine

3DCURV, the wavelet-based routines UDWT and DTWT and the 2D shearlet-based al-

gorithm. 3DSHEAR also outperforms or is essentially equivalent to the surfacelets-based

denoising algorithm in all cases we tested, except for one case, namely the mobile video

sequence for low noise, with standard deviation σ = 50. Notice that for higher noise level

3DSHEAR always provide the best performance in all tests that were run.

Table 5.2: Table II: Comparison of running times for different 3D transforms.

Algorithm Running time (data size: 1923)

SURF 34 sec

3DSHEAR 263 sec

2DSHEAR 154 sec

3D DWT 7.5 sec

The superior performance of the 3DSHEAR algorithm depends in part on its excellent

directional selectivity; but it also benefits from the redundancy of the transform, since high

redundancy usually produces a better performance in denoising applications. The drawback
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is that the higher redundancy requires higher computational effort, which explains the

worse performance of 3DSHEAR with respect to 3D DWT and SURF in terms of running

times. This is reported in the Table II, which compares the running times for these different

3D transforms, applied to a data set of size 1933; all routines were run using the same system

which is based on an Intel CPU 2.93GHz.

In Fig. 5.1 and 5.2, we illustrate the performance of the various video denoising routines

on a typical frame extracted from the denoised video sequences Mobile and Coast Guard.

Although this type of comparison is more subjective in nature, the figures show that the

visual quality of the shearlet-denoised frame is also superior.

5.2 Video enhancement

In several imaging applications, it is important to enhance the visual appearance of certain

features that carry useful information. For example, in ultrasound medical images weak

edges are usually related to important physical or structural properties so that it is desirable

to make weak edges more prominent while keeping the strong features intact. A classical

application is mammography, where image enhancement can be useful to improve the

visibility of small tumors for early detection [28].

Several techniques have been proposed to enhance the contrast level of an image. For

example, since weak edges are mostly associated with the high frequency components of an

image, many traditional enhancement methods consist in amplifying the highpass subbands

of an image which has been decomposed into different frequency subbands. Unfortunately,

these methods are not very efficient to preserve the geometrical features of the data and,

as a result, when they are applied to enhance weak edges, they also amplify noise and
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Original frame Noisy frame

3D SHEAR SURF

2D SHEAR DWT

Figure 5.2: Video Denoising of Coast Guard Video Sequence. The figure illustrates the de-
noising performance on a representative frame of the video sequence using various denoising
routines. Starting from the top left: original frame, noisy frame (PSNR=18.62 dB), de-
noised frame using 3DSHEAR (PSNR=27.36 dB), SURF (PSNR=26.82 dB), 2DSHEAR
(PSNR=25.20 dB), DWT (PSNR=24.34 dB).
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produce visual artifacts. By contrast, multiscale techniques are much more effective in

enhancing weak edges without blowing up the noise [28, 29]. The advantage of the shearlet

framework, in particular, is to provide a unique ability to control the geometric informa-

tion associated with multidimensional data. Thus, the shearlet transform appears to be

particularly promising as a tool for selectively enhancing the component of the data asso-

ciated with the weak edges, as was recently observed in [30] for 2D images (see also [31, 32]

for other results concerning the application of directional multiscale transforms in image

enhancement). In this section, we present an algorithm which extends this approach to the

3D setting and applies the 3D Discrete Shearlet Transform to decompose data into several

directional subbands and to selectively amplify some of the shearlet coefficients.

In fact, by the properties of the shearlet decomposition, the shearlet coefficients which

are large in magnitude, at fine scales, are closely associated with the singularities of the

data. More precisely, strong surfaces of discontinuity will produce large or significant

coefficients in all directional subbands, whereas weak surfaces of discontinuity will produce

large or significant coefficients only in very few directional subbands. On the other hand,

no significantly large coefficients are produced by the noise (provided, of course, SNR is

“reasonable”).

Based on these observations, each voxel k of a data set f ∈ ℓ2(Z3
N ) can be classified into

one of three distinct categories by analysing the magnitude of the corresponding shearlet

coefficients 〈f, ψ(d)
j,ℓ,k〉. Notice that heuristic observations have shown that it is sufficient to

consider only the shearlet coefficients at the finest scale, so that the parameter j is fixed

in the procedure described below. Hence, in our enhancement algorithm, for each voxel

k, we compute the average and the maximum of the magnitude of the shearlet coefficients

taken over all the directional subbands, which we denoted by the functions mean and

max, respectively; next, we compute the enhanced coefficient as follows (cf. a similar
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Noisy frame (PSNR 28.16) Wavelet-based enhancement Shearlet-based enhancement

Noisy frame (PSNR 28.16) Wavelet-based enhancement Shearlet-based enhancement

Figure 5.3: Video Enhancement. Representative frames from the Barbara video sequence
(above) and from the Anterior ultrasound video sequence (below) illustrate the performance
of the shearlet-based enhancement algorithm. This is compared against a similar wavelet-
based enhancement algorithm.

enhancement is defined in [33]):

E(x) =





x if mean(x) ≥ c σ,

max{( cσ|x|)p, 1} x if mean(x) < cσ& max(x) ≥ c σ,

0 if mean(x) < cσ& max(x) < cσ,

where x is the input coefficient, σ is the standard deviation of the noise in the subband

associated with the finest resolution level, 0 < p < 1 is a parameter controlling the portion

of edges to be treated as considered “weak edges” and c is a tuning parameter, determining

the enhancement factor (c ∈ [1, 5]).

To illustrate its performance, the shearlet-based enhancement algorithm was tested to
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enhance two noisy video sequences, the Barbara movie, obtained from the Barbara pic-

ture by moving a window frame around the picture) and the Anterior ultrasound movie,

showing an ultrasound movie sequence of the Anterior triangle, a muscular region near

the neck. In both cases, the noise is additive white Gaussian noise with zero mean and

standard deviation σ = 10. Also, in both case the enhancement algorithm was run using

parameters c = 1, p = 1, and the performance of the algorithm was compared against an un-

decimated wavelet-based enhancement routine, which uses the same enhancement function

E. Representative 2D frames from the enhanced video sequences are illustrated in Fig-

ure 5.3, showing that the shearlet-based routine performs significantly better both in terms

of contrast improvement and noise suppression. For comparison with the shearlet-based

enhancement, we also run a similar routine based on the surfacelets, but its performance

was not better than the wavelet-based routine. This is due in most part to the fact that

the surfacelets algorithm has low redundancy, unlike the shearlet-based and wavelet-based

algorithms.

Since the performance of the enhancement algorithm is only partially illustrated by the

video frames in Figure 5.3, to better convince the reader, the complete enhancement videos

are available at

http://www.math.uh.edu/∼dlabate/software.

5.3 Denoising with mixed dictionary

There is no single representation which is optimal for all the feature in a natural data set.

It is well known that wavelets are good to sparsify isolated singularities and that the cosine

transform is good for globally oscillating texture. Hence basic denoising via thresholding

using a single dictionary is not the right approach for denoising algorithms . In literature
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this idea has been improved further by requiring not to use fix dictionary but to learn one

which sparsify a set of images known as finding sparse dictionary factorization. In current

work we restrict our attention to two fixed dictionaries scenario where data is superposition

of two component.

We will start with single dictionary scenario under sparsity assumption before proceed-

ing toward mixed dictionary denoising. To be more precise, given noisy observations

y = x+ n,

where n is zero-mean white Gaussian noise with variance σ2. The objective is to estimate

x from observation y,under the assumption that it has a sparse representation in an over-

complete dictionary (typically a frame ), i.e., x = Fα. In this case we can set up the

minimization problem

α̂ = min‖α‖0 subject to ‖y −Fα‖2 ≤ σ, (5.3.1)

where the ℓ0 norm
1 is counting the number of nonzero entries of α = (αk), that is, ‖(αk)‖0 =

#{k : αk 6= 0}. Since the algorithmic solution of (5.3.1) is NP-hard, this problem is usually

modified by relaxing ℓ0 to an ℓ1-norm, hence defining the basis pursuit denoising (BPDN)

problem [62]

α̂ = min‖α‖1 subject to ‖y −Fα‖2 ≤ σ, (5.3.2)

and leading to the estimator x̂ = Fα̂. Due to the convexity of the ℓ1 norm, there are many

ways to solve this problem rather efficiently including interior point methods and gradient

projections (cf. [63]).

When the dictionary is redundant, then the solution of minimization problem (5.3.2)

is not necessarily the solution of the classical shrinkage method. Yet, also in this case,

1This is not technically a norm, but this abuse of notation is customary in the literature.
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appropriate iterative-shrinkage algorithms have been introduced which extend the classi-

cal Donoho-Johnstone wavelet shrinkage method, starting with the algorithm introduced

by Starck, Murtagh and Bijaoui in 1995 [64] and including the celebrated algorithm of

Daubechies, Defrise, and De Mol [56].

An interesting variant of problem (5.3.2) is the situation where the data to be recovered

are known to be a superposition of several components, each one having a sparse repre-

sentation with respect to a certain dictionary. In many situations the data may contain

textured components along with piecewise smooth components. Hence, we can model x as

a superposition

x = xp + xt,

where xp and xt are the piecewise smooth component and textured component of a video,

respectively. In this situation it was shown that taking a mix dictionary approach to denoise

generally result in improved estimates with respect to the standard thresholding approach.

This approach of seperating signal into different components is known as Morphological

Component Analysis(MCA) [59]. Following the idea used in the 2D setting, discrete cosine

(DCT) representation is used for the texture component of x and a shearlet representation

for the piecewise smooth component of the data. Let xp = SHαp in shearlet dictionary SH

and xt = Dαt in DCT dictionary D. Hence x can be estimated by solving the following

optimization problem:

α̂p, α̂t = arg min
αp,αt

λ‖αp‖1 + λ‖αt‖1 + γ TV (αp) +
1

2
‖y − SHαp −Dαt‖22, (5.3.3)

where SHT and DT denote the Moore-Penrose pseudo inverse of SH and D, respectively,

and TV is the Total Variation. It is well known that shrinkage based alogorithm used

sparsity of representation for denoising. Hence a fast iterative shrinkage algorithm known

as Separable Surrogate Functionals(SSF) [56–58] is used to solve 5.3.3. Once the denoised
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components are obtained, x is estimated as x̂ = SHα̂p +Dα̂t.

5.3.1 Iterative shrinkage algorithm

Let Sλ(x) = sign(x)(|x| − λ)+ be the element-wise soft thresholding operator and H be

the undecimated Haar wavelet dictionary. Then the solution of optimization problem 5.3.3

is given by following SSF algorithm 5.4. TV correction term is replaced by the Haar

Transform as done in 2D case [58]. This is applied to smooth component to control the

ringing effect near the edge caused by oscillation of atoms in dictionary SH. Similar

adjustment was used in [59] and was motivated by observing connection between TV and

the Haar Wavelet as given in [60].

Input: x
Initialization: Initialize k = 1, α0

p = 0, α0
t = 0 and

r0 = x− SHα0
p −Dα0

t

Do:
1. Update estimate as

α̃k
p = Sλ(

1
cSHT (rk−1) + αk−1

p )

αk
p = SHTHSγ( H

TSHpα̃
k
p )

αk
t = Sλ(

1
cDT

t (r
k−1 + αk−1

t ))

2. Update the residual
rk = x− SHαk

p −Dαk
t

Until: λk = 2.1σ.
Output: α̂p = αk

p and α̂t = αk
t

Figure 5.4: Separable Surrogate Functional (SSF) iterative shrinkage algorithm to
solve 5.3.3
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5.3.2 Experiments

This section contains several numerical experiments on video denoising, based on the ap-

proach described in the previous section. The shearlet dictionary is used for smooth piece-

wise part and DCT for texture part. Parameter γ was tuned to produce lowest error. The

thresholding parameter λ decays like λ = λk during each iteration and stop the iteration

when λk = Tσ, T ≈ 2.1 [61]. Thus we stop when the residual is at noise level. As the stop

criterion require knowlege of σ, one can use the median estimator on finest scale wavelet

coefficient.

In the first experiment we use Tempete video and denoise it using the standard thresh-

olding rule for different algorithm as well as their combination with DCT. Although this

movie is not so rich in a texture component but still amalgamated Shearlet and DCT dic-

tionary, it performs very good compared to any other dictionary combination as shown in

Table 5.3. Figure 5.5 contains some denosied Tempete movie frames in a different scenario.

Table 5.3: Table III: Mix Dictionary Denoising results (PSNR) using Tempete video.

σ Noisy DWT LP shear curv shear/DCT DWT/DCT LP/DCT curv/DCT

20 22.14 22.61 23.10 25.87 22.60 27.47 24.09 24.45 25.29

30 18.62 21.10 22.04 24.63 22.27 25.61 22.38 22.61 23.02

40 16.12 20.47 21.30 23.69 22.00 24.34 21.40 21.51 21.97

In the second experiment the oil painting video is used, which is rich in texture com-

ponent as well as in a piece-wise smooth component. Clearly in this scenario Shearlet and

DCT perform very good compared to other competing approaches like Curvelet and DCT,

as shown in Table 5.4. Figure 5.6 shows typical extracted frame of denoised oil painting.
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Table 5.4: Table IV: Mix Dictionary Denoising results (PSNR) using Oil painting video.

σ Noisy DWT LP shear curv shear/DCT DWT/DCT LP/DCT curv/DCT

20 22.14 26.34 27.01 28.04 27.32 31.01 27.74 28.32 27.66

30 18.62 24.81 25.52 27.12 26.86 29.07 26.03 26.37 25.94

40 16.12 23.87 24.26 26.33 26.44 27.68 24.89 25.02 24.67

All the routines were running on a cluster of 12 Intel(R) Xeon(R) CPUS at 2.93GHz.

Most of the code was written using matlab except the 3D curvelet interface which used mex

files for calling C language based routines. Table 5.5 shows running time for a combination

of different dictionaries.

Table 5.5: Table V: Comparison of running times for different routines.

Algorithm Running time (data size: 1923)

DWT 9 sec

DWT/DCT 208 sec

LP 4 sec

LP/DCT 308 sec

Curv 23 sec

Curv/DCT 425 sec

Shear 664 sec

Shear/DCT 10769 sec
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Original frame Noisy frame

DWT DWT/DCT

LP LP/DCT
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Curvelet Curvelet/DCT

Shear Shear/DCT

Figure 5.5: Video Denoising of Tempete Video Sequence. The figure compares the denoising
performance of the denoising algorithm based on the 3D DShT, denoted as Shear, on a rep-
resentative frame of the video sequence Tempete against various video denoising routines.
Starting from the top left: original frame, noisy frame (PSNR=22.14 dB, corresponding to
σ = 20), denoised frame using DWT (PSNR= 22.16 dB), DWT/DCT (PSNR=24.09 dB),
LP (PSNR=23.10 dB), LP/DCT (PSNR=24.45 dB), Shear (PSNR=25.87 dB), Shear/DCT
(PSNR=27.47 dB), Curvelet (PSNR= 22.60 dB) and Curvelet/DCT (PSNR=25.29 dB).
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Original frame Noisy frame

DWT DWT/DCT

LP LP/DCT
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Curvelet Curvelet/DCT

Shear Shear/DCT

Figure 5.6: Video Denoising of Oil Painting Video Sequence. The figure compares
the denoising performance of the denoising algorithm based on the 3D DShT, denoted
as Shear, on a representative frame of the video sequence Oil Painting against vari-
ous video denoising routines. Starting from the top left: original frame, noisy frame
(PSNR=18.62 dB, corresponding to σ = 30), denoised frame using DWT (PSNR= 24.81
dB), DWT/DCT (PSNR=26.03 dB), LP (PSNR=25.52 dB), LP/DCT (PSNR=26.37 dB),
Shear (PSNR=27.12 dB), Shear/DCT (PSNR=29.07 dB), Curvelet (PSNR= 26.86 dB)
and Curvelet/DCT (PSNR=25.94 dB).

75



Bibliography

[1] K. Guo, G. Kutyniok, and D. Labate, Sparse multidimensional representations using
anisotropic dilation and shear operators, in: Wavelets and Splines, G. Chen, M. Lai
(eds.), Nashboro Press, 2006, pp. 189-201.

[2] K. Guo, W.-Q Lim, D. Labate, G. Weiss and E. Wilson, Wavelets with composite
dilations, Electron. Res. Announc. Amer. Math. Soc., vol. 10, pp. 78–87, 2004.

[3] E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal represen-
tations of objects with C2 singularities, Comm. Pure Appl. Math., vol. 57, no 2, pp.
219-266, 2004.

[4] M. N. Do and M. Vetterli, The contourlet transform: an efficient directional mul-
tiresolution image representation, IEEE Trans. Image Process., vol. 14, no. 12, pp.
2091-2106, 2005.

[5] K. Guo, D. Labate, Optimally sparse multidimensional representation using shearlets,
SIAM J. Math. Anal., vol 39, no. 1, pp. 298-318, 2007.

[6] D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies, Data compression and
harmonic analysis, IEEE Trans. Inform. Th., vol. 44, pp. 2435–2476, 1998.

[7] G. R. Easley, D. Labate, F. Colonna, Shearlet-based total variation diffusion for
denoising, IEEE Trans. Image Process., vol. 18, no. 2, pp. 260-268, 2009.

[8] G. R. Easley, D. Labate, and W. Lim, Sparse directional image representations using
the discrete shearlet transform, Appl. Comput. Harmon. Anal., vol. 25, no. 1, pp.
25-46, 2008.

[9] S. Yi, D. Labate, G. R. Easley, and H. Krim, A shearlet approach to edge aanalysis
and detection, IEEE Trans. Image Process., vol. 18, no. 5, pp. 929-941, 2009.

76



BIBLIOGRAPHY

[10] F. Colonna, G. Easley, K. Guo, and D. Labate, Radon transform inversion using the
shearlet representation, Appl. Comput. Harmon. Anal., vol. 29, no. 2, pp. 232-250,
2010.

[11] P. Kittipoom, G. Kutyniok, and W.-Q Lim, Construction of compactly supported
shearlet frames, Constr. Approx., vol. 35, pp. 21–72, 2012.

[12] G. Kutyniok and W.-Q Lim, Compactly supported shearlets are optimally sparse, J.
Approx. Theory, vol. 63, pp. 1564–1589, 2011.

[13] E. J. Candès, L. Demanet, D. L. Donoho and L. Ying, Fast discrete curvelet trans-
forms, SIAM Multiscale Model. Simul., vol. 5, no. 3, pp. 861-899, 2006.

[14] Y. Lu and M. N. Do, Multidimensional directional filter banks and surfacelets, IEEE
Trans. Image Process., vol. 16, no. 4, pp. 918-931, 2007.

[15] K. Guo, and D. Labate, Optimally sparse 3D approximations using shearlet repre-
sentations,Electron. Res. Announc. Amer. Math. Soc., vol. 17, pp. 126–138, 2010.

[16] K. Guo, and D. Labate, Optimally sparse representations of 3D data with C2 surface
singularities using Parseval frames of shearlets, preprint 2010.

[17] E. L. Pennec and S. Mallat, Sparse geometric image representations with bandelets,
IEEE Trans. Image Process., vol. 14, no. 4, pp. 423-438, 2005.

[18] S. Mallat, Geometrical grouplets, Appl. Comput. Harmon. Anal., vol. 26, no. 2, pp.
161-180, 2009.

[19] K. Guo, and D. Labate, The Construction of smooth Parseval frames of shearlets,
preprint 2011.

[20] P. J. Burt, E. H. Adelson, The Laplacian pyramid as a compact image code, IEEE
Trans. Commun., vol. 31, no. 4, pp. 532-540, 1983.

[21] A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, and Y. Shkolnisky, A frame-
work for discrete integral transformations I - The pseudo-polar Fourier transform,
SIAM Journal on Scientific Computing, vol. 30, no. 2, pp. 764-784, 2008.

[22] Y. Keller, A. Averbuch, Y. Shkolnisky, Algebraically accurate volume registration
using Euler’s theorem and the 3D pseudopolar FFT , IEEE Comput. Soc. Conf. on
Comput. Vision and Pattern Rec., vol. 2, pp. 795–800, 2005

[23] D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage,
Biometrika vol. 81, no. 3, pp. 425455, 1994.

[24] D. L. Donoho, Denoising via soft thresholding, IEEE Trans. Inform. Th., vol. 41, no.
3, pp. 613-627, 1995.

77



BIBLIOGRAPHY

[25] G. Chang, B. Yu and M. Vetterli, Adaptive wavelet thresholding for image denoising
and compression, IEEE Trans. Image Process., vol. 9, no. 9 , pp. 1532–1546, 2000.

[26] J. L. Starck, F. Murtagh, J. Fadili, Sparse image and signal processing: wavelets,
curvelets, morphological diversity, Cambridge U. Press, 2010.

[27] I. W. Selesnick, The double-density dual-tree DWT, IEEE Trans. Signal Process.,
vol. 52, no. 5, pp. 13041314, 2004.

[28] C. Chang, A. F. Laine, Coherence of multiscale features for contrast enhancement
of digital mammograms, IEEE Trans. Info. Tech. in Biomedicine, vol. 3, no. 1, pp.
32-46, 1999.

[29] S. Dippel, M. Stahl, R. Wiemker, and T. Blaffert, Multiscale contrast enhancement for
radiographies: Laplacian pyramid versus fast wavelet transform, IEEE Trans. Medical
Imaging, vol. 21, no. 4, pp. 343-353, 2002.

[30] V. M. Patel, G. R. Easley, and D. M. Healy, A new multiresolution generalized di-
rectional filter bank design and application in image enhancement, Proc. IEEE Int.
Conf. on Image Process., San Diego, pp. 2816-2819, 2008.

[31] J. L. Starck, F. Murtagh, E. J. Candès, and D. L. Donoho, Gray and color image
contrast enhancement by the curvelet transform, IEEE Trans. Image Process., vol.
12, no. 6, pp. 706-717, 2003.

[32] J. Zhou, A. L. Cunha, and M. N. Do, Non-subsampled Contourlet transform: con-
struction and application in Enhancement, IEEE Int. Conf. on Image Process., Genoa,
2005

[33] K. V. Velde, Multi-scale color image enhancement, Proc.IEEE Int. Conf. on Image
Process., vol. 3, pp. 584-587, 1999.

[34] L. Borup and M. Nielsen. Nonlinear approximation in α-modulation spaces. Math.
Nachr., vol 279, pp 101-120, 2006.

[35] L. Borup and M. Nielsen. Frame decomposition of decomposition spaces. J. Fourier
Anal. Appl., vol. 13, pp. 39-70, 2007.

[36] P. G. Casazza. The art of frame theory. Taiwanese J. Math., vol. 4, pp. 129-201, 2000.

[37] C. Chesneau, M.J. Fadili and J.-L. Starck. Stein block thresholding for image denois-
ing. Appl. Comput. Harmon. Anal., vol. 28, no.1, pp. 67-88, 2010.

[38] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser, Boston, 2003.
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