
MULTILEVEL PRECONDITIONERS AND THEIR

APPLICATIONS IN GEOSCIENCE

A Dissertation

Presented to

the Faculty of the Department of Mathematics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Andrey Prokopenko

May 2011

MULTILEVEL PRECONDITIONERS AND THEIR

APPLICATIONS IN GEOSCIENCE

Andrey Prokopenko

APPROVED:

Dr. Yuri Kuznetsov, Chairman

Dr. Jiwen He,

Dr. Tsorng-Whay Pan,

Dr. Serguei Maliassov

ExxonMobil URC

ii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Professor Yuri

Kuznetsov. He generously invited me to the University of Houston, and for years

guided my research activities. Without his encouragement and enthusiasm this

dissertation would not have been completed.

My special thanks go to Dr. Yuri Vassilevsky for sparking my interest in the

field of numerical methods for partial differential equations and his guidance during

my first years in the field.

I would like to thank the Exxon Mobil Corporation for its generous support of

the research project which formed a substantial part of this dissertation, and, in

particular, I am grateful to Dr. Serguei Maliassov for a number of valuable remarks

and suggestions.

I would also like to thank the members of my committee, Drs. Jiwen He and

Tsorng-Way Pan, who found time to read the manuscript and made many important

comments.

During my first years at the University of Houston, my colleagues and friends

Oleg Boiarkine and Nikolay Yavich were a big help to me. I am also thankful to

my friend Eugene Kikinzon for his reading this manuscript and helping improve its

quality.

Finally, I want to thank my parents and my sister, who inspired and encouraged

me during this long project.

iii

MULTILEVEL PRECONDITIONERS AND THEIR

APPLICATIONS IN GEOSCIENCE

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Mathematics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Andrey Prokopenko

May 2011

iv

ABSTRACT

In this dissertation, we develop new approaches to the solution of problems stem-

ming from discretizations of the diffusion-type equations with anisotropic, discon-

tinuous coefficients. Both new preconditioners, and new discretization technique,

are developed.

For the diffusion equation on geometrically simple meshes, discretized by the

finite volume method, we construct a preconditioner based on a presentation of the

graph of the system matrix in an assembling form. This form is used to design the

coarsening procedure. The multilevel framework is based on the inner Chebyshev

iterations. We show the performance of the preconditioner for a model problem and

compare it with that of another algebraic multigrid preconditioner. The theoretical

statement, that the condition number of the preconditioned system does not depend

on the heterogeneity of the problem, is supported by the numerical results.

For more complex meshes, we design a discretization technique based on piece-

wise constant approximation to the fluxes inside each mesh cell. This method is

oriented on typical meshes for reservoir simulation, including such features as pin-

chouts and faults. It is shown to be sufficiently accurate for desired problems. It

also allows construction of an efficient preconditioner for arising algebraic systems.

Finally, we discuss a new type of preconditioner for unsymmetric M-matrices.

It is based on the theory of weak regular splittings and nested iterations. The

numerical results show its robustness and good performance.

v

Contents

1 Introduction 1

1.1 Review of solution methods . 2

1.2 Review of approximation methods for the diffusion equation 4

1.3 Dissertation outline . 6

2 Preconditioner for symmetric M-matrices 7

2.1 Problem formulation . 8

2.1.1 Differential formulation . 8

2.1.2 Finite volume discretization 8

2.1.3 Matrix description . 10

2.2 Multilevel preconditioner . 11

2.3 Two-level preconditioner . 14

2.4 Numerical results . 22

3 Piecewise constant approximation 26

3.1 Problem formulation . 27

3.1.1 Polyhedral meshes . 27

3.1.2 Description of mesh cells . 28

3.1.3 Discretization of the problem and algebraic system 34

3.2 Piecewise constant (PWC) flux approximation 37

vi

3.2.1 General algorithm for mass matrix construction 37

3.2.2 Mass matrices for regular and pinchout cells 40

3.2.3 Mass matrices for fault cells 48

3.2.4 Accuracy of approximation 57

3.3 Preconditioner for the PWC system 61

3.3.1 Numerical experiments . 63

3.4 Cell-centered scheme . 68

3.4.1 2D: quadrilateral mesh cells 68

3.4.2 3D: hexahedral mesh cells 72

3.4.3 Numerical results . 72

4 Preconditioner for unsymmetric M-matrices 75

4.1 Problem formulation . 75

4.2 Multilevel preconditioner . 77

4.3 Two-level preconditioner . 81

4.4 Numerical results . 86

Bibliography 92

vii

List of Figures

2.1 Graphs of the diagonal blocks of the matrices A (left) and A1 (right)

for a ”horizontal” mesh plane . 18

2.2 Tridiagonal sequence of the first type. No elimination 19

2.3 Tridiagonal sequence of the second type. Elimination procedure . . 19

2.4 Graphs of the diagonal blocks of the matrices A0 (left), A1 (center)

and A2 (right) for a ”horizontal” mesh plane 21

2.5 Distribution of the components of the diffusion tensor: Kxy (left)

and Kz (right). Logarithmic scale 24

3.1 Distorted hexahedral mesh with pinchouts 28

3.2 Distorted hexahedral mesh with a fault 29

3.3 Distorted hexahedron . 31

3.4 Element H1 . 31

3.5 Horizontal triangular prism . 32

3.6 Element H2 . 32

3.7 Tent . 33

3.8 Partition of a distorted hexahedron into six pyramids 40

3.9 Subcells e1 (left) and e2 (right) for a hexahedron 41

3.10 Partition of a H1 element into four pyramids and two tetrahedrons . 42

3.11 Subcells e1 (left) and e2 (right) for a H1 element 43

viii

3.12 Partition of a prism into three pyramids and two tetrahedrons . . . 44

3.13 Subcells e1 (left) and e2 (right) for a prism 45

3.14 Partition of an element H2 into two pyramids and four tetrahedrons 46

3.15 Subcells e1 (left) and e2 (right) for a H2 element 47

3.16 Tent . 48

3.17 An example of a fault hexahedral cell E 49

3.18 An example of a fault face . 50

3.19 An example of the triangulation of a fault face 51

3.20 An example of splitting the hexahedron into triangular prisms . . . 54

3.21 An example of a mesh with pinchouts 59

3.22 An example of a mesh with a fault 60

3.23 Domain with five oblique “bended” geological layers 64

3.24 The cells on two sides of the geological fault 66

3.25 ”Splitting One” (left) and ”Splitting Two” (right) of a quadrilateral

cell . 68

3.26 Connections p−p and p−λ for the ”Splitting One” (left) and ”Split-

ting Two” (right) . 70

3.27 p− p and p− λ connections for the matrix Ap,λ 71

3.28 Stencil for the matrix Ap . 71

3.29 Connections p− p and p−λ for different splittings of a hexahedral cell 72

3.30 Example of a hexahedral mesh (4× 6× 24) 73

4.1 Graphs of the diagonal blocks of the matrices A (left) and A1 (right)

for a ”horizontal” mesh plane . 85

4.2 Graphs of the diagonal blocks of the matrices A0 (left) and A1 (cen-

ter) for a ”horizontal” mesh plane after Schur elimination 86

ix

Chapter 1

Introduction

Designing efficient solvers for elliptic partial differential equations (PDE) is a chal-

lenging task, and has been a major research topic since 1950s. Any significant

achievements in this area are vital to a wide set of real-world applications, such as

radiation transport, reservoir and underground water flow simulation, and many

others.

For example, solving diffusion equation is a core part of giving accurate de-

scription of the multiphase flow through a porous medium. While being a diffi-

cult problem to solve, it becomes even harder for typical media, which is usually

highly heterogeneous (see e.g model [61] with 10−7 to 105 range of coefficients).

The resulting algebraic systems from most discretization methods are extremely

ill-conditioned.

The purpose of this dissertation is two-faced. First, it is to design, analyze,

and test new efficient preconditioners for algebraic problems arising from the con-

ventional discretization (for instance, finite volume method) of a diffusion type

equation with anisotropic discontinuous coefficients. Second, it is to develop a

new discretization method so that a good preconditioner for a resulting system is

constructed naturally.

1

1.1 Review of solution methods

Every discretization scheme (finite elements, finite differences, finite volumes) of the

convection-diffusion equation leads to an algebraic system with a sparse matrix. In

many cases, this matrix is symmetric and positive definite, or positive semi-definite.

Often, it is an M-matrix. In each case, producing a solution efficiently on a fine

mesh is a challenging task.

The demands of the users of the engineering applications result in systems with

tens or hundreds of millions of unknowns. Standard direct methods, while being

efficient for small systems, are usually considered as inappropriately slow for these

systems. On the other hand, the convergence of unpreconditioned iterative solvers

is also slow, due to large condition numbers of matrices, arising from coefficient

heterogeneity, coefficient anisotropy, or mesh anisotropy.

Discovery of preconditioners lead to significant improvements in convergence

rates. Classical preconditioners, such as Jacobi, Gauss-Seidel, SOR, and SSOR

(see e.g., [68]) are effective for a number of simple problems. However, they do not

have the efficiency required by current applications. Their main drawback is not

being numerically scalable, i.e. the computational work is not linear with respect to

the number of unknowns. A combination of these methods with nested iterations

was disscussed in [51].

The development of multigrid methods [31, 32, 6, 5, 15, 16] in the 1960s pro-

vided a solution to this problem, as such methods, under some restrictions, are

numerically scalable. Historically, their development was associated with the tight

connection to the model geometry; specifically, to mesh grid. Geometric multigrids

operated on a hierarchy of meshes, constructed a priori by coarsening of the dis-

cretization grid. The increase in complexity of the problem grids slowed down the

development of such methods, and lead to a different approach: algebraic multi-

2

grids.

The algebraic multigrid (AMG) methods use coefficient matrix, instead of the

discretization grid, to guide the coarsening procedure. The introductory articles of

1980s [62, 35, 4] lead to an enormous research field. An important feature of many

such methods is that they can be used as a black-box algorithm, i.e. the only input

for the coarsening procedures is the coefficient matrix. One such preconditioner was

proposed by K.Stüben and his collaborators [62, 56, 20, 63]. One of its versions,

amg1r5 [56], was available to public. It can be used for any symmetric positive

semi-definite system, and sometime it converges even for unsymmetric systems.

However, a few drawbacks of this code should be mentioned. The code requires

huge memory allocations. The setup time for large 3D problems usually increases

significantly. The code may stagnate on geometrically anisotropic problems [20].

Later versions of the algorithm, RAMG05 and SAMG, are free of these drawbacks [63].

A different algebraic multigrid was proposed by Kuznetsov [35, 37]. The main

features of this preconditioner is its spectral equivalence to the system matrix,

and the linear increase of the computational work with respect to the number of

unknowns. However, this preconditioner uses the knowledge of the mesh grid. In

Chapter 2, we extend its multilevel framework to general systems with symmetric

M-matrices with strict diagonal domination; particularly, for matrices arising from

the discretizations of the diffusion equation with heterogeneous coefficients.

A quite similar approach (referred as algebraic multilevel iteration, AMLI) with

an inner Chebyshev iterative procedure was developed by Axelsson and Vassilevski

[4] and then extended to anisotropic problems [53]. The latter approach is headed

at the P1 finite element discretization on uniform triangular meshes. In contrast

to our approach (see Chapter 2), these approaches do not consider non-uniform

meshes.

There are very few preconditioners for discretized diffusion equation on meshes

3

with faults. An example of such preconditioner is discussed in [49].

1.2 Review of approximation methods for the dif-

fusion equation

There are many discretization methods developed for second order diffusion equa-

tion. The list includes Finite Differences (FD), Mimetic Finite Differences, Finite

Volume (FV), Finite Element (FE), Mixed Finite Element (MFE), and Mixed Hy-

brid Finite Element (MHFE).

The idea behind the FD method is to approximate all derivatives with finite

differences. Usually, it is used for uniform rectangular grids. The main advantage

of the method is its simplicity. However, it has many drawbacks, such as restriction

to simple geometries and implementation of the boundary conditions, especially for

domains with curved boundaries. For the complete presentation of the FD method

we refer to [59].

The Finite Volume (FV) method is an approximation method leading to locally

conservative schemes. It is a Petrov-Galerkin type method (the solution space is

different from the test space, as the test space is defined on a dual, so called Voronoi,

mesh). For further information we refer to [26].

Mimetic Finite Differences method is based on the support operator approach,

see [30, 54]. The discrete operators are constructed to preserve main physical

properties of the original differential operator, such as conservation law, solution

symmetries and so on. For the linear diffusion problem it preserves symmetry

between the discrete gradient and divergence operators. It also preserves the null

spaces of the above operators and guaranties the stability of the discretization.

FE methods are currently among the most popular methods in modern numeri-

cal mathematics. The paper by Courant [24] is considered to be the one of the first

4

on the subject. The term ”finite element method” was proposed by R.W. Clough

in [23].

The FE method is based on the concept of a weak solution of a PDE, i.e. the

solution of the variational problem. The existence and uniqueness of the solution

is proved by using the properties of certain Hilbert spaces. The main advantage

of the FE method over many others is that it is geometry free and can be applied

to complex shape domains. For instance, the application of the FE method to

domains with curved boundaries is investigated in [7, 10].

We use the term ”Mixed Method” when we solve a problem with two or more

physical variables. The mixed form for the second order diffusion-reaction equation

can be formulated as

K−1
u + ∇p = 0 in Ω,

∇ · u + cp = f in Ω.
(1.1)

Here, the flux vector function u is introduced. The mixed formulation is used to

compute flux u and pressure p simultaneously. The variational formulation for this

problem involves a pair of Hilbert spaces, the space V for fluxes and the space Q

for pressures. A finite element solution (u, p) belongs to the space Vh ×Qh, where

Vh and Qh are finite dimensional subspaces of V and Q, respectively.

In classical literature, spaces Vh were constructed for a number of ”simple” cells,

such as triangles and rectangles in 2D, and tetrahedra, prisms and rectangular par-

allelepipeds in 3D. The Raviart-Thomas spaces RTm, spaces BDMm are introduced

and investigated in [11, 57].

Yu. Kuznetsov and S. Repin introduced a new approach to define the space of

fluxes Vh in [47, 48] on general shape polygonal (2D) and polyhedral (3D) meshes.

This method requires partitioning of a general polyhedral cell into ”simpler shaped”

cells. In [44], the method was extended to the mimetic finite difference method.

5

1.3 Dissertation outline

The dissertation is organized as follows. In Chapter 2, we present a multilevel pre-

conditioner. In Section 2.1, we briefly introduce the PDE we study, describe the

finite volume discretization of the mesh, and analyze the properties of the resulting

matrices. Section 2.2 presents a multilevel framework based on inner Chebyshev

iterations. The framework makes use of spectrum estimates of a two-level pre-

conditioner, described in Section 2.3, and provides an estimate for the condition

number of the preconditioned system. Section 2.4 presents a set of numerical ex-

periments. We compare our preconditioner with the Stüben’s algebraic multigrid

(AMG) preconditioner. Obtained numerical results comply with theoretical state-

ments. Specifically, the condition number of the preconditioned system receives no

impact from a diffusion tensor anisotropy.

Chapter 3 is devoted to a new discretization method and its natural precon-

ditioner. In Section 3.1, we discuss the problem formulation and introduce the

meshes used in typical applications. We show that the presence of pinchouts and

faults leads to a number of unusual mesh cells, such as fault cells. In Section 3.2,

we provide a new discretization method for the described meshes. Significant part

of that Section is devoted to a discretization of a fault cell. The new method is

based on piecewise constant functions. Section 3.3 is devoted to a preconditioner

for such discretizations and its properties. Finally, in Section 3.4, we introduce a

technique for a specific class of meshes, leading to cell-centered discretization.

In Chapter 4, we discuss a multilevel preconditioner for unsymmetricM-matrices.

It is based on the theory of weak regular splittings and nested iterations, presented

in Section 4.2 in the multilevel setting. The design of a two-level preconditioner

is shown in Section 4.3. Section 4.4 provides numerical results for a few generated

test cases.

6

Chapter 2

Preconditioner for symmetric

M-matrices

In this Chapter, we present a new multilevel preconditioner for the iterative solution

of algebraic problems arising in the reservoir simulation.

More precisely, we study 3D diffusion problem with heterogeneous anisotropic

coefficients.

Essential features of the preconditioner are as follows:

• The condition number of the preconditioned algebraic problem is O(1), i.e.

the number of iterations performed by an iterative solver is independent of

the mesh step size and the parameters of the differential problem.

• The computational cost to invert the proposed preconditioner is linear with

respect to the problem size.

• It can be used as a black-box solver.

7

2.1 Problem formulation

2.1.1 Differential formulation

Let us consider the homogeneous Neumann boundary value problem for the diffu-

sion equation

−∇ · (K∇p) + cp = f in Ω,

(K∇p) · n = 0 on ∂Ω,

(2.1)

where p is an unknown scalar function (pressure), K = K(x) ∈ R
3×3 is a diffusion

tensor, c is a positive function, f is a source function, Ω is a domain in R
3, ∂Ω is

the boundary of Ω, and n is the unit outward normal to ∂Ω.

We assume that Ω is presented as a union of parallelepipedal cells ei, i.e. we

define the mesh domain Ωh by

Ωh =
n⋃

i=1

ei.

We also assume that K is a piecewise constant diagonal tensor, and c is a

piecewise constant function in Ω, i.e.

K = Ki ≡




Kx,i

Ky,i

Kz,i


 in ei, i = 1, n.

and

c = ci ≡ consti in ei, i = 1, n.

2.1.2 Finite volume discretization

We replace (2.1) by an equivalent first order system

K−1
u + ∇p = 0 in Ω,

∇ · u + cp = f in Ω,

u · n = 0 on ∂Ω .

(2.2)

8

This formulation is called the mixed formulation of (2.1). The first equation

represents the Darcy flow law, and the second equation is the mass conservation

law.

We integrate the mass conservation law over cell ei, 1 ≤ i ≤ n, and get

∑

j∈Adj(i)

∫

Γij

u · n dσ + ci

∫

ei

p dx =

∫

ei

fdx, (2.3)

where Adj(i) denotes the set of indexes of the mesh cells adjacent to ei and Γij

denotes the interface between ei and a neighboring cell ej .

Let us introduce the following notations:

uij =
1

|Γij|

∫

Γij

u · n dσ,

pi =
1

|ei|

∫

ei

p dx,

fi =
1

|ei|

∫

ei

f dx.

(2.4)

Here, |Γij | denotes the area of the face Γij, and |ei| is a volume of the cell.

Then, the discrete form of equation (2.3) (the discrete conservation law) can be

written as
∑

j∈Adj(i)

uij |Γij| + cipi|ei| = fi|ei|. (2.5)

In the finite volume method the degrees of freedom uij for the flux variable u

are approximated using the Darcy law in the following way:

uij = − (pj − pi)




Cj∫

Ci

dσ

Kd



−1

, (2.6)

where Ci and Cj are centers of the cells ei and ej , respectively, and Kd is one of

Kx, Ky or Kz depending on whether Ci and Cj lie on the same x, y, or z line.

9

Since, by our assumptions, diffusion tensor K is constant in each mesh cell, we

evaluate the integral in (2.6) explicitly:

uij = −2 (pj − pi)

[
hd,i

Kd,i

+
hd,j

Kd,j

]−1

. (2.7)

Substituting the fluxes in (2.5) with (2.7) we get the equation

∑

j∈Adj(i)

aij(pi − pj) + cipi|ei| = fi|ei|, (2.8)

where

aij = 2

[
hd,i

Kd,i

+
hd,j

Kd,j

]−1

|Γij|. (2.9)

Combining (2.8) for all cells ei, i = 1, n, we obtain the finite volume system of

linear equations

Ap̄ = f̄ . (2.10)

2.1.3 Matrix description

We decompose the system matrix A of (2.10) as

A = D +M, (2.11)

where D is a diagonal matrix with positive elements di = ci|ei| on the diagonal

(this matrix corresponds to the reaction term cp in (2.1)), and M = A − D is

the remaining part. Using the equation (2.8) and the symmetricity of matrix A

(aij = aji due to (2.9)), we conclude that for any two cells ei and ej with the

common interface Γij there exists a corresponding component in M having the

form Nij Mij N
T
ij , where

Mij = aij


 1 −1

−1 1


 , (2.12)

and Nij is the corresponding assembling matrix.

10

Thus, we decompose M as

M =

N∑

k=1

Nkak


 1 −1

−1 1


NT

k ≡
∑

i,j

NijMijN
T
ij , (2.13)

where ak is a positive number, and Nk is assembling matrix corresponding to the

link with index k, k = 1, N . Here, N is the total number of links between centers

of the mesh cells.

Remark. The decomposition (2.13) is unique up to the order of components.

One can easily show that the matrix M =
(
mij

)
of (2.13) has the following

properties:

• M is symmetric;

• mii > 0 for any i;

• mij ≤ 0 for any j 6= i;

• ∑j mij = 0 for any i;

• M is positive semi-definite;

• ker(M) = span
{
(1, ... , 1)T

}
.

Therefore, matrix A is a Stieltjes matrix. As we will show later, the precon-

ditioner is designed for matrices of this class, with finite volume discretization,

described in Section 2.1.2, providing one such example.

2.2 Multilevel preconditioner

Let t ≥ 1. Assume that we constructed a sequence of matrices

A ≡ A0 → B0 → A1 → B1 → · · · → Bt−1 → At → Bt, (2.14)

11

satisfying the following properties:

• Ak = AT
k > 0, k = 0, t;

• Bk = BT
k > 0, k = 0, t;

• Bk, k = 0, t− 1, can be presented in the 2× 2 block form

Bk =


Bk,11 Bk,12

Bk,21 Bk,22


 (2.15)

such that

Bk,11 = Ak+1 +Bk,12B
−1
k,22Bk,21.

This block representation is equivalent to the multiplicative form

Bk = F T
k


Ak+1 0

0 Bk,22


Fk, (2.16)

with

Fk =


 I 0

B−1
k,22Bk,21 I


 .

• For each k, k = 0, t, we know the values of the positive constants αk and βk,

0 < αk ≤ βk,

such that

αkBk ≤ Ak ≤ βkBk. (2.17)

Using this sequence of matrices we construct our preconditioner B̂ as follows.

We start from the coarsest level k = t and define

B̂t = Bt.

12

From (2.17) we have

atB̂t ≤ At ≤ btB̂t

with at ≡ αt and bt ≡ βt.

Then, for each k, k = t − 1, ..., 0, we choose an integer sk ≥ 1, and construct

matrix B̂k as

B̂k = F T
k


Âk+1 0

0 Bk,22


Fk,

where

Âk+1 =

([
I −

sk∏

j=1

(I − τk+1,jB̂
−1
k+1Ak+1)

]
A−1

k+1

)−1

is a symmetric positive definite matrix. The parameters τk+1,j, j = 1, . . . , sk, are

chosen in such a way that

pk+1(z) =

sk∏

j=1

(
1− τk+1,jz

)

is the least deviating from zero polynomial on the segment [ak+1; bk+1]. The solu-

tion to this problem is given in terms of Chebyshev polynomials (see [68]). The

corresponding procedure is called a Chebyshev one. It is obvious that for given ξ̄

the vector η̄ = Â−1
k+1ξ̄ can be computed by the iterative procedure

η̄0 = 0,

η̄j = η̄j−1 − τk+1,jB̂
−1
k+1(Ak+1η̄j−1 − ξ̄), j = 1, . . . , sk,

η̄ = η̄sk .

(2.18)

The theory of Chebyshev methods implies (see [68]) that the eigenvalues of the

matrix Â−1
k+1Ak+1 belong to the segment

[
(1− qskk+1)

2

1 + q2skk+1

;
(1 + qskk+1)

2

1 + q2skk+1

]
, (2.19)

13

where

qk+1 = (
√
νk+1 − 1)/(

√
νk+1 + 1)

and

νk+1 = bk+1/ak+1.

Lemma. The eigenvalues of the matrix B̂−1
k Ak belong to the segment

[ak; bk] ≡
[
(1− qskk+1)

2

1 + q2skk+1

αk ;
(1 + qskk+1)

2

1 + q2skk+1

βk

]
. (2.20)

We define B̂ = B̂0 to be our multilevel preconditioner for matrix A.

The construction of the sequence (2.14) is based on the fact that for a given

matrix A, satisfying all the properties in Section 2.1.3, we are able to construct a

symmetric positive definite matrix B, which has block 2 × 2 form of (2.15), such

that corresponding matrix

A1 = B11 − B12B
−1
22 B21

has exactly the same properties as the original matrix A. We call B two-level

preconditioner for matrix A, and A1 coarse grid matrix. The exact algorithm for

construction of B is described in the next Section.

2.3 Two-level preconditioner

As was pointed out in Section 2.2, in order to construct a sequence of matri-

ces (2.14), it is sufficient to construct a two-level preconditioner for matrix A.

We decompose matrix D from (2.11) using the same assembling matrices Nk as in

decomposition (2.13)

D =
N∑

k=1

Nk


d1k 0

0 d2k


NT

k , (2.21)

14

where d1k are d2k are some nonnegative constants. In contrast to the decomposition

of M in (2.13), the decomposition (2.21) is not unique and we have some freedom

to define coefficients d1k and d2k. The choice of d1k and d2k will be discussed later.

Using (2.21), the matrix A is presented in the assembling form

A =

N∑

k=1

Nk




d1k 0

0 d2k


+ ak


 1 −1

−1 1




NT

k . (2.22)

Our algorithm will use decomposition (2.22) for the construction of the precon-

ditioner. The following lemma provides the necessary tool to achieve that.

Lemma. Let matrices A and B be defined by

A =


d1 0

0 d2


+ a


 1 −1

−1 1




and

B =


d1 0

0 d2


+ βa


 1 −1

−1 1


 ,

where β is some constant, 0 ≤ β ≤ 1. Then, the following estimates hold:

B ≤ A ≤
(
1 +

d1 + d2
d1d2

a

)
B, if β = 0, d1, d2 > 0,

B ≤ A ≤ 1

β
B, otherwise.

(2.23)

For each index k in decomposition (2.22) we choose a coefficient βk ≥ 0 and

define B by

B =

N∑

k=1

Nk




d1k 0

0 d2k


+ βkak


 1 −1

−1 1




NT

k . (2.24)

The matrix B has exactly the same properties as the original matrix A, i.e.

it is symmetric and positive definite, and it can be assembled in the form similar

to (2.11).

15

Now, let σ ≥ 1 be some parameter. We choose βk = 0 in (2.24) only for those

submatrices when d1k, d2k > 0 and

1 +
d1k + d2k
d1kd2k

ak ≤ σ . (2.25)

For the rest values of the index k we choose βk = 1/σ. It can be proved that

B ≤ A ≤ σB,

which provides parameters α = 1 and β = σ for the estimate (2.17).

We can look at choosing βk = 0 as at the procedure of removing links from the

graph of matrix A. After we choose the value βk for all the links it may happen

that for many nodes on the finite volume mesh all links with other nodes would be

gone, i.e. the node would be isolated. It means that some rows in matrix B would

contain only one nonzero element, namely, the element on the diagonal. Therefore,

we partition the set of all nodes into two groups: in the first group, we put the

nodes which have at least one link left with neighboring nodes, and in the second

group we put the nodes without any remaining links. With respect to this partition,

matrix B has the block 2× 2 form

B =


B11 0

0 B22


 , (2.26)

where the block B22 is a diagonal matrix. Matrix B in (2.26) has the form (2.15)

with zero blocks B12 and B21. Therefore, following Section 2.2 we define

A1 = B11.

Usually, the goal of multigrid methods is to quickly reduce the dimension of

the matrix. The construction of our preconditioner is different from this approach

in the way that the reduction of the matrix dimension is not as important as the

reduction of the number of nonzero elements of the matrix. Our method depends

16

on Chebyshev iterations between levels. Therefore, the main computational cost of

solving the system with the preconditioner is due to the multiplication of the level

matrices by vectors. This cost is linear with respect to the the number of nonzero

entries in the matrices Ak. We consider the following two algorithms.

Static algorithm

In the first approach, the coefficients d1,k and d2,k in the decomposition (2.21)

are independent of the non-diagonal entries in A. In other words, the decomposi-

tion (2.21) is defined prior to the execution of the algorithm. We call this variant

the static decomposition.

The implementation of this algorithm is as follows. Suppose that the center

of each cell ei has links with ni centers of neighboring cells. Let k be the index

corresponding to the link between cells ei and ej in assembling (2.22). Then, we

take d1k = di/ni and d2k = dj/nj . For example, for the original matrix A we could

take ni = 6 for each cell and therefore d1 = di/6 and d2 = dj/6. So, we choose

βk = 0 if

1 +
6(ci + cj)

cicj
aij ≤ σ.

Otherwise, we choose βk = 1/σ.

The main advantage of this algorithm is in its simplicity, but its performance is

worse than that of the algorithm described in the next section.

Dynamic algorithm

We call the second approach the dynamic algorithm. The name comes from the

fact that it is impossible to determine coefficients d1k and d2k a priori. The de-

termination of these coefficients is one of the procedures in the construction of the

preconditioner. This decomposition depends on the coefficients of the matrix and

desired properties of the preconditioner.

17

Figure 2.1: Graphs of the diagonal blocks of the matrices A (left) and A1 (right)

for a ”horizontal” mesh plane

Let us discuss the implementation of this algorithm in brief. Suppose that

we arrange all coefficients ak in (2.13) in the increasing order. Then, during the

implementation procedure starting with the lowest value of ak we are trying to find

the lowest values of d1k and d2k which satisfy inequality (2.25). If such values are

found, we choose βk = 0. Otherwise, we choose βk = 1/σ.

Schur complement elimination of three-point links

The arithmetical complexity of the preconditioner highly depends on n, the dimen-

sion of A, and nnz, the number of nonzero entries of A. The procedure below allows

significant decrease of both numbers.

Fig.2.1 shows the graphs of diagonal blocks of the matrices A0 and A1 which

correspond to a ”horizontal” mesh plane z = const. We notice that there are many

nodes being connected to only two of its neighbors forming tridiagonal sequences.

There are sequences of two types. For the first type, a sequence is bounded at

both ends by a cluster formation. For the second type, a sequence starts with a

node which has only one link. Examples of the tridiagonal sequences are shown in

Figures 2.2 and 2.3.

18

Figure 2.2: Tridiagonal sequence of the first type. No elimination

Figure 2.3: Tridiagonal sequence of the second type. Elimination procedure

Based on this graphical information, we can make an assumption that this is a

regular phenomenon in the stencil of matrix B. The nodes in the second type of

tridiagonal sequences can be eliminated by the Schur complement procedure. The

computational cost of this elimination is linear with respect to the number of nodes

in the sequence. We do not include the eliminated nodes into matrix B11, which

drastically reduces the numbers n and nnz. Therefore, the size of matrix A1 can

be drastically reduced by using another block partitioning. Namely, let matrix B

be presented as

19

B =


B11 0

0 B22


 ≡




D11 D12 0

D21 D22 0

0 0 B22


 ,

where D22 is an easily invertible matrix corresponding to the tridiagonal sequences

of the second type.

Then, we get the new block partitioning of matrix B by presenting it in another

form

B =


Bnew,11 Bnew,12

Bnew,21 Bnew22




with the blocks

Bnew,11 = D11,

Bnew,12 =
(
D12 0

)
, Bnew,21 =


D21

0


 ,

and

Bnew,22 =


D22 0

0 Bold,22


 .

The new matrix A1 is the Schur complement for the matrix Bnew,22:

A1 = D11 −D12D
−1
22 D21.

Fig.2.4 shows the graphs of diagonal blocks of the matrices A0, A1 and A2 which

correspond to a ”horizontal” mesh plane z = const after the described procedure.

Remark. Due to the nature of this algorithm, the values of α and β do not change.

Comparison of approaches

In the Table 2.3, we present the dimension of matrices Ak (columns n) and the

number of nonzero elements in Ak (columns nnz) for static, dynamic, and dynamic

with Schur complement variants.

20

Figure 2.4: Graphs of the diagonal blocks of the matrices A0 (left), A1 (center) and

A2 (right) for a ”horizontal” mesh plane

The dynamic variant performs much better than the static one, resulting not

only in a drastic reduction in both values of n and nnz, but also in the reduction

of the number of levels. Introducing additional Schur complement elimination of

tridiagonal matrices further boosts the performance.

21

Table 2.1: The dimensions (n) and number of nonzero elements (nnz) of matrices

Ak

Level
Static Dynamic Dynamic with Schur

n nnz n nnz n nnz

0 1122000 7780000 1122000 7780000 1122000 7780000

1 604788 2680056 511104 1957400 338060 1476852

2 504061 2010591 360423 1205069 155890 653148

3 378493 1314309 212847 633211 54869 224197

4 235663 719407 98855 270315 15385 62391

5 116613 322269 36421 94081 3839 14947

6 46008 118872 10241 25091 376 1280

7 13496 32884 2169 4561 - -

8 2953 6289 89 179 - -

9 596 1216 - - - -

2.4 Numerical results

In this Section, we present the numerical results for the SPE 10 model 2 bench-

mark [61]. We compare our method with the well known AMG preconditioner [63].

The key components of the data are:

• Ω is a rectangular parallelepiped of size 1200× 2200× 170 (ft);

• Fine mesh is the uniform Cartesian 60× 220× 85 grid;

• The medium is strongly heterogeneous, the diffusion coefficients vary in the

interval [10−7, 105];

• Kx = Ky ≡ Kxy.

22

The Figure 2.5 shows the distribution of the components Kxy and Kz of the

diffusion tensor K.

Let us assume that the diffusion equation (2.1) comes from the discretization

of the unsteady diffusion equation by the implicit finite difference method in time

variable with the time step τimp. To this end, we assume that the coefficient c is a

positive constant defined by the formula

c =
1

τimp

. (2.27)

For numerical experiments we choose

τimp = γ
√
τexp, (2.28)

where γ is a positive factor (γ ≥ 1), and

τexp =
1

‖E−1(A−D)‖∞
(2.29)

with E = diag{|e1|, ..., |en|}.
To solve the system (2.10), we use the PCG method with the preconditioner B,

designed in Section 2.2. We use the typical stopping criteria for the PCG method:

‖Ap̄k − f‖2
‖Ap̄0 − f‖2

≤ ǫ,

where ǫ is a given accuracy. In the numerical experiments, we take ǫ = 10−6.

It is important for us to introduce a parameter which would show the effective-

ness a preconditioner in terms of computational work. We choose this parameter to

be the time of calculation of the residual vector. In our case, this time is equal to

0.05 seconds. It means, for instance, that if the time to invert our preconditioner

once is 0.20 seconds, then its computation is equivalent to four evaluations of the

residual vector for the original problem which is considered to be sufficiently cheap.

All experiments were performed with two Chebyshev iterations per level and

σ = 3. In Tables 2.2 and 2.3 we give the CPU time and the number of iterations

23

Figure 2.5: Distribution of the components of the diffusion tensor: Kxy (left) and

Kz (right). Logarithmic scale

for the PCG method. We see that for sufficiently large values of the reaction term

c our method performs faster than AMG because of cheap initialization time and

quick inversion of the preconditioner, though it loses in number of PCG iterations.

When we decrease the value of c, the number of links which can be removed also

decreases, and so is the performance of the preconditioner.

Due to our knowledge of explicit spectral boundaries of our preconditioner

in (2.20), it is also possible to use Chebyshev iterations as an outer iterative pro-

cedure. In Table 2.4 we compare the number of PCG and Chebyshev iterations.

We see that they differ insignificantly. As Chebyshev method lack computation of

inner products, this leads to a better parallel implementation.

24

Table 2.2: Numerical results for sufficiently large c

c = 1 c = 2 c = 4

(γ = 100) (γ = 50) (γ = 25)

Our AMG Our AMG Our AMG

Construction time (s) 3.17 13.22 2.83 12.39 2.46 11.65

B−1 time (s) 0.23 0.97 0.15 0.95 0.09 0.92

of PCG iterations 16 7 15 7 15 7

Solution time (s) 5.25 7.45 3.72 7.30 2.94 7.10

Total time (s) 8.42 20.67 6.55 19.69 5.40 18.75

Table 2.3: Numerical results for small c

c = 0.05 c = 0.1

(γ = 2000) (γ = 1000)

Our AMG Our AMG

Construction time (s) 5.29 14.60 4.71 14.65

B−1 time (s) 1.73 0.97 1.09 0.98

of PCG iterations 17 8 17 8

Solution time (s) 30.73 8.45 20.11 8.54

Total time (s) 36.02 23.05 24.82 23.19

Table 2.4: Comparison of PCG and Chebyshev as external iterative method

c = 0.1 c = 1 c = 2 c = 4

PCG Cheb PCG Cheb PCG Cheb PCG Cheb

of iterations 16 17 15 17 14 16 14 16

25

Chapter 3

Piecewise constant approximation

In this Section, we introduce an extension of the discretization method with piece-

wise constant (PWC) approximations for fluxes, introduced in [41], for the numeri-

cal solution of the diffusion equation on polyhedral meshes with possible pinchouts

and faults. The research was motivated by applications in geoscience, namely, the

reservoir simulation and basin modeling.

There are several possible methods of discretization for such meshes, including

Kuznetsov-Repin ([47]) and mimetic ([44]) finite elements. While being accurate

and robust, such methods usually have a significant drawback of high computational

cost of the construction of the algebraic system. Additionally, these methods may

provide insufficient accuracy for fluxes in strongly anisotropic mesh cells, which are

typical for the described applications.

The proposed method has low cost of generation of the system while maintaining

the accuracy similar to that of Kuznetsov-Repin elements.

26

3.1 Problem formulation

Similar to Section 2.1, let us consider the diffusion equation written in the mixed

form,

K−1
u + ∇ p = 0,

∇ · u + cp = f,
(3.1)

in a bounded domain Ω ⊂ R
3. We complement this equation with the boundary

conditions

p = gD on ΓD and u · n = gN on ΓN . (3.2)

Here, ΓD and ΓN are parts of the boundary ∂Ω of Ω such that

ΓD = ΓD, ΓD

⋂
ΓN = ∅, ΓD

⋃
ΓN = ∂Ω. (3.3)

In the case of the Neumann problem with c = 0 and ΓN = ∂Ω, in addition, we

assume that the compatibility condition
∫

∂Ω

gN ds =

∫

Ω

f dx (3.4)

holds for functions gN and f .

We assume that Ω is the union of several subdomains, i.e.

Ω =
S⋃

s=1

Ωs (3.5)

and the reaction coefficient c is a piecewise constant function in Ω. Namely,

c ≡ cs for all x ∈ Ωs, (3.6)

where cs is a nonnegative constant, s = 1, S.

3.1.1 Polyhedral meshes

In each subdomain Ωs we construct a conforming polyhedral mesh Ωs,h

Ωs,h =

Ns⋃

k=1

E
(s)
k , (3.7)

27

Figure 3.1: Distorted hexahedral mesh with pinchouts

consisting of (degenerated) hexahedrons. The resulting mesh Ωh in Ω is the union

of the subdomain meshes

Ωh =

S⋃

s=1

Ωs,h =

S⋃

s=1

Ns⋃

k=1

E
(s)
k ≡

N⋃

k=1

Ek. (3.8)

We assume that Ωh is a geometrically conforming mesh.

Figures 3.1.1 and 3.1.1 contain two examples of such meshes. In the first exam-

ple, domain Ω is a unit cube divided into seven geological layers with two categories

of mesh cells. Cells of first type are distorted hexahedrons, and the other cells are

so called pinchout cells. Pinchouts happen when vertical edges of a hexahedron de-

generate [52]. Different types of pinchout cells in Ωh are given in the next section.

In the second example, the domain Ω contains a fault. To construct a conforming

mesh for such meshes, one performs an interface reconstruction algorithm. Such

meshes contain hexahedrons and fault cells.

3.1.2 Description of mesh cells

We consider six types of cells: distorted hexahedron, distorted hexahedron with one

degenerated edge (element H1), distorted hexahedron with two degenerated edges

28

Figure 3.2: Distorted hexahedral mesh with a fault

(element H2 and horizontal prism), and a tent.

Distorted hexahedron.

Each distorted hexahedral cell is topologically equivalent to a cube as shown in

Figure 3.3. It has eight vertices, six quadrilateral faces, and twelve edges.

Element H1

“Element H1” is obtained from a distorted hexahedron when one of its vertical

edges degenerates. On Figure 3.4, element H1 is obtained from a regular hexahedron

after the degeneration of the edge (0,4).

Element H1 has seven vertices, two triangular and four quadrilateral faces, and

11 edges.

Horizontal prism

Horizontal triangular prism is the second type of a pinchout cell. It occurs

when two neighboring vertical edges degenerate. An example on Figure 3.5 shows

a horizontal prism obtained from a regular hexahedron after the degeneration of

29

edges (0, 4) and (1, 5).

The horizontal prism has six vertices, and two triangular and three quadrilateral

faces.

Element H2

“Element H2” appears when two opposite vertical edges of a regular hexahe-

dron degenerate. The Figure 3.6 shows an element H2 obtained from a regular

hexahedron with degenerated edges (1,5) and (3,7).

Element H2 has six vertices, and four triangular and two quadrilateral faces.

Tent

Tent is the last type of pinchout cell, which appears when three vertical edges

degenerate. An example of such cell is shown on Figure 3.7.

Tent has five vertices, and two triangular and two quadrilateral faces.

30

0 1

23

4

5

6

7

Figure 3.3: Distorted hexahedron

5

6

7
0, 4

1

23

Figure 3.4: Element H1

31

6

7
0, 4

1, 5

3 2

Figure 3.5: Horizontal triangular prism

4
6

0
2

1, 5

3, 7

Figure 3.6: Element H2

32

3, 7

2

6

0, 4

1, 5

Figure 3.7: Tent

33

3.1.3 Discretization of the problem and algebraic system

In order to discretize the problem (3.1), (3.2), we apply the mixed FE method.

Let E ≡ Ek be a mesh cell with t faces/interfaces Γ1, Γ2, . . . , Γt. We introduce

meanvalues of the normal flux and the solution function by

us =
1

|Γs|

∫

Γs

u · n ds, s = 1, t, (3.9)

and

pE =
1

|E|

∫

E

p dx, (3.10)

respectively.

We also introduce the meanvalue of the source function by

fE =
1

|E|

∫

E

f dx. (3.11)

Then, the discrete form of the conservation law

∇ · u = f (3.12)

is ∫

E

∇ · u dx ≡
t∑

s=1

us |Γs| = fE · |E| . (3.13)

We replace the differential form of the Darcy law

K−1
u + ∇p = 0 (3.14)

with the equivalent weak formulation

∫

E

K−1
u · v dx −

∫

E

p (∇ · v) dx +

∫

∂E

p (v · n) ds = 0, (3.15)

where v = v(x) is a test vector-function.

Let v satisfy the following two conditions:

34

• v · n = vs ≡ consts on Γs, s = 1, t;

• ∇ · v = constE in E.

Then, ∫

E

p (∇ · v) dx = pE ·
t∑

s=1

vs · |Γs| (3.16)

and ∫
∂E p (v · n) ds =

t∑

s=1

λs · vs · |Γs| . (3.17)

Here,

λs =
1

|Γs|

∫

Γs

p ds, s = 1, t, (3.18)

are meanvalues of the solution function on the interfaces.

Thus, the weak formulation of the Darcy law in cell E becomes:

∫

E

(
K−1

u
)
· v dx − pE ·

t∑

s=1

vs · |Γs| +

t∑

s=1

λs · vs · |Γs| = 0 . (3.19)

Discretization of the integral term is the transition

∫

E

(
K−1

u
)
· v dx ⇒ (ME ū, v̄) (3.20)

where ū and v̄ are vectors in R
t, and ME is a symmetric positive definite matrix.

The construction of this matrix is described in the next Section. As the result,

when we discretize the Darcy law and the mass conservation law on each mesh cell

E ∈ Ωh, and complement these equations by weak continuity equations on each

interface between mesh cells, we obtain the system of linear algebraic equations in

the form

Au,p,λ




ū

p̄

λ̄


 =




ḡD

f̄

ḡN


 , (3.21)

35

with system matrix Au,p,λ having a three-by-three block structure

A =




M BT CT

B −Σ 0

C 0 0


 , (3.22)

where the mass matrix

M = diag
{
ME1

, . . . , MEN

}
(3.23)

is a block diagonal matrix with the blocks ME .

We reduce the system by eliminating flux degrees of freedom from the consid-

eration, resulting in

S



p̄

λ̄


 =



f̄p

f̄λ


 , (3.24)

where the system matrix S is given by

S =


Σ 0

0 0


+


B

C


 M−1

(
BT CT

)
. (3.25)

The matrix S is symmetric. In the case of Neumann boundary conditions on

the whole boundary and c ≡ 0, S is positive semidefinite, and its kernel is

ker S = span
{
ē
}
, ē =

(
1 1 . . . 1

)T
. (3.26)

Otherwise, S is positive definite.

Next, we apply a preconditioned iterative solver to solve system (3.24) in order

to obtain a solution pair (p̄, λ̄).

Finally, we express the DOF for fluxes by

ū = M−1
(
ḡD − BT p̄ − CT λ̄

)
. (3.27)

Remark. An alternative method, applicable for specific meshes, is presented in

the Section 3.4.

36

3.2 Piecewise constant (PWC) flux approxima-

tion

In this Section, we present an approach for the approximation of the flux vector

function. We construct mass matrices in the space of fluxes using piecewise constant

vector fields. We call this approach PWC which is an acronym for “PieceWise

Constant”.

3.2.1 General algorithm for mass matrix construction

Let E be a polyhedral cell. Let us assume that there exists a decomposition

E =

NE⋃

l=1

el (3.28)

into polyhedrons (possibly overlapping) such that:

• Each face Γ of el is either an inner face with respect to E, or it is a face of E;

• For each cell el there exists its vertex A of E such that there are exactly three

faces (Γ1, Γ2 and Γ3) of el adjacent to it, which are also the faces of E.

We will show later that for all types of cells described in Section 4.1 we can construct

partition satisfying the above properties.

Now let e be one of the the cells el from partition (3.28). Let v̄ ∈ R
3 be a vector

of three degrees of freedom. We say that vh ∈ V
(PWC)
e if and only if the following

two conditions hold:

• vh ≡ const ∈ R
3 in e;

• 1
|Γi|

∫

Γi

vh · n ds = vi, i = 1, 3.

37

Remark: The DOF vi represents the average normal component vh · n of vh on

face Γi, i = 1, 3.

Explicit formulas. Let

Γi =

mi⋃

j=1

γij (3.29)

be a triangulation of the face Γi. We denote by nij the unit outward normal vector

to ∂e on triangle γij. We define by

ni =

mi∑

j=1

|γij|
|Γi|

nij (3.30)

the “effective outward normal vector” to e on Γi.

Remark. If Γi is planar then ni is the outward unit normal vector to e on Γi.

Otherwise, ‖ni‖ < 1.

Direct calculations show that these “effective normal vectors” uniquely deter-

mine a constant vector field vh in e. Namely, the constant value of vh in e is the

vector

v = N−T




v1

v2

v3


 , (3.31)

where

N =
(
n1 n2 n3

)
(3.32)

is a three-by-three matrix which columns are the corresponding “effective” normals

to sides of e.

In order to construct a mass matrix M , we first introduce a non-overlapping

partitioning of E into polyhedral cells

E =

Np⋃

k=1

Pk, (3.33)

38

such that each subcell el from the partitioning (3.28) is a union of several cells Pk.

Let us denote by nk, k = 1, ..., Np, the number of cells el containing Pk. We

introduce the functions αl(x), l = 1, ..., NE, in the following form

αl(x) =





1

nk

, if x ∈ Pk

⋂
el,

0, otherwise.

(3.34)

Remark. Functions αl form a unity partition on E, i.e.

NE∑

l=1

αl(x) ≡ 1. (3.35)

Let ū and v̄ be vectors of degrees of freedom for E. We construct NE piecewise

constant vector fields uh and vh for each el according to the above procedure. Then

we define the mass matrix M as

(Mu, v) =

Nl∑

l=1

∫

E

αl(x)(a
−1
E ul

h) · vlhdx. (3.36)

Direct calculations show that

M =

NE∑

l=1

Nl

(
∑

k:Pk∈el

|Pk|
nk

)
N−1

l K−1
E N−T

l ,N T
l (3.37)

where Nl are assembling matrices.

39

0 1

23

4

5

6

7

8

Figure 3.8: Partition of a distorted hexahedron into six pyramids

3.2.2 Mass matrices for regular and pinchout cells

Distorted hexahedron

Let E be a distorted hexahedron as shown in Figure 3.8. We denote by {Γi},
i = 1, 6, the set of quadrilateral faces of E. Without loss of generality, we may

assume that the vertex 4 of E is a common vertex of the faces Γ1, Γ2, and Γ3.

Therefore, the vertex 2 is the common vertex of the faces Γ4, Γ5, and Γ6.

Let vertex 8 be the center of E. We set Pi to be the pyramid with the base Γi,

i = 1, 6, and vertex 8 as an apex, and define

e1 = P1

⋃
P2

⋃
P3

and

e2 = P4

⋃
P5

⋃
P6,

as shown on Figure 3.9.

40

0 1

3

4

5

6

7

8

0 1

23

5

6

7

8

Figure 3.9: Subcells e1 (left) and e2 (right) for a hexahedron

The calculations show that the resulting mass matrix from (3.37) would have a

block-diagonal form

M = diag
{
|e1|N−1

1 a−1
E N−T

1 , |e2|N−1
2 a−1

E N−T
2

}
(3.38)

We would also like to note that in the case of a scalar tensor this mass matrix

is easily invertible,

M−1 = aE diag

{
1

|e1|
NT

1 N1,
1

|e2|
NT

2 N2

}
, (3.39)

and is cheap to compute.

41

23

5

6

7
0, 4

1

8

Figure 3.10: Partition of a H1 element into four pyramids and two tetrahedrons

Element H1

Let E be a H1 element as shown in Figure 3.10. We denote by {Γi}, i = 1, 6,

the set of faces of E so that Γ1, Γ2, Γ3, and Γ4 are quadrilateral faces, and Γ5 and Γ6

are triangular faces. Without loss of generality, we may assume that the vertex 5 of

E is a common vertex of the faces Γ1, Γ2, and Γ5, and the vertex 3 is the common

vertex of the faces Γ3, Γ4, and Γ6.

Let vertex 8 be the center of E. We set Pi to be the pyramid with the base Γi,

i = 1, 6, and vertex 8 as an apex, and define

e1 = P1

⋃
P2

⋃
P5

and

e2 = P3

⋃
P4

⋃
P6,

as shown on Figure 3.11. We notice that e1 and e2 do not overlap.

42

5

6

7
0, 4

1

3

8

23

5

6

7
0, 4

1

8

Figure 3.11: Subcells e1 (left) and e2 (right) for a H1 element

43

6

7
0, 4

1, 5

3 2

8

Figure 3.12: Partition of a prism into three pyramids and two tetrahedrons

Horizontal prism

Let E be a prism as shown in Figure 3.12. We denote by {Γi}, i = 1, 5, the

set of faces of E so that Γ1, Γ2, and Γ3 are quadrilateral faces, and Γ4 and Γ5 are

triangular faces. Without loss of generality, we may assume that the vertex 6 of E

is a common vertex of the faces Γ1, Γ2, and Γ4, and the vertex 3 is the common

vertex of the faces Γ2, Γ3, and Γ5.

Let vertex 8 be the center of E. We set Pi to be the pyramid with the base Γi,

i = 1, 5, and vertex 8 as an apex, and define

e1 = P1

⋃
P2

⋃
P4

and

e2 = P2

⋃
P3

⋃
P5,

as shown on Figure 3.13. We notice that in this case e1 and e2 overlap and have

common pyramid P2.

44

6

7
0, 4

1, 5

3 2

8

6

7
0, 4

1, 5

3 2

8

Figure 3.13: Subcells e1 (left) and e2 (right) for a prism

45

4
6

0
2

1, 5

3, 7

8

Figure 3.14: Partition of an element H2 into two pyramids and four tetrahedrons

Element H2

Let E be an element H2 as shown in Figure 3.14. We denote by {Γi}, i = 1, 5,

the set of faces of E so that Γ1 is the bottom quadrilateral face, Γ2 is the top

quadrilateral face, and Γi, i = 3, 6, are the triangular faces. Without loss of

generality, we may assume that the vertex 4 of E is a common vertex of the faces

Γ1, Γ3, and Γ4, and the vertex 2 is a common vertex of the faces Γ2, Γ5, and Γ6.

We construct the vertex 8 the following way. Let Q1 be the center of the face

Γ1 and Q2 be the center of the face Γ2. Then we define vertex 8 to be the center

of the segment Q1Q2. We set Pi to be the pyramid with the base Γi, i = 1, 6, and

vertex 8 as an apex, and define

e1 = P1

⋃
P3

⋃
P4

and

e2 = P2

⋃
P5

⋃
P6,

as shown on Figure 3.15. We notice that in this case e1 and e2 do not overlap.

46

4
6

0

1, 5

3, 7

8
6

0
2

1, 5

3, 7

8

Figure 3.15: Subcells e1 (left) and e2 (right) for a H2 element

47

3, 7

2

6

0, 4

1, 5

Figure 3.16: Tent

Tent

Let E be a tent as shown in Figure 3.16. We denote by {Γi}, i = 1, 4, the set

of faces of E so that Γ1 is the bottom quadrilateral face, Γ2 is the top quadrilateral

face and Γ3 and Γ4 are triangular faces. This way vertex 6 is the common vertex of

the faces Γ1, Γ3, and Γ4 and vertex 2 is the common vertex of faces Γ2, Γ3, and Γ4.

We choose

e1 = e2 = E.

3.2.3 Mass matrices for fault cells

In this Section we describe the discretization technique for the mesh cells with a

fault interface. In general, the mesh on different sides of the fault is non-matching,

hence the fault reconstruction algorithm is used for the cells on both sides, which

results in hexahedrons having one of their faces split into a union of skew polygons.

Depending on the mesh geometry, these polygons might have from three to six

sides, i.e. they range from triangles to skew hexagons.

An example of a hexahedral cell E with a fault interface, which is given by two

48

12

5

3 4

2 1

6

87
10

9

11

Figure 3.17: An example of a fault hexahedral cell E

triangles and one hexagon, is shown on Figure 3.17.

Let E be a fault hexahedral cell. We denote by Vi, i = 1, 8, the vertices of

the hexahedron, and by Γk, k = 1, 5, its regular, non-split faces. The way we

enumerate vertices is shown on Figure 3.17. Assuming that the fault face is on the

right as in the picture, the ordering of other faces is as follows: bottom, top, back,

left, and front.

Skew polygons of the fault face are denoted by Γk, k = 6, N , and enumerated

from the one at the bottom corner to the one at the top corner, as shown on Figure

3.18. Here N stands for the total number of both the regular faces and subfaces of

the fault face. The vertices of those polygons are denoted by Vi, i = 9, M , where

M is the total number of both the original vertices of the hexahedron and the ones

resulting from splitting. Additional vertices are indexed from left to right, bottom

to top, as can be seen on Figure 3.17.

The discretization procedure requires several steps, which are described below.

49

9

6

Γ7

Γ8
5

12

11

4 1

8

10

Γ

Figure 3.18: An example of a fault face

Step 1: Triangulation of the fault face.

As was mentioned earlier, the subfaces of the fault face are skew polygons rang-

ing from triangles to skew hexagons. On this step, we perform further splitting by

triangulating all the polygons with more than three sides. The simplest way to do

so is to choose one of their vertices and connect it with all the others.

For all subfaces Γk, k = 6, N , we do the following. Let Mk be the number of

vertices of the polygon Γk, which are locally denoted by Vk,i, i = 1, Mk, and are

indexed either clockwise or counter-clockwise.

• If Mk = 3, we denote Γk by Γ1
k and set tk = 1;

• If Mk > 3, we connect the vertex Vk,1 with vertices Vk,i, i = 3, Mk − 1. This

results in tk = Mk − 2 triangular subfaces, denoted by Γs
k, s = 1, tk, and

indexed from left to right or from bottom to top.

Performing this procedure we obtain a set of subfaces {Γs
k}, k = 6, N , s = 1, tk,

which is the triangulation of the fault face. The total number of triangular subfaces

50

9
7
1

Γ7
4

Γ7
3

Γ7
2

Γ6
1

Γ8
1

5
12

11

4 1

8

10

Γ

Figure 3.19: An example of the triangulation of a fault face

is denoted by NT ,

NT =

N∑

k=6

tk . (3.40)

An example of such triangulation for the cell E is given on Figure 3.19. The

resulting set of subfaces is {Γ1
6, Γ1

7, Γ2
7, Γ3

7, Γ4
7, Γ1

8}, i.e. the skew hexagon was

split into four triangles, which makes NT , the total number of triangular subfaces,

equal to 6.

Step 2: Splitting the hexahedron into triangular prisms.

Our next step is representing the hexahedron E as a union of NT prisms, where

every prism is triangular and has one of Γs
k, the subfaces of the fault face, as its base.

We do it by going through all the regular faces which have at least one extra vertex

Vi, i ∈ 9, M , on one of their edges, and projecting these vertices onto the opposite

side of the considered skew quadrilateral. Then, we connect every projected point

with its original. If two original vertices are connected, we connect their projections

as well.

51

The following procedure is repeated for all vertices Vi, i = 9, M . Denote the

edge containing Vi by (Vi1Vi2), where i1, i2 ∈ 1, 8, i.e. Vij are the regular vertices of

the hexahedron. Then the regular face which shares the edge (Vi1Vi2) with the fault

face can be denoted by (Vi1Vi2V
′
i2
V ′
i1
). The vertices here are listed either clockwise

or counter-clockwise, i.e. the edge (V ′
i1
V ′
i2
) is the opposite one for the edge (Vi1Vi2).

With the notations introduced, the projection V ′
i of the vertex Vi is defined as

follows:

• V ′
i ∈ (V ′

i1
V ′
i2
), i.e. it’s a point on the opposite edge;

• The ratio of distances to the edge’s endpoints is the same for Vi and V ′
i , i.e.

‖V ′
i − V ′

i1
‖

‖V ′
i − V ′

i2
‖ =

‖Vi − Vi1‖
‖Vi − Vi2‖

, (3.41)

where ‖·‖ is the standard Euclidean norm.

Once all the projected vertices V ′
i , i = 9, M , are obtained, we construct the

edges of the triangular prisms.

For all the introduced vertices V ′
i , i = 9, M , we perform the following:

• The projected vertex V ′
i is connected with the original vertex Vi, forming the

edge (V ′
i Vi);

• For all the vertices Vj , j = 9, M , j 6= i, we check if the points Vi and Vj are

connected, i.e. (ViVj) is the edge of some subface Γs
k, k = 6, N , s = 1, tk. If

they are, we connect their projections V ′
i and V ′

j , obtaining the edge (V ′
i V

′
j);

• Assume that Vi1 is a hexahedron’s vertex belonging to the fault face, and

denote the hexahedron’s vertex on the opposite end of the edge not contained

in the fault face by Vi′
1
. This is the vertex on the face opposite to the fault

face. Starting from Vi1 and Vi′
1
correspondingly, and going clockwise, we

52

denote the fault face by (Vi1Vi2Vi3Vi4), and the opposite face by (Vi′
1
Vi′

2
Vi′

3
Vi′

4
),

where ik, i
′
k ∈ 1, 8, i.e. we describe both faces in terms of the opposite vertices

of the hexahedron.

Then, for all the vertices Vik , k = 1, 4, we check if the points Vi and Vik are

connected, i.e. (ViVik) is the edge of some subface Γs
k, k = 6, N , s = 1, tk. If

they are, we connect the vertices V ′
i and Vi′

k
on the opposite face, obtaining

the edge (V ′
i Vi′

k
).

The described procedure results in the fault hexahedron E being split into a

union of NT triangular prisms. Each such prism has a subface Γs
k, k ∈ 6, N ,

s ∈ 1, tk, as its base, and is denoted by esk. Describing the subface Γs
k by its three

vertices, say, (Vks1
Vks2

Vks3
), ksi ∈ 1, N , we can write Γs

k
′, the other base of the

prism esk, as (V ′
ks1

V ′
ks2

V ′
ks3

), where V ′
ksi

is the corresponding vertex for the vertex

Vksi
, i = 1, 3, on the face opposite to the fault face.

An example of such splitting for the cell E is given on Figure 3.20. If we look

at, say, the prism e18, we can see that one of its bases is the subface Γ1
8, which can

be written as (V8V11V12), and the other one is Γ1
8
′
= (V7V

′
11V

′
12). Here, V

′
11 and V ′

12

are the projections of the fault-specific vertices V11 and V12, while V7 and V8 are the

corresponding vertices of the hexahedron on the fault face and the face opposite to

it.

Step 3: Local discretization of the triangular prisms.

At the current stage, the fault hexahedron E can be considered as the union or

a cluster of NT subcells esk, each of which is a triangular prism. Our next step is to

apply PWC discretization to every prism esk, k = 6, N , s = 1, tk, and obtain NT

local algebraic systems in terms of DOF’s pes
k
and λ̄es

k
.

The detailed description of PWC discretization for triangular prisms has been

53

11’

5

3 4

1

6

87
10

9

11

12

2

9’

12’

10’

Figure 3.20: An example of splitting the hexahedron into triangular prisms

given earlier. The local system matrices obtained are of the form

S
es
k

p,λ =


ΣE 0

0 0


+


Bes

k

Ces
k


M−1

es
k

(
BT

es
k

CT
es
k

)
, k = 6, N, s = 1, tk . (3.42)

Note that pes
k
∈ R, λ̄es

k
∈ R

5, and S
es
k

p,λ ∈ R
6×6.

Step 4: Assembling the cluster matrix.

Let us recall that the fault hexahedron E has a total of N interfaces with other

cells, where a single DOF λE,k is associated with each such interface Γk. Therefore,

the dimension of the vector λE in the local system for the cell E should be equal to

N , i.e. λE ∈ R
N . But, when performing the discretization of the triangular prisms

esk which the fault hexahedron E was previously split into, we actually operated a

greater number of interfaces and corresponding DOF’s. To resolve this matter, let

us first divide the interfaces of the split fault hexahedron into two groups.

• We define an outer subface Γk,s,n to be a face of one and only one subcell

esk, k ∈ 6, N , s ∈ 1, tk. Such subface Γk,s,n is either contained in a certain

interface Γn, n ∈ 1, N , or is the interface Γn itself.

54

The described splitting of the fault hexahedron into triangular prisms results

in a total of (2NT +M − 4) outer subfaces.

If we consider the cell E shown on Figure 3.20, then for, say, subcell e18

one example of an outer subface would be Γ8,1,5 = (V7V8V11V11′), which is

contained in the front interface Γ5, and another one is the subface Γ8,1,8 =

(V8V11V12), which is in fact the fault interface Γ8 itself. Note that the opposite

outer subface Γ8,1,4 = (V7V11′V12′) is only a part of the left interface Γ4.

• We say that an interface Γk,s,k′,s′ is the inner interface if there are two subcells

esk and es
′

k′ , k, k
′ ∈ 6, N , s, s′ ∈ 1, tk, such that Γk,s,k′,s′ is the face of both of

them, i.e. the interface between these subcells. Such interface never shares

more than an edge with any of the interfaces Γn, n = 1, N .

The described splitting of the fault hexahedron into triangular prisms results

in a total of (NT − 1) inner interfaces.

For the cell E on Figure 3.20, an example of the interior interface would be

Γ7,2,7,3 = (V3V4V5V6), which is shared by subcells e27 and e37.

The cluster system matrix is then defined as such an assembling of the local

system matrices for subcells esk, k = 6, N , s = 1, tk, that the entries corresponding

to the outer subfaces Γk,s,n, k = 6, N , s = 1, tk, are lumped together, i.e. we lump

all the outer subfaces contained in the same interface Γn. This matrix is denoted

by S̃E
p,λ,

S̃E
p,λ =

∑

k,s

Ñes
k
S
es
k

p,λ Ñ T
es
k
, (3.43)

where the assembling matrices Ñes
k
, k = 6, N , s = 1, tk, map all the entries corre-

sponding to the DOF’s on the outer subfaces Γk,s,n to a single entry corresponding

to a DOF on the interface Γn.

55

Therefore, the cluster system is given in terms of vectors pE ∈ R
NT and λẼ ∈

R
N+NT−1. The interface DOF’s are indexed in such a way that the vector λ

Ẽ
can

be represented as

λ
Ẽ
=


λE

λ̃E


 , (3.44)

where λE ∈ R
N is the vector of DOF’s corresponding to the interfaces Γn, n = 1, N ,

and λ̃E ∈ R
NT−1 is associated with the interior interfaces.

The cluster system matrix can then be written in a 3× 3 block form,

S̃E
p,λ =




S̃pE S̃pE ,λE
S̃
pE ,λ̃E

S̃T
pE ,λE

S̃λE
S̃
λE ,λ̃E

S̃T

pE ,λ̃E

S̃T

λE ,λ̃E

S̃
λ̃E


 , (3.45)

where the entries corresponding to the interior interfaces have been grouped to-

gether.

Step 5: Elimination of DOF’s corresponding to the the interior interfaces.

The cluster system obtained on the previous step still contains additional DOF’s

associated with the interior interfaces. Therefore, in order to obtain a local system

matrix for the fault hexahedron E, we have to eliminate them by taking the Schur

complement:

SE
p,λ =


 S̃pE S̃pE ,λE

S̃λE ,pE S̃λE


−


S̃

pE ,λ̃E

S̃
λE ,λ̃E


 S̃−1

λ̃E

(
S̃T

pE ,λ̃E

S̃T

λE ,λ̃E

)
. (3.46)

The reduced system is given in terms of vectors pE ∈ R
NT and λE ∈ R

N , where

a component λE,k corresponds to a DOF on the interface Γk, k = 1, N , of the fault

hexahedron E.

The system matrix for the fault hexahedron E can therefore be written in a

56

2× 2 block form,

SE
p,λ =


 SpE SpE ,λE

ST
pE ,λE

SλE


 (3.47)

with SpE ∈ R
NT×NT and SλE

∈ R
N×N . This matrix is then assembled into a global

system matrix S to find solution vectors p and λ.

3.2.4 Accuracy of approximation

In this Section, let us compare the errors of the PWC method with those of

Kuznetsov-Repin elements ([47]).

Consider problem (3.1) with pure Neumann boundary conditions, i.e. ΓN = ∂Ω.

Let the diffusion tensor K be the identity matrix in Ω, and c ≡ 0. Let p∗ be the

reference solution,

p∗(x, y, z) = sin(2x) cos(3y) + xyz2 − const,

and u
∗ = −∇p∗ be the reference flux. We define the right-hand side f to be

f = ∇ · u∗, and the boundary function gN to be gN = u
∗ · n.

Let us introduce the following notations for relative errors:

E(p, L2) = ‖ph − p∗‖L2

/
‖p∗‖L2

,

E(u,L2) = ‖uh − u
∗‖L2

/
‖u∗‖L2

,

E(u, Hdiv) = ‖uh − u
∗‖Hdiv

/
‖u∗‖Hdiv

.

(3.48)

We perform experiments for two types of meshes. The first type is a mesh

with pinchouts, shown on Figure 3.2.4, with different degrees of refinement. The

number of cells for each refinement and relative errors for such meshes are shown in

Table 3.1. The second type of mesh is a mesh with a fault, shown on Figure 3.2.4.

The number of cells for each refinement and relative errors for such meshes are

shown in Table 3.2.

57

We see that for both types of meshes the PWC discretization is almost as good

as KR discretization, and has a significantly smaller construction cost.

58

Figure 3.21: An example of a mesh with pinchouts

Table 3.1: Relative errors for a mesh with pinchouts

of cells
E(p, L2) E(u,L2) E(u, Hdiv)

KR PWC KR PWC KR PWC

704 13.16 13.17 8.85 8.93 12.56 12.56

5632 6.59 6.59 4.41 4.42 6.29 6.29

45056 3.29 3.29 2.20 2.20 3.15 3.15

59

Figure 3.22: An example of a mesh with a fault

Table 3.2: Relative errors for a mesh with a fault

of cells
E(p, L2) E(u,L2) E(u, Hdiv)

KR PWC KR PWC KR PWC

3456 10.81 10.82 7.51 7.40 9.12 9.11

27648 5.41 5.41 3.75 3.69 4.57 4.42

221184 2.71 2.71 1.87 1.84 2.28 2.28

60

3.3 Preconditioner for the PWC system

The preconditioned Conjugate Gradient (PCG) method is one of the most efficient

algorithms for solving systems with symmetric positive definite matrices. The goal

of this Section is to design a symmetric positive definite matrix Ŝ, Ŝ = ŜT > 0,

which can be used as a reliable and sufficiently cheap preconditioner for the system

matrix S from (3.24).

It is well known that the Schur complement matrix S from (3.24) can be written

in the assembling form

S =
∑

NkSkN
T
k , (3.49)

where

Sk =


Σk 0

0 0


+


Bk

Ck


M−1

k

(
Bk Ck

)
, (3.50)

for a regular or pinchout cell, and is given by (3.47) for a fault cell. Using (3.49),

we construct our preconditioner in two stages.

Stage 1.

For each mass matrix Mk let M̃k be its diagonal, i.e.

M̃k = diag(Mk). (3.51)

Then, we introduce matrices

Sk =


Σk 0

0 0


+


Bk

Ck


 M̃−1

k

(
Bk Ck

)
, (3.52)

for regular and pinchout cells. In the case of a fault cell, S̃k is obtained according

to the procedure described in Section 3.2.3 with matrices Mk replaced by matrices

M̃k in (3.42).

We define matrix S̃ as

S̃ =
∑

NkS̃kN
T
k . (3.53)

61

Similar to S, S̃ is a 2× 2 block matrix

S̃ =


S̃11 S̃12

S̃21 S̃22


 , (3.54)

with

S̃22 =
n∑

k=1

Nk,22 S̃k,22 N T
k,22 (3.55)

where

S̃k,22 = CkM̃
−1
k CT

k (3.56)

for a regular or pinchout cell, and the block SλE
from (3.47) for a fault cell.

The matrix M̃−1
k is diagonal, so it follows that the matrices CkM̃

−1
k CT

k , k = 1, n,

are also diagonal with positive diagonal entries. In the case of a fault cell, the block

corresponding to λẼ in (3.45),

S̃λ
Ẽ

=




S̃λE
S̃
λE ,λ̃E

S̃T

λE ,λ̃E

S̃
λ̃E


 , (3.57)

is the assembling of the diagonal matrices CkM̃
−1
k CT

k , which come from the local

prismatic subcells, and is therefore also diagonal. Hence, the block S̃k,22 in the local

fault cell matrix S̃k remains diagonal as well.

Therefore, we have that the matrix S̃22 is diagonal with positive entries.

Now, consider a system

S̃




η̄1

η̄2


 =




ξ̄1

ξ̄2


 . (3.58)

The block Gauss elimination method for this system can be implemented in the

following way. First, we eliminate by substitution the subvector η̄2 from the first

block equation:

62

η̄2 = S̃−1
22

(
ξ̄2 − S̃21ξ̄1

)
, (3.59)

where the diagonal matrix S̃22 is easy to invert. Then, we get the system

A11η̄1 = z̄1 , (3.60)

where z̄1 = ξ̄1 − S̃12 S̃−1
22 ξ̄2, and

A11 = S̃11 − S̃12 S̃−1
22 S̃21 . (3.61)

After solving system (3.60), we can find the remaining solution vector η̄2 from

(3.59).

Stage 2.

It can be shown that A11 is a Stieltjes matrix. Let B11 ∈ R
n×n be a symmetric

and positive definite matrix which we consider to be a suitable preconditioner for

the matrix A11 in (3.60). Then, we define a preconditioner Ŝ for the matrix S by

Ŝ =




B11 + S̃11 S̃−1
11 S̃21 S̃12

S̃21 S̃22


 . (3.62)

We restrict ourselves with two possible choices of B11. One is the well-known

AMG preconditioner, and another is the diagonal preconditioner.

3.3.1 Numerical experiments

We consider the following test example. The domain Ω, shown on Fig. 3.23, is a

parallelepiped with the dimensions 1.0× 1.0× 0.25. It consists of five subdomains,

called geological layers, with layers 2 and 4 being ”thin”. The layers are enumerated

from bottom to top. The mesh used is conforming, uniform in the xy-plane, and is

63

Figure 3.23: Domain with five oblique “bended” geological layers

uniform along z-direction inside each geological layer. Table 3.3 contains the mesh

step sizes in each direction for each layer.

The domain is a parallelepiped with the dimensions 1.0× 1.0× 0.25. The mesh

is uniform for x and y coordinates with the step hxy = 0.3125, i.e. we have a grid of

32× 32 square cells, resulting in 1024 bases for the hexahedrons in each horizontal

mesh layer.

The diffusion tensor is diagonal and piecewise constant, i.e. Ks, the diffusion

tensor in the s-th layer, is as follows:

Ks =




Ks,xy 0 0

0 Ks,xy 0

0 0 Ks,z


 , (3.63)

where Ks,xy and Ks,z are given constants, presented in Table 3.4.

The fault is assumed to happen on the right boundary of the domain, and is

64

Table 3.3: Geometrical parameters of the mesh cells

hxy hz hxy/hz

Layer #1 0.3125 [0.003558, 0.016125] [1.9379, 8.7826]

Layer #2 0.3125 0.000005 6250

Layer #3 0.3125 [0.002258, 0.023737] [1.3165, 13.839]

Layer #4 0.3125 0.00005 625

Layer #5 0.3125 [0.005775, 0.018405] [1.6979, 5.4118]

Table 3.4: Diffusion tensor parameters for the domain with five layers

Layer #1 Layer #2 Layer #3 Layer #4 Layer #5

Ks,xy 5 10000 10 1000 10

Ks,z 1 1000 5 500 1

emulated by splitting the corresponding faces using a set of parallel planes

z − αy = βk, (3.64)

where α is the slope of the plane which depends on the domain height, and βk is a

set of coefficients such that

βk+1 − βk = const.

An illustration of the geometry, leading to the fault hexahedrons described

above, is given on Figure 3.24. There, you can see that the geological layer on the

right side of the fault has been shifted in vertical direction and rotated around the

x-axis, which resulted in the “fault” faces of the cells on both sides being split into

unions of polygons by the planes containing “horizontal” sides of the cells across

the fault.

65

Figure 3.24: The cells on two sides of the geological fault

We compare the performance of the diagonal preconditioner (DIAG), the well-

known AMG preconditioner (AMG), and the preconditioner proposed in this Chap-

ter. In the case of our new preconditionerH = Ŝ−1, we consider two possible choices

for the internal substitution of the matrix A11 by its preconditioner B11 as shown

in (3.62). Using AMG preconditioner for that purpose gives us the first variant,

Schur Complement AMG (SCAMG). The alternative is to use the diagonal precon-

ditioner, which results in Schur Complement Diagonal preconditioner (SCDiag).

We use PCG as an outer iterative procedure with a typical stopping criteria

‖r̄k‖2
‖r̄0‖2

< 10−6. (3.65)

The numerical results are presented in Table 3.5 with the following notations

used:

• tconst - the construction time of a preconditioner;

• tprec - the inversion time of a preconditioner;

• #iter - number of PCG iterations;

• tsol - the solution time of the system;

• ttotal - the total time to solve the system.

66

Table 3.5: Comparison of preconditioners for the domain with five layers

Prec tconst tprec # iter tsol ttotal

c = 0
AMG 0.813 28 0.022 0.731 1.544

SCAMG 0.360 13 0.010 0.179 0.515

c = 100

AMG 0.872 11 0.022 0.301 1.173

Diag 0.001 4622 0.001 14.700 14.701

SCAMG 0.361 11 0.010 0.156 0.517

SCDiag 0.025 2291 0.002 11.076 11.101

c = 10000

AMG 0.694 6 0.021 0.167 0.862

Diag 0.001 602 0.001 1.947 1.942

SCAMG 0.294 10 0.009 0.138 0.432

SCDiag 0.025 348 0.002 1.708 1.732

67

4

3

2

1

4

3

2

1

Figure 3.25: ”Splitting One” (left) and ”Splitting Two” (right) of a quadrilateral

cell

3.4 Cell-centered scheme

In this Section, we are going to describe a way to construct a matrix in terms of

only variables p from the standard mixed hybrid matrix Au,p,λ in terms of u, p and

λ defined in (3.21). In order to do that, we will assume that our mesh consists of

only hexahedral (3D) cells, and that we use the piecewise constant approximation,

described in Section 3.2. We will first describe the idea in 2D and then expand it

to the 3D space.

3.4.1 2D: quadrilateral mesh cells

Let E be a quadrilateral cell. In order to make use of the PWC approximation,

one should be able to split E into two subcells E1 and E2. It can be done in two

different ways, shown on Figure 3.25. Let us call these splittings ”Splitting One”

and ”Splitting Two”.

The stencil for the local mass matrix will play an important role in the following

discussion. It depends on the splitting. Let us denote by ”x” the positions of

68

nonzero elements in the matrix. Then, for the ”Splitting One”, we would have

M =




× ×
× ×

× ×
× ×




, (3.66)

and for the ”Splitting Two” we have

M =




× ×
× ×
× ×

× ×




. (3.67)

Matrix M of (3.21) is a block-diagonal matrix

M =




M1

M2

. . .

MN




, (3.68)

with each Mk having one of the two patterns, (3.66) or (3.67).

The matrix Ap,λ in terms of only p and λ can be derived from the matrix Au,p,λ

by assembling the local Schur complement matrices:

Ap,λ =
∑

k

NkSkN
T
k =


 Ãp Ãp,λ

Ãλ,p Ãλ


 , (3.69)

where

Sk =


Σk 0

0 0


+


Bk

Ck


M−1

k

(
BT

k CT
k

)
. (3.70)

The matrix Sk can be written in a block 2× 2 form

Sk =


 Sk,p Sk,pλ

Sk,λp Sk,λ


 . (3.71)

69

1λ

P
2λ

3λ

4λ

1λ

P
2λ

3λ

4λ

Figure 3.26: Connections p−p and p−λ for the ”Splitting One” (left) and ”Splitting

Two” (right)

Depending on the splitting type, Sk has one of the following two nonzero patterns:



× × × × ×
× × ×
× × ×
× × ×
× × ×




or




× × × × ×
× × ×
× × ×
× × ×
× × ×




. (3.72)

Figure 3.26 shows the connections between degrees of freedom λ and p inside

mesh cells. Connections λ−λ are shown as dotted lines, and connections p−λ are

shown as thin lines.

Now let Ω =
⋃

k Ek where each Ek is a quadrilateral cell. Let us choose the

splitting type of each cell such that each neighbor of a cell with splitting type 1

has splitting type 2, and vice versa. We will call it a chess splitting. An example

of pattern of Ap,λ for this kind of mesh is shown on Figure 3.27.

We see these λ − λ connections form clusters, consisting of one, two, or four

connections, and clusters are isolated. In terms of matrix Ap,λ, it means that there

exists an ordering of λ such that Ãλ is block-diagonal. Therefore, we can easily

construct matrix Ap as a Schur complement. The stencil for the resulting matrix

is shown on Figure 3.28.

70

Figure 3.27: p− p and p− λ connections for the matrix Ap,λ

Figure 3.28: Stencil for the matrix Ap

71

5

4
3

6

2

1λ

λ

λ

λλ

P
λ

5

4
3

6

2

1λ

λ

λ

λλ

P
λ

5

4
3

6

2

1λ

λ

λ

λλ

P
λ

5

4
3

6

2

1λ

λ

λ

λλ

P
λ

Figure 3.29: Connections p−p and p−λ for different splittings of a hexahedral cell

3.4.2 3D: hexahedral mesh cells

For a hexahedral cell we have four different splittings into two subcells. The result-

ing stencils of the matrix Sk are shown on Figure 3.29.

3D analogue of a “chess” ordering results in clusters of degrees of freedom of λ

of one of the sizes 3, 6, 8, 12.

3.4.3 Numerical results

For our experiments, we construct a distorted hexahedron mesh (an example of a

4×6×24 mesh is shown on Figure 3.30). We generate the mesh by taking a regular

Cartesian grid and shifting each node randomly in its neighborhood, so that in each

72

Figure 3.30: Example of a hexahedral mesh (4× 6× 24)

dimension it is shifted by no more than 30% of the mesh step in that dimension.

In Tables 3.6 and 3.7 we compare two ways of solving the original system. The

first way is to solve Ap,λ system by using PCG method with the AMG precondi-

tioner. The results of this approach are shown in the second column of both tables.

The second way (shown in column 3) is to construct the system with the matrix Ap

and to solve it by using PCG method with AMG preconditioner, and then restore

λ degrees of freedom. The restriction and restoration steps time, denoted by Schur

time, takes a significant part of the total time. However, the AMG construction

time for the smaller system is about 30% less than for of the full system, and each

iteration is much cheaper, resulting in a faster solution of the system.

73

Table 3.6: Comparison of two methods for a 20× 30× 120 mesh

AMG AMG w Schur

Schur time (s) - 1.29

Construction time (s) 3.41 2.48

of PCG iterations 14 15

Solution time (s) 4.18 2.71

Total time (s) 7.59 6.48

Table 3.7: Comparison of two methods for a 80× 80× 80 mesh

AMG AMG w Schur

Schur time (s) - 9.04

Construction time (s) 54.85 35.53

of PCG iterations 8 8

Solution time (s) 16.73 7.23

Total time (s) 71.58 51.80

74

Chapter 4

Preconditioner for unsymmetric

M-matrices

Finite volume discretizations of convection-diffusion equations result in large scale

systems of algebraic equations with nonsymmetric diagonally dominantM-matrices.

By the definition, all off-diagonal entries of M-matrices are non-positive.

In this Chapter, we propose and investigate multilevel iterative solvers for M-

matrices with strong diagonal dominance, which are relevant to applications in the

reservoir simulation.

4.1 Problem formulation

In this Chapter, we consider an algebraic system

Ax̄ = b̄, (4.1)

assuming that the system matrix A is an M-matrix. By definition [68], n×n matrix

A with entries aij, i, j = 1, n, is said to be an M-matrix if aij ≤ 0 for all i 6= j, A

is non-singular, and A−1 ≥ Θ, i.e. all entries in A−1 are non-negative (Θ is the null

75

matrix). We additionally assume that A is strictly diagonally dominant matrix, i.e.

n∑

j=1

aij > 0 for all i. (4.2)

Let A be an M-matrix. A splitting

A = B − C, (4.3)

where B−1 ≥ Θ and C ≥ Θ are given matrices, is called a regular splitting of the

M-matrix A.

Let A be a block 2× 2 M-matrix

A =


A11 A12

A21 A22


 (4.4)

with square diagonal blocks A11 and A22. Then matrices A11 and A22 are also

M-matrices.

Let us represent the matrix A from (4.4) in the following equivalent form

A =


A11 A12

A21 S22 + A21A
−1
11 A12


 , (4.5)

where the matrix

S22 = A22 −A21A
−1
11 A12 (4.6)

is said to be the Schur complement for the submatrix A11. It is well known that

S22 is also an M-matrix.

The splitting A = B − C is called weak regular if B−1 ≥ Θ and CB−1 ≥ Θ.

Obviously, a regular splitting is weak regular, but the converse is not always true.

The following theorem plays a fundamental role in the theory of M-matrices.

Theorem 4.1. If A = B −C is a regular splitting of the matrix A, and A−1 ≥ Θ,

then

ρ(B−1C) =
ρ(B−1C)

1 + ρ(A−1C)
< 1. (4.7)

76

Thus, the matrix B−1C is convergent, and the iterative method

Bxk+1 = Cxk + b (4.8)

converges for any initial vector x0.

The iterative method (4.8) can be written in the alternative form

Bxk+1 = Bxk + (b−Axk),

or

xk+1 = xk +B−1(b− Axk). (4.9)

Therefore, one can say that matrix B is a preconditioner for the matrix A in a

general iterative scheme

M(xk+1 − xk) + Axk = b. (4.10)

It can be proved that for a weak regular splitting A = B − C of an M-matrix

A, iterative method (4.8) converges for any initial vector x0 (see [45, 51]).

4.2 Multilevel preconditioner

Let A0 be an M-matrix, and assume that the splitting

A0 = B0 − C0 (4.11)

is regular with B0 being an M-matrix. Assume now that B0 is written in a block

2× 2 form

B0 =


B0,11 B0,12

B0,21 B0,22


 . (4.12)

Define A1 = B0,11 −B0,12B
−1
0,22B0,21.

Lemma 4.1. A1 is an M-matrix.

77

Proof. As B0,12B
−1
0,22B0,21 ≥ 0, all off-diagonal entries of A1 are non-positive.

Also,

B−1
0 =


 A−1

1 −A−1
1 B0,12B

−1
0,22

−B−1
0,22B0,21A

−1
1 B−1

0,22 +B−1
0,22B0,21A

−1
1 B0,12B

−1
0,22


 ≥ 0.

Therefore A−1
1 ≥ 0 and A1 is an M-matrix.

Let us define matrices F1 and F2 as follows:

F1 =


I B0,12B

−1
0,22

0 I


 , F2 =


 I 0

B−1
0,22B0,21 I


 . (4.13)

Then B0 can be written in the following form:

B0 = F1


A1

B0,22


F2.

Lemma 4.2. Let A1 = B1−C1 be a weak regular splitting. Let s ≥ 1 be an integer.

Define Â1 as

Â−1
1 = B−1

1

[
I + (C1B

−1
1) + ...+ (C1B

−1
1)s−1

]
. (4.14)

Then A0 = B̂0 − Ĉ0, where

B̂0 = F1


Â1 0

0 B0,22


F2, (4.15)

is a weak regular splitting.

Proof. Let us first prove that B̂−1
0 ≥ 0. As the splitting of A1 is weak regular,

we have B−1
1 ≥ 0 and C1B

−1
1 ≥ 0. Therefore, Â−1

1 ≥ 0. One can easily show that

F−1
1 ≥ 0 and F−1

2 ≥ 0. As B−1
0,22 ≥ 0, we can conclude that the matrix

B̂−1
0 = F−1

2


Â−1

1 0

0 B−1
0,22


F−1

1

78

is non-negative.

It remains to prove that Ĉ0B̂
−1
0 ≥ 0,

Ĉ0B̂
−1
0 = (B̂0 −A0)B̂

−1
0 = I − (B0 − C0)B̂

−1
0 = (I − B0B̂

−1
0) + C0B̂

−1
0 .

As both matrices C0 and B̂−1
0 are non-negative, it is sufficient to prove that the

matrix I − B0B̂
−1
0 is non-negative:

I − B0B̂
−1
0 = I − F1


A1

B0,22


F2F

−1
2


Â−1

1

B−1
0,22


F−1

1

= F1


I −


A1Â

−1
1

I




F−1

1

= F1


I − A1Â

−1
1 0

0 0


F−1

1

=


I −A1Â

−1
1 0

0 0


 .

Let us prove that I − A1Â
−1
1 ≥ 0:

I − A1Â
−1
1 = I − (B1 − C1)B

−1
1 (I + (C1B

−1
1) + ...+ (C1B

−1
1)s−1)

= I − (I − C1B
−1
1)(I + (C1B

−1
1) + ... + (C1B

−1
1)s−1)

= I − (I − (C1B
−1
1)s) = (C1B

−1
1)s ≥ 0.

Let t ≥ 1. Assume that we constructed a sequence of matrices

A ≡ A0 → B0 → A1 → B1 → · · · → Bt−1 → At → Bt, (4.16)

such that for any k ≥ 1

• Ak is an M-matrix;

79

• Ak = Bk − Ck is a regular splitting with Bk being an M-matrix;

• Bk can be presented in a 2× 2 block form

Bk =


Bk,11 Bk,12

Bk,21 Bk,22


 ,

such that Bk,11 = Ak+1 +Bk,12B
−1
k,22Bk,21;

This block representation is equivalent to the multiplicative form

Bk = Fk,1


Ak+1 0

0 Bk,22


Fk,2, (4.17)

with

Fk,1 =


I Bk,12B

−1
k,22

0 I


 , Fk,2 =


 I 0

B−1
k,22Bk,21 I


 . (4.18)

Using this sequence of matrices, we construct our preconditioner B̂ in a following

way. We start from the coarsest level k = t and define B̂t = Bt. Then, for each k,

k = t− 1, ..., 0, we choose an integer sk and construct the matrix B̂k as

B̂k = Fk,1


Âk+1

Bk,22


Fk,2,

where

Âk+1 = B̂−1
k+1

[
I + (Ck+1B

−1
k+1) + ...+ (Ck+1B

−1
k+1)

sk−1
]
.

It can be shown that for given ξ, the vector η = Â−1
k+1ξ can be computed by the

iterative procedure

η0 = 0,

ηj = ηj−1 + B̂k+1(ξ −Ak+1ηj−1),

η = ηsk .

80

From Lemma 4.2 it follows that the resulting splitting A = B̂0 − Ĉ0 is weak

regular, and therefore the iterative method

xk+1 = xk + B̂−1
0 (b− Axk) (4.19)

is convergent.

4.3 Two-level preconditioner

The goal of this Section is to construct a regular splitting of A = B −C such that

ρ(B−1C) ≤ q < 1, (4.20)

where q is a given parameter.

While there are many splittings satisfying (4.20) (for instance, B = A, C = O

results in ρ(B−1C) = 0), the properties of our algorithm significantly depend on

whether or not the following criteria are met

1. Matrix B should have a sparser structure than that of A;

2. Matrix B should be easier to invert than matrix A.

Let us replace property (2) with an easier one

2′. Matrix B should have greater diagonal dominance than A.

Let i be an index of a row in A. We define aij as

aij =





(A)ii, j = i,

−(A)ij , j 6= i.

(4.21)

Let us denote Ji = {j 6= i | aij 6= 0}. As A is strictly diagonally dominant by our

assumptions, we can write

aii = ci +
∑

j∈Ji

aij, (4.22)

81

where ci > 0.

We define matrix B = (Bij) as

Bij =





c
(1)
i +

∑
j∈Ji

αijaij , j = i,

−αijaij , j 6= i, j ∈ Ji,

0, otherwise,

(4.23)

where αij are some coefficients from the segment [0, 1], and c
(1)
i > 0. It is clear that

B is an M-matrix with strict diagonal domination. One can also show that the

matrix C = B − A = (Cij) has the form

Cij =





c
(2)
i , j = i,

(1− αij)aij, j 6= i,

(4.24)

with

c
(2)
i = c

(1)
i − ci −

∑

j∈Ji

(1− αij)aij . (4.25)

Our goal is to construct a regular splitting, therefore matrix C must be non-

negative, i.e. c
(2)
i ≥ 0, which is equivalent to

c
(1)
i ≥ ci +

∑

j∈Ji

(1− αij)aij . (4.26)

Now consider the following generalized eigenvalue problem

Cw = λBw. (4.27)

As matrix B−1C is non-negative, the Perron-Frobenius theorem states that there

exists an eigenvector w ≥ 0 such that the corresponding eigenvalue is equal to

ρ(B−1C). Let i be an index such that

wi = max
j

wj > 0.

82

Then the i-th equation of (4.27),

c
(2)
i wi +

∑

j∈Ji

(1− αij)aijwj = λ

[(
c
(1)
i +

∑

j∈Ji

αijaij

)
wi −

∑

j∈Ji

αijaijwj

]
,

results in the inequality

(c
(2)
i +

∑

j∈Ji

(1− αij)aij)wi ≥ λc
(1)
i wi,

or

λ ≤
c
(2)
i +

∑
j∈Ji

(1− αij)aij

c
(1)
i

. (4.28)

Substituting c
(2)
i in (4.28) with (4.25), we get

λ ≤ c
(1)
i − ci

c
(1)
i

. (4.29)

In order to satisfy (4.20), we require

c
(1)
i − ci

c
(1)
i

≤ q. (4.30)

Coupled with (4.26), it gives us the following range for c
(1)
i

ci +
∑

j∈Ji

(1− αij)aij ≤ c
(1)
i ≤ 1

1− q
ci. (4.31)

The following condition is required for the unemptiness of the segment:

ci +
∑

j∈Ji

(1− αij)aij ≤
1

1− q
ci, (4.32)

or, in a simplier form,
∑

j∈Ji

(1− αij)aij ≤
q

1− q
ci. (4.33)

As i may be an arbitrary index, this inequality must be satisfied for all rows.

Let us split the set Ji into three subsets, Ji = Ji0 ∪ Ji1 ∪ Ji2, where

Ji0 = {j ∈ Ji | αij = 0} = {j ∈ Ji | (i, j) is nonzero only in C},
Ji1 = {j ∈ Ji | αij ∈ (0, 1)} = {j ∈ Ji | (i, j) is nonzero in both B and C},
Ji2 = {j ∈ Ji | αij = 1}, = {j ∈ Ji | (i, j) is nonzero only in B}.

(4.34)

83

Then we can rewrite (4.33) as

∑

j∈Ji0

aij +
∑

j∈Ji1

(1− αij)aij ≤
q

1− q
ci. (4.35)

Remark 1. The construction of the matrix B clearly shows that the sparse pattern

of the matrix B is at least as sparse as that of A. If any of αij is set to 0, then it

is actually sparser.

Remark 2. From (4.26) we see that c
(1)
i ≥ ci. Moreover, we should choose c

(1)
i to

be the largest possible value, i.e. the right boundary of the segment (4.31),

c
(1)
i =

1

1− q
ci > ci, i = 1, n. (4.36)

Remark 3. One of the possible algorithms of constructing the splitting is as

follows:

1: for all i, i = 1, n do

2: Compute ci = aii −
∑

j 6=i aij ;

3: Order aij , j 6= i, in increasing order;

4: Set s =
q

1− q
ci;

5: for all j 6= i do

6: if aij ≤ s then

7: Set Cij = aij ;

8: s = s− aij ;

9: else

10: Set αij = 1− s/aij;

11: Set s = 0;

12: Set Bij = −αijaij ;

13: Set Cij = (1− αij)aij ;

14: Break;

15: end if

84

Figure 4.1: Graphs of the diagonal blocks of the matrices A (left) and A1 (right)

for a ”horizontal” mesh plane

16: end for

17: Set Bii =
1

1− q
ci −

∑
j 6=i(M)ij ;

18: Set Bii =
1

1− q
ci − ci −

∑
j 6=i(N)ij ;

19: end for

Remark 4. If the smallest off-diagonal value in a row is smaller than the q

1−q
c,

then we may or may not perform the splitting. Splitting increases the complexity

of C and decreases that of B.

Similar to Section 2.3, we can enhance the performance of the preconditioner

by eliminating nodes with few links using Schur elimination procedure.

Fig.4.1 shows the graphs of diagonal blocks of the matrices A0 and A1 which

correspond to a ”horizontal” mesh plane z = const. Fig.4.2 shows the graphs of

diagonal blocks of the matrices A0 and A1 which correspond to a ”horizontal” mesh

plane z = const after the described procedure.

In the Table 4.1, we show the dimensions of matrices Ak (columns n), and the

number of nonzero elements in Ak (columns nnz) for algorithms with and without

Schur complement variants for one of test cases.

85

Figure 4.2: Graphs of the diagonal blocks of the matrices A0 (left) and A1 (center)

for a ”horizontal” mesh plane after Schur elimination

4.4 Numerical results

Let us construct matrix A in two steps.

The first step is to construct an intermediate symmetric M-matrix Â with

strict diagonal domination. This is done by considering the homogeneous Neu-

mann boundary value problem for the diffusion equation

−∇ · (K∇p) + cp = f in Ω,

(K∇p) · n = 0 on ∂Ω.

(4.37)

Here, p is an unknown scalar function (pressure), K = K(x) ∈ R
3×3 is a diffusion

tensor, c is a positive function, f is a source function, Ω is a domain in R
3, ∂Ω is

the boundary of Ω, and n is the unit outward normal to ∂Ω.

The domain Ω, the diffusion tensor K and reaction coefficient c are chosen

the same way as in Section 2.4. We discretize the differential formulation (4.37)

by using the classical finite volume method which is known to produce a Stieltjes

matrix Â. Due to the positivity of the reaction coefficient c, the resulting matrix

has strict diagonal domination.

86

Table 4.1: The dimensions (n) and number of nonzero elements (nnz) of matrices

Ak

Level
Without Schur With Schur

n nnz n nnz

0 1122000 7780000 1122000 7780000

1 346512 1065149 149319 573233

2 131852 342054 30901 109531

3 31298 71982 4321 13245

4 4068 7767 42 83

5 48 72 - -

During the second step, we define matrix A = (Aij) to be

Aij =





(1− αij)Âij , j 6= i,

Âii +
∑

j 6=i αijÂij , j = i,

(4.38)

where coefficients αij are randomly taken from the interval [−α, α] with α < 1. It is

clear that using this method produces a matrix A with Aij ≤ 0 and strict diagonal

domination
∑

j

Aij =
∑

j

Âij > 0.

Therefore, the constructed matrix is a non-symmetric M-matrix.

In Table 4.4, we show the dimensions of matrices Ak (columns n) and the number

of nonzero elements in Ak (columns nnz) for q = 0.8, α = 0.1, and different values

of c.

In our experiments we compare our preconditioner with a diagonal precondi-

tioner and with the AMG preconditioner. It is important for us to introduce a

parameter which would show how efficient a preconditioner is in terms of computa-

87

Table 4.2: The dimensions (n) and number of nonzero elements (nnz) of matrices

Ak for q = 0.8 and α = 0.1

Level
c = 0.1 c = 1 c = 10

n nnz n nnz n nnz

0 1122000 7780000 1122000 7780000 1122000 7780000

1 474500 2115125 149319 573233 16993 57657

2 237426 939229 30901 109531 1400 3920

3 63487 230838 4321 13245 7 13

4 10809 36022 42 83 - -

5 952 2366 - - - -

tional work. We choose this parameter to be the time of calculation of the residual

vector, which is equal to 0.023.

The numerical results are presented in Tables 4.3 and 4.4 for two different values

of α. The following notations are used:

• tconst - the construction time of a preconditioner;

• tprec - the inversion time of a preconditioner;

• #iter - number of PCG iterations;

• tsol - the solution time of the system;

• ttotal - the total time to solve the system.

We use notation ”Msplit(a,b)” to denote that we construct our preconditioner with

q = a and perform b iterations per level.

88

As usual, we use the PCG method as an outer iterative procedure with the

typical stopping criteria

‖Ap̄k − f‖2
‖Ap̄0 − f‖2

≤ ǫ,

where ǫ = 10−6.

89

Table 4.3: Results of experiments for α = 0.1

Prec tconst tprec # iter tsol ttotal

c = 0.1

(γ = 1000)

AMG 7.58 0.400 9 3.92 11.50

Diag 0.02 0.003 35829 1068.86 1068.88

Msplit (0.8, 5) 0.53 0.367 128 50.58 51.12

Msplit (0.7, 5) 0.68 2.032 47 94.21 94.89

c = 1

(γ = 100)

AMG 6.93 0.409 9 3.92 10.85

Diag 0.02 0.003 6669 204.03 204.05

Msplit (0.8, 5) 0.34 0.047 119 8.66 9.00

Msplit (0.7, 5) 0.39 0.135 50 8.19 8.58

c = 10

(γ = 10)

AMG 5.78 0.365 9 3.61 9.39

Diag 0.02 0.003 1176 35.55 35.57

Msplit (0.8, 5) 0.22 0.010 99 3.58 3.80

Msplit (0.7, 5) 0.24 0.014 48 1.95 2.19

c = 100

(γ = 1)

AMG 5.10 0.343 8 2.98 8.08

Diag 0.02 0.003 169 5.01 5.03

Msplit (0.8, 5) 0.19 0.006 68 2.21 2.40

Msplit (0.7, 5) 0.19 0.006 40 1.33 1.52

90

Table 4.4: Results of experiments for α = 0.5

Prec tconst tprec # iter tsol ttotal

c = 0.1

(γ = 1000)

AMG - - - - -

Diag 0.02 0.003 34527 1067.88 1067.90

Msplit (0.8, 5) 0.55 0.407 130 56.42 56.97

Msplit (0.7, 5) 0.68 2.204 47 104.92 105.61

c = 1

(γ = 100)

AMG - - - - -

Diag 0.02 0.003 6183 186.16 186.18

Msplit (0.8, 5) 0.34 0.051 122 9.30 9.64

Msplit (0.7, 5) 0.40 0.159 50 9.13 9.53

c = 10

(γ = 10)

AMG 5.85 0.371 11 4.53 10.38

Diag 0.02 0.003 1110 33.46 33.48

Msplit (0.8, 5) 0.22 0.011 103 3.95 4.17

Msplit (0.7, 5) 0.24 0.016 49 2.09 2.33

c = 100

(γ = 1)

AMG 5.17 0.351 10 3.80 8.97

Diag 0.02 0.003 167 5.04 5.06

Msplit (0.8, 5) 0.19 0.006 69 2.35 2.55

Msplit (0.7, 5) 0.19 0.007 40 1.33 1.53

91

Bibliography

[1] J. E. Aarnes, Efficient domain decomposition methods for elliptic problems

arising from flows in heterogeneous porous media, Comput. Visual. Sci., 8(2)

pp. 93–106, 2005.

[2] Y. Achdou and Yu. Kuznetsov, Substructuring preconditioners for finite ele-

ment methods on non-matching grids, East-West J. Numer. Math., 3 pp. 1–28,

1995.

[3] O. Axelsson, A survey of algebraic multilevel iteration methods, BIT Numerical

Mathematics, 43 pp. 863-879, 2003.

[4] O. Axelsson, An algebraic multilevel preconditioning methods. I, Numer. Math.,

56 pp. 157–177, 1989.

[5] G. Astrachancev, An iterative method for solving elliptic net problems, USSR

Computational Math. and Math. Phys., 11(2) pp. 171–182, 1971.

[6] N. S. Bachvalov, On the convergence of relaxation method with natural con-

strains of the elliptic operator, USSR Computational Math. and Math. Phys.,

6(5) pp. 101–135, 1966.

[7] C. Bernardi, Optimal finite-element interpolation on curved domains, SIAM J.

Numer. Anal., 5 pp. 1212–1240, 1989.

92

[8] C. Bernardi, Y. Maday, and A. Patera, A new nonconforming approach to do-

main decomposition: the mortar element method, Nonlinear Partial Differential

Equations and Their Applications (Eds. H. Brézis, and J.-L. Lions), Pitman,

Boston, pp. 269–286, 1994.

[9] C. Bernardi, Y. Maday, and G. Sacchi-Landriani, Non-conforming matching

conditions for coupling spectral finite element methods, Appl. Numer. Math.,

54 pp. 64–84, 1989.

[10] J. H. Bramble and M. Zlámal, Triangular elements in the finite element

method, Math. Comp., 112 pp. 809–820, 1970.

[11] F. Brezzi, J. Douglas Jr., and L. D. Marini, Two families of mixed finite ele-

ments for second order elliptic problems, Calcolo, 26 pp. 135–148, 1989.

[12] O. Boyarkin, I. Kapyrin, Yu. Kuznetsov, and N. Yavich, Numerical analysis of

a two-level preconditioner for diffusion equations with anisotropic coefficients,

Russian Journal of Numerical Analysis and Mathematical Modeling, 22(4)

pp. 377–392, 2007.

[13] D. Braess, Towards algebraic multigrid for elliptic problems of second order,

Computing, 55 pp. 379–393, 1995.

[14] J. Bramble and X. Zhang, Uniform convergence of the multigrid V-cycle for

an anisotropic problem, Mathematics of Computation, 70(234) pp. 453–470,

2000.

[15] A. Brandt, Multilevel adaptive techniques for fast numerical solution to bound-

ary value problems, In: Proceedings of the Third International Conference

of Numerical Methods in Fluid Dynamics, 1972, Lecture Notes in Physics,

Springer-Verlag, 18 pp. 82–89, 1973.

93

[16] A. Brandt, Multilevel adaptive solution to boundary value problems, Math.

Comput., 31 pp. 333–390, 1977.

[17] A. Brandt, Algebraic multigrid theory: the symmetric case, Appl. Math. Com-

put., 19 pp. 23–56, 1986.

[18] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-

Verlag, 1991.

[19] T. F. Chan and T. P. Mathew, Domain decomposition algorithms, Acta Nu-

merica, 3 pp. 61–143, 1994.

[20] A. Cleary, R. Falgout, V. Henson, J. Jones, T. Manteuffel, S. McCormick,

G. Miranda, and J. Ruge, Robustness and scalability of algebraic multigrid,

SIAM J. Sci. Comput, 21 pp. 1886–1908, 1998.

[21] Z. Chen, G. Huan, and Y. Ma, Computational Methods for Multiphase Flows

in Porous Media, SIAM, Philadelphia, 2006.

[22] T. Clees and K. Stüben, Algebraic multigrid for industrial semiconductor device

simulation, In: Proceedings of the First International Conference on Challenges

in Scientific Computing, Berlin, Germany, Oct 2-5, 2002, Lecture Notes in

Computational Science and Engineering, Springer, 35, pp. 110–130, 2003.

[23] R. W. Clough, The finite element method in plane stress analysis, In: Pro-

ceedings Second ASCE Conference on Electronic Computation, Pittsburg, PA,

1960.

[24] R. Courant, Variational methods for the solution of problems of equilibrium

and variations, Bull. Amer. Math. Comp., 64, pp. 1–23, 1943.

[25] J. E. Dendy, Black box multigrid, J. Comp. Physics, 48 pp. 366–386, 1982.

94

[26] R. Eymard, Th. Gallouët, and R. Herbin, Finite Volume Methods, volume VII

of Handbook of Numerical Mathematics, Elsevier, 2000.

[27] R. Glowinski, Q. V. Dinh, and J. Periaux, Domain decomposition methods for

nonlinear problems in fluid dynamics, Comp. Meth. Appl. Mech. Engng., 40

pp. 27–109, 1983.

[28] W. Hackbusch, Implementation of the multi-grid method for solving partial

differential equations, Technical Report RA 82, IBM T.J. Watson Research

Center, 1976.

[29] W. Hackbusch, The Frequency Decomposition Multi-Grid Method. Part I: Ap-

plication to Anisotropic Equations, Numer. Math., 56 pp 229–245, 1989.

[30] J. Hyman, J. Morel, M. Shashkov, and S. Steinberge, Mimetic finite difference

methods for diffusion equations, Comp. Geosciences, 6(3-4) pp. 332–352, 2002.

[31] R. P. Fedorenko, A relaxation method for elliptic difference equations, USSR

Computational Math. and Math. Phys., 1(5) pp. 1092–1096, 1961.

[32] R. P. Fedorenko, The speed of convergence of one iterative process, USSR Com-

putational Math. and Math. Phys., 4(3) pp. 227–235, 1964.

[33] Yu. Kuznetsov, Matrix iterative methods in subspaces. In: Proceedings of the

International Congress of Mathematicians, 1–2 pp. 1509–1521, Warsaw, 1984.

[34] Yu. Kuznetsov, Iterative Methods in Subspaces, Moscow, 1984 (in Russian).

[35] Yu. Kuznetsov, Multigrid domain decomposition methods, the Third Interna-

tional Symposium on Domain Decomposition Methods for Partial Differential

Equations, SIAM, pp. 290–313, 1989.

95

[36] Yu. Kuznetsov, Multigrid domain decomposition methods for elliptic problems,

Computer Methods in Applied Mechanics and Engineering, 75 pp. 185–193,

1989.

[37] Yu. Kuznetsov, A new parallel algebraic preconditioner, Journal of Numerical

Linear Algebra with Applications, 1(2) pp. 215–225, 1992.

[38] Yu. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on

nonmatching grids, Russ. J. Numer. Anal. Math. Modelling, 10 pp. 187–211,

1995.

[39] Yu. Kuznetsov, Two-level preconditioners with projectors for unstructured

grids, Russian J. Numer. Anal. Math. Modeling, 15(3-4) pp. 247–256, 2000.

[40] Yu. Kuznetsov, Domain decomposition preconditioner for anisotropic diffusion,

Domain Decomposition Methods in Science and Engineering XVII, Springer

Berlin Heidelberg, pp. 105–118, 2008.

[41] Yu. Kuznetsov and O. Boyarkine, New discretizations of the diffusion equation

on distorted hexahedral meshes with pinchouts and faults, ExxonMobil, 2008.

[42] Yu. Kuznetsov and K. Lipnikov, An efficient iterative solver for a simplified

poroelasticity problem, East-West J. Numer. Math., 8(3) pp. 207–221, 2000.

[43] Yu. Kuznetsov, K. Lipnikov, and S. Lyons, Mathematical modeling and numer-

ical algorithms for poroelastic problems, Contemporary Mathematics, 329(6)

pp. 191–202, 2003.

[44] Yu. Kuznetsov, K. Lipnikov, and M. Shashkov, The mimetic finite difference

method on polygonal meshes for diffusion-type problems, Computational Geo-

sciences, 8(4) pp. 301–324, 2004.

96

[45] Yu. Kuznetsov and G. Marchuk, Iterative methods and quadratic functional

functional, Nauka, Novosibirsk, 1972.

[46] Yu. Kuznetsov and A. Prokopenko, A new multilevel algebraic preconditioner

for the diffusion equation in heterogeneous media, Numerical Linear Algebra

with Applications, 17 pp. 759–769, 2010.

[47] Yu. Kuznetsov and S. Repin, New mixed finite element method on polygonal

and polyhedral meshes, Russian Journal of Numerical Analysis and Mathemat-

ical Modelling, 18(3) pp. 261–278, 2003.

[48] Yu. Kuznetsov and S. Repin, Mixed finite element method on polygonal and

polyhedral meshes, In: Proceedings of the 5th ENUMATH conference, Prague,

2003., Springer, pp. 615–622, 2004.

[49] Yu. Kuznetsov and M. F. Wheeler, Optimal order substructuring precondition-

ers for mixed finite element methods on nonmatching grids, East West Journal

of Numerical Mathematics, 3 pp. 127–144, 1995.

[50] O. A. Ladyzhenskaia, Boundary Value Problems of Mathematical Physics,

Springer, New York, 1985.

[51] P. J. Lanzkron, D. J. Rose, and D. B. Szyld, Convergence of nested classical

iterative methods for linear systems, Numerische Mathematik, 58(1) pp. 685–

702, 1990.

[52] S. L. Lyons, R. R. Parashkevov, and X. H. Wu, A family of H1-conforming

finite element spaces for calculations on 3D grids with pinch-outs, Numerical

Linear Algebra with Applications, 13(9) pp. 789–799, 2006.

[53] S. Margenov and P. Vassilevski, Algebraic multilevel preconditioning of

anisotropic elliptic problems, SIAM J. Sci. Comput., 15(5) pp. 1026–1037, 1994.

97

[54] L. Margolin, M. Shashkov, and P. Smolarkiewicz, A discrete operator calculus

for finite difference approximations, Comput. Meth. Appl. Mech. Engrg., 187

pp. 365–383, 2000.

[55] T. P. A. Mathew, Domain Decomposition Methods for the Numerical Solution

of Partial Differential Equations, Springer, Berlin, 2008.

[56] S. F. McCormick, Multigrid Methods, Philadelphia, SIAM, 1987.

[57] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order

elliptic problems, In: Mathematical Aspects of Finite Element Methods (Eds.

I. Galligani and E. Magenes), Springer-Verlag, New York-Berlin, pp. 292–315,

1977.

[58] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.

[59] A. A. Samarskii, The theory of difference schemes, Marcel Dekker, Inc. New

York-Basel, 2001. (Translation from Russian version Teoriya Raznostnych

Schem, Moscow, Nauka, 1977).

[60] H. A. Schwarz, Gesammelte Mathematische Abhandlungen, Vierteljahrsschrift

der Naturforschenden Gesselschaft in Zürich 15, pp. 272–286, 1870.

[61] Tenth SPE Comparative Solution Project, model 2,

http://www.spe.org/web/csp//datasets/set02.htm

[62] K. Stüben, Algebraic multigrid: experience and comparisons. Applied Math.

and Comp., 13 (3-4) pp. 419–451, 1983.

[63] K. Stüben, A review of algebraic multigrid, Journal of Computational and

Applied Mathematics, 128(1-2) pp. 281–309, 2001.

98

[64] K. Stüben, Solving Reservoir Simulation Equations, Ninth International Forum

on Reservoir Simulation, Abu Dhabi, United Arab Emirates, 2007.

[65] K. Stüben, P. Delaney, and S. Chmakov, Algebraic Multigrid (AMG) for

Ground Water Flow and Oil Reservoir Simulation, presented at the Ground-

water Modelling Conference “MODFLOW and MORE”, Colorado School of

Mines, Golden, Colorado, Sept 17-19, 2003.

[66] A. Toselli and O. Widlund, Domain Decomposition Methods–Algorithms and

Theory, Springer, Berlin, 2005.

[67] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press,

2001.

[68] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, 1962.

99

