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ABSTRACT

Multiscale modeling problems have become an active research area in recent years.

There are many systems involving a large set of variables and these variables mostly

behave in largely different time scales. It is necessary to derive proper effective models

when one needs to obtain dynamical models that reproduce statistical properties of

essential variables without wasting the computational time to compute non-essential

variables in high dimensional systems.

In this dissertation, we develop two new approaches for stochastic effective mod-

els. The Markov chain stochastic parameterization technique is proposed for the

effective models in the first part of this dissertation. This is a numerically oriented

approach where some parts of the right hand side of essential variables are mod-

eled by conditional Markov chains. It is shown that, under the proper conditioning

scheme, statistical properties of essential variables from effective models have a good

agreement with full models. Furthermore, we illustrate that the implementation of ef-

fective models including the conditioning scheme and the estimation of the transition

probability matrices is simple and straightforward.

For the second part of this dissertation, we propose effective models using a

stochastic delay differential equation. The memory part in stochastic delay mod-

els is a simple linear combination of essential variables with finite number of delays.

We apply this technique to the Truncated Burgers-Hopf equation and show that the

effective model reproduces statistical behaviours of the full model.

v



Contents

Acknowledgments iii

Abstract v

List of Tables viii

List of Figures xi

1 Introduction and Background 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Markov Chain Modeling Approach for Effective Models 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 General Setup for Markov Chain Modeling . . . . . . . . . . . . . . . 6

2.2.1 The Estimation of Transition Probability Matrices . . . . . . . 9

2.2.2 The State Space of the Markov Chain . . . . . . . . . . . . . . 10

2.3 Prototype Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Triad Model Coupled with 2 Independent

Non-essential Variables . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Triad Model Coupled with Dependent

Non-essential Variable . . . . . . . . . . . . . . . . . . . . . . 31

vi



2.4 Truncated Burgers-Hopf Model . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 The TBH Equation . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 The Effective Model for TBH . . . . . . . . . . . . . . . . . . 39

2.4.3 One Essential Variable, λ = 1 . . . . . . . . . . . . . . . . . . 40

2.4.4 Two Essential Variables, λ = 2 . . . . . . . . . . . . . . . . . 44

2.4.5 The Effective Model for TBH with Non-zero Hamiltonian . . . 47

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Stochastic Delay Differential Equation for the Effective Model 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 General Setup for the Stochastic Delay Model . . . . . . . . . . . . . 52

3.2.1 Model Setup and Parameter Estimation . . . . . . . . . . . . 53

3.3 The Effective Model for the

First Fourier Mode of TBH System . . . . . . . . . . . . . . . . . . . 56

3.3.1 Numerical Results for One Fourier Mode . . . . . . . . . . . . 57

3.4 The Effective Model for the

First Three Fourier Modes . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Appendix 79

A Asymptotic Mode Elimination 79

A.1 Forward and Backward Equations . . . . . . . . . . . . . . . . . . . . 79

A.2 Asymptotic Mode Elimination . . . . . . . . . . . . . . . . . . . . . . 82

A.2.1 Averaging Method . . . . . . . . . . . . . . . . . . . . . . . . 82

A.2.2 Homogenization Method . . . . . . . . . . . . . . . . . . . . . 85

B Least Square Method 90

Bibliography 92

vii



List of Tables

2.1 Mean and variance of x1, x2, and x3 in the simulation of the full model

defined in (2.9), the asymptotic reduced model in (2.12), and the

Markov chain effective model in (2.10). The parameters of the stochas-

tic triad system are defined in (2.13) . . . . . . . . . . . . . . . . . . 17

2.2 Mean and variance of x1, x2, and x3 in the simulation of the full model

in (2.9), and the Markov chain effective model in (2.10). The Markov

chain effective model has 11 states. The state spaces for the effecitve

model are both discrete and continuous. . . . . . . . . . . . . . . . . 20

2.3 Mean and variance of x1, x2, and x3 from the full model in (2.9) and

the Markov chain effective models in (2.10). The numbers of states in

the Markov chain effective model are 5, 7, 11, and 15. . . . . . . . . . 24

2.4 Means and variances of x1, x2, and x3 from the full model in (2.9) and

the Markov chain effective model in (2.10). The time steps used in the

effective model are 0.0001, 0.001, 0.005, 0.01, and 0.1 . . . . . . . . . 26

2.5 Mean and variance of x1, x2, and x3 from the full model in (2.9), the

asymptotic reduced model in (2.12), and the Markov chain effective

model in (2.10) The time steps for the Markov chain effective model

are 0.01 and 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



2.6 Mean and variance of essential variables from the full model defined in

(2.18), the asymptotic reduced model defined in (2.20), and the Markov

chain effective model with different conditioning schemes. . . . . . . . 34

2.7 Mean, variance, and kurtosis of u1 from the full model and the effective

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Mean, variance, and kurtosis of u1 and u2 from the full model and the

effective model with λ = 2. . . . . . . . . . . . . . . . . . . . . . . . . 45

2.9 Mean, variance, and kurtosis of u1 from the full model and the effective

model. The TBH equation has non-zero Hamiltonian. . . . . . . . . . 48

3.1 The coefficients of the stochastic delay differential equation defined in

(3.16). The coefficient values are obtained by the least square method

defined in (3.11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 The correlation time of ere1 , eim1 , ure
1 , and uim

1 . . . . . . . . . . . . . . 62

3.3 Mean, variance, and kurtosis of ure
1 and uim

1 from the full model and

the stochastic delay effective model defined in (3.16). . . . . . . . . . 64

3.4 The coefficients of the stochastic delay effective model defined in (3.16)

with two time delays. The coefficient values are obtained by the least

square method defined in (3.11). . . . . . . . . . . . . . . . . . . . . . 66

3.5 The coefficients of the stochastic delay effective model defined in (3.16)

with ten delays. The coefficient values are obtained by the least square

method defined in (3.11). . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Mean, variance, and kurtosis of ure
1 and uim

1 from the full model and

the effective model defined in (3.16). The effective model consists of

two time delays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Mean, variance, and kurtosis of ure
1 and uim

1 from the full model and

the effective model defined in (3.16). The effective model consists of

ten time delays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



3.8 Mean, variance, and kurtosis of ure
1 and uim

1 from the full model and the

effective model with five time delays. The effective model is numerically

integrated with different time steps. . . . . . . . . . . . . . . . . . . . 70

3.9 Mean, variance, and kurtosis of ure
i and uim

i for i = 1, 2, 3 from the full

model and the effective model. . . . . . . . . . . . . . . . . . . . . . . 74

x



List of Figures

2.1 Auto-correlation functions of essential variables, x1, x2, x3, and non-

essential variables, y1, y2, from a full model in equation (2.9). . . . . . 16

2.2 Auto-correlation function of x1 from the full model in (2.9), the asymp-

totic reduced model in (2.12), and the Markov chain effective mdoel in

(2.10). The Markov chain effective model has 11 states for the Markov

chain. The partition for the state is defined in (2.14). . . . . . . . . . 18

2.3 Auto-correlation functions of x2 and x3 from the full model in (2.9),

the asymptotic reduced model in (2.12), and the Markov chain effective

mdoel in (2.10). The Markov chain effective model has 11 states for

the Markov chain. The partition for the state is defined in (2.14). . . 19

2.4 Comparison of the auto-correlation function of x1 between discrete

state space and continuous state space. The number of states is 11. . 21

2.5 Auto-correlation functions of x1 from the full model in (2.9) and the

Markov chain effective model in (2.10) with different numbers of states

of the Markov chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Auto-correlation function of x1 from the full model in (2.9) and the

Markov chain effective model in (2.10). The time steps used in the

Markov chain effective model are 0.0001, 0.001, 0.005, 0.01, and 0.1.

Note that the Markov chain effective models with ∆t = 0.0001 and 0.1

do not properly reproduce the auto-correlation function of x1. . . . . 25

xi



2.7 Auto-correlation functions of x1, x2, x3, y1, and y2 from the full model

in (2.9) with the parameters in (2.17). . . . . . . . . . . . . . . . . . 28

2.8 Auto-correlation function of x1 from the full model in (2.9), the asymp-

totic reduced model in (2.12), and the Markov chain effective model in

(2.10). The time steps for the Markov chain effective model are 0.01

and 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Auto-correlation function of x1 from the full model, the asymptotic

reduced model, and the Markov chain effective model with different

conditioning schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Auto-correlation functions of uk, k = 1, ..., 5. The TBH has Λ =

20, E = 0.4, and H = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.11 Statistical properties of u1. The top left figure is the ACF of ure
1 . The

top right is the ACF of uim
1 . The bottom left is the PDF of ure

1 and

the bottom right is the PDF of uim
1 . . . . . . . . . . . . . . . . . . . . 43

2.12 Auto-correlation functions of u1 and u2. The top left figure is the ACF

of ure
1 . The top right is the ACF of uim

1 . The bottom left is the ACF

of ure
2 and the bottom right is the ACF of uim

2 . . . . . . . . . . . . . . 46

2.13 Probability density functions of u1 and u2. The top left figure is the

PDF of ure
1 . The top right is the PDF of uim

1 . The bottom left is the

PDF of ure
2 and the bottom right is the PDF of uim

2 . . . . . . . . . . . 46

2.14 Statistical properties of u1. The top left figure is the ACF of ure
1 . The

top right is the ACF of uim
1 . The bottom left is the cross-correlation

between ure
1 and uim

1 . The bottom right is the PDF of ure
1 . . . . . . . 49

3.1 Cross-correlation function between gre1 and u1. The solid line is the

cross-correlation between gre1 and ure
1 . The dashed line is the cross-

correlation between gre1 and uim
1 . . . . . . . . . . . . . . . . . . . . . . 59

xii



3.2 Cross-correlation function between gim1 and u1. The solid line is the

cross-correlation between gim1 and uim
1 . The dashed line is the cross-

correlation between gim1 and ure
1 . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Cross-correlation functions between noises (ere1 , eim1 ) and essential vari-

ables (ure
1 , u

im
1 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Auto-correlation functions of ere1 and ure
1 . Note that the auto-correlation

of ere1 decorrelates faster than the auto-correlation of ure
1 . . . . . . . . 63

3.5 Comparison of statistical properties of u1 between the full model and

the stochastic delay effective model defined in (3.16). The auto-correlation

of ure
1 is on the top left. The auto-correlation of uim

1 is on the top right.

The cross-correlation between ure
1 and uim

1 is on the bottom left. The

probability density function of ure
1 is on the bottom right. . . . . . . . 65

3.6 Comparison of statistical properties of u1 between the full model and

the stochastic delay effective model defined in (3.16). The effective

model has two time delays. The auto-correlation of ure
1 is on the

top left. The auto-correlation of uim
1 is on the top right. The cross-

correlation between ure
1 and uim

1 is on the bottom left. The probability

density function of ure
1 is on the bottom right. . . . . . . . . . . . . . 68

3.7 Comparison of statistical properties of u1 between the full model and

the stochastic delay effective model defined in (3.16). The effective

model has ten time delays. The auto-correlation of ure
1 is on the top left.

The auto-correlation of uim
1 is on the top right. The cross-correlation

between ure
1 and uim

1 is on the bottom left. The probability density

function of ure
1 is on the bottom right. . . . . . . . . . . . . . . . . . . 69

3.8 Auto-correlation functions of ure
1 from the effective model. The effec-

tive model is numerically integrated with different time steps. . . . . 71

3.9 Correlation functions between grei and ure
i , i = 1, 2, 3. . . . . . . . . . 72

xiii



3.10 The auto-correlation functions of erei and ure
i , i = 1, 2, 3. Note that the

decorrelation time of ei is faster than ui, for i = 1, 2, 3. . . . . . . . . 73

3.11 Statistical properties of u1 from the full model and the stochastic delay

effective model. The auto-correlation of ure
1 is on the top left. The auto-

correlation of uim
1 is on the top right. The cross-correlation between

ure
1 and uim

1 is on the bottom left. The probability density function of

ure
1 is on the bottom right. . . . . . . . . . . . . . . . . . . . . . . . . 75

3.12 Statistical properties of u2 from the full model and the stochastic delay

effective model. The auto-correlation of ure
2 is on the top left. The auto-

correlation of uim
2 is on the top right. The cross-correlation between

ure
2 and uim

2 is on the bottom left. The probability density function of

ure
2 is on the bottom right. . . . . . . . . . . . . . . . . . . . . . . . . 76

3.13 Statistical properties of u3 from the full model and the stochastic delay

effective model. The auto-correlation of ure
3 is on the top left. The auto-

correlation of uim
3 is on the top right. The cross-correlation between

ure
3 and uim

3 is on the bottom left. The probability density function of

ure
3 is on the bottom right. . . . . . . . . . . . . . . . . . . . . . . . . 77

xiv



Chapter 1

Introduction and Background

1.1 Background

In many high-dimensional systems, the system variables evolve on largely different

time scales. Often, only a small subset of variables is of interest. These variables

are called the essential variables (also sometimes called slow variables or resolved

variables) in the multiscale modeling literature. The essential variables mainly repre-

sent the large-scale behaviour of the system whereas the non-essential variables (fast

variables or unresolved variables) represent the small-scale behaviour of the system.

To obtain statistical properties of essential variables, these systems have to be fully

solved for all variables. Most of the computational time in numerical simulations

is wasted on resolving the non-essential variables. Furthermore, since most of non-

essential variables evolve on a fast time scale, a small time step must be utilized in

the numerical integration in order to have a reasonable accuracy of a solution. Thus,

it is not efficient to fully solve the full system in order to obtain statistical properties

of essential variables. Therefore, there is a need for effective models that describe the

dynamics of only essential variables. However, in many applications, the main objec-

tive of the effective models is not to reproduce the trajectory of essential variables
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exactly, but to develop the effective models that reproduce statistical behaviours of

essential variables of full systems.

The multiscale models are often found in many applications. For example, it is

common in the atmospheric-oceanic models [3, 5, 6] that the variables vary on very

different time scales. The atmosphere variables dominantly evolve on the time scale

of days or weeks. On the other hand, the ocean variables evolve on a longer time scale

such as months or years [5, 3]. To study the climate change problem, it is necessary

to consider coupled atmospheric-oceanic system. However, the numerical integration

is extremely inefficient since the time step is limited by atmosphere variables.

Another application of multiscale modeling is chemical reaction models [22, 23,

24]. Many chemical reactions often occur on largely different time scales. The fast

reactions are fired more frequently than the slow reactions. Both of fast and slow

reactions involve some of the same chemical species. In general, the slow reaction

plays an important role of the system. However, most of computational time is spent

on the fast reaction. Therefore, from the computational point of view, there is a need

for the effective models that can describe behaviours of the slow reactions.

The derivation of effective models for essential variable has been actively studied in

recent years. Several approaches have been developed for the effective models. These

approaches can be categorized as semi-analytical approaches and numerically oriented

approaches. Some semi-analytical approaches are based on Mori-Zwanzig formalism

[31, 25]. It is based on the projection of all variables to the space of essential variables.

The dynamics of essential variables obtained from Mori-Zwanzig formalism is called

the generalized Langevin equation. It generally consists of three parts. The first

part depends on the current values of essential variables. Therefore, it is referred to

Markovian term. The second part involves the past values of essential variables and,

therefore, represents the memory effect. The last part can be viewed as a noise term

of the effective models. The techniques based on Mori-Zwanzig formalism include the

2



optimal prediction framework [10, 11, 12, 13, 8, 9]. Other semi-analytical approaches

include the stochastic mode reduction technique [1, 2, 3, 4, 5] and the coarse-graining

of spin-flip stochastic models [33, 34, 35]. These techniques are based on results of

convergence of stochastic processes [42, 43, 44, 45].

Some of the stochastic mode reduction techniques utilize the asymptotic mode

elimination approach. The asymptotic approach is the method that eliminates non-

essential variables based on an infinite time scale separation. It is assumed that

essential variables and non-essential variables are in very different regimes. Gener-

ally, to derive effective models, non-essential variables are replaced by their average

quantities. This technique is called the averaging method. The average quantities

can be constant values or functions that depend on essential variables. However, if

the average quantities are zero, this approach cannot correctly reproduce the statisti-

cal properties of the full model. In this case, one needs to utilize the homogenization

method which assumes a faster time scale of non-essential variables. In principle, both

averaging and homogenization methods require an infinite scale separation. However,

in many systems, the time scales of essential and non-essential variables might overlap

and, therefore, there is no clear separation of time scales in this case. The effective

models from the asymptotic approach may not be able to reproduce the statistical

properties of the full system.

The numerically oriented approaches include methods for estimation of stochastic

differential equations from numerical or observational data [36, 16, 17, 15], Heteroge-

neous Multiscale Methods [28, 29, 30, 14], and application of Hidden Markov Models

[26, 32]. These techniques use numerical or observational data to estimate the effective

model.
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1.2 Dissertation Outline

In this dissertation, we propose two approaches to obtain the effective models. These

two approaches can be categorized as numerically oriented approaches. For the first

approach, we introduce the Markov chain variables in the effective models. We pa-

rameterize the interaction of non-essential variables appearing in the dynamics of

essential variables by conditional Markov chains. Markov chains are conditioned on

the state of essential variables. The details of Markov chain parameterization are

given in chapter 2. We give an algorithm to construct Markov chains from numerical

data in section 2.2. The construction of a Markov chain is simple and straightfor-

ward. It can be easy to implement for effective models. We apply this algorithm to

the stochastic triad model and the Truncated Burgers-Hopf equation.

Another approach is the linear stochastic delay differential equation model. Gen-

erally, the effective models that obtain from the projection of non-essential variables

consist of the Markovian term, the memory effect term, and the noise term. In our

approach, we choose the memory term as a finite linear combination of the past his-

tory of the essential variables and approximate the noise term by some stochastic

processes.The coefficients in a linear combination term are obtained by fitting equa-

tions with a least square method. This approach does not assume any knowledge

of the model and is entirely data driven. If there is a strong time scale separation

between essential variables and residuals, then residuals from least square method

can be approximated by white noise. The white noise approximation is based on the

asymptotic mode elimination technique [37, 38]. This approach is given in details in

chapter 3.
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Chapter 2

Markov Chain Modeling Approach

for Effective Models

2.1 Introduction

As we mentioned in Chapter 1, the Markov chain effective models are based on

a numerically oriented approach. The main idea of this approach is to construct

a Markov chain that represents the behaviours of the interactions of non-essential

variables. The main difference from other reduction techniques is that the time scale

separation is not essential for this approach. This chapter describes the construction

of the Markov chain effective models including the estimation of transition probability

matrix and the estimation of the value of the Markov chain. The rest of this chapter is

organized as follows. In section 2.2, we describe the construction of the Markov chain

in general models. We describe how to setup Markov chain effective models from the

numerical data obtained from the full model. Parameter estimation is also described

in this section. Then, we apply the concept of Markov chain effective models to

prototype models in section 2.3. We study the factors that affect the behaviours of

the Markov chain effective models. These factors include the time step used in the

5



parameter estimation and numerical integration of the effective models, numbers of

states in Markov chain models, and the number of conditional Markov chains. We also

apply the Markov chain effective models to a high-dimensional deterministic system

such as the Truncated Burgers-Hopf (TBH) equation. The details are provided in

section 2.4. Finally, conclusions are included in section 2.5

2.2 General Setup for Markov Chain Modeling

We consider the dynamical systems where the dependent variables can be categorized

into two groups: the essential variables, x, and the non-essential variables, y. The

essential variables are typically the variables of interest. They represent the average

behaviour of the system. Let us consider the system of the following form

dx

dt
= f(x) + g(x, y), (2.1a)

dy

dt
= h(x, y). (2.1b)

Both x and y are vector-valued variables where the dimension of x is normally less

than the dimension of y. The main objective of this chapter is to obtain the effective

model that describes the dynamics of the essential variables by replacing the interac-

tion of the non-essential variables and the essential variables with the approapriate

set of conditional Markov chains. We would like to emphasize that the purpose of

the effective model is to reproduce the long term statistical behaviours of essential

variables, not the original trajectory of essential variables. Thus, in (2.1), g(x, y) is

replaced by the Markov chain. For the effective model, we seek the equation of the

following form

dX

dt
= f(X) +m(Z;X) (2.2)

where m(Z;X) represents the collection of conditional Markov chains. These Markov

chains are conditioned on the states of essential variables. The future values of the

6



Markov chain not only depend on the current values of the Markov chain, but also

depend on the current values of the essential variables. Since the Markov chain

modeling approach is an empirical approach, the data are obtained by sampling from

the continuous model with a discrete time step. Thus, we consider the discrete version

of (2.2) which can be written equivalently as follows

Xn+1 = Xn + f(Xn)∆t + Zn+1∆t. (2.3)

Here Zn+1 = m(Zn;Xn) is the Markov chain value at time step n + 1 generated by

conditioning on the value of Zn and Xn. Xn := X(n∆t) represents the time series of

the essential variables.

To construct the conditional Markov chain, the discrete data of g(x, y) has to be

obtained from the full system. This can be done by integrating the full system with

time step δt and sampling the data with time step ∆t. In general, we assume that

δt ≤ ∆t. The time step, ∆t, is the same time step used in the numerical integration

of the effective model (2.3).

For our simulations, we are interested in stationary statistical quantities of es-

sential variables. If the process is ergodic, stationary statistical quantities can be

obtained by time averaging instead of ensemble average [40]. In our simulations, we

use time averaging to obtain statistical properties and we denote T as a time length

for computing statistics by time averaging. Typically, T is a large number in order

to get accurate statistical quantities.

To obtain the time series of the full model, we sample data with a time length of

T0. Generally, T0 is a short length of time such that the data are obtained enough to

construct the effective model. T0 is typically much less than T (T0 << T ).

Let gn = g(xn, yn) = g(x(n∆t), y(n∆t)) be a time series of g(x, y) sampled at time

step ∆t and xn = x(n∆t) a time series of x sampled with time step ∆t. Let N0 = ⌊ T0

∆t
⌋

where ⌊x⌋ denotes the greatest integer that is less than or equal to x. Thus, N0 is the

length of time series that we use in the construction of the Markov chain. Since x has

7



a continuous state space, it requires an infinite number of conditional Markov chains

in order to condition on every state space value of x. This is not possible in a practical

situation. To avoid this problem, we define a finite partition on x and construct the

conditional Markov chain based on this partition. The number of subintervals in this

partition plays an important role in the statistical properties of the effective model

as we will show in section 2.3 and section 2.4 of this chapter.

In general, if x is a vector-valued variable, a Markov chain can be conditioned on

one or more components of x. However, for simplicity, we illustrate the construction

of the conditional Markov chain based on one component of x. The case where the

Markov chain is conditioned on two or more components of x is similar to the case

where the Markov chain is conditioned on one component of x, but the conditioning

scheme is more complicated. In this section we assume that x is a one-dimensional

variable. Let J = {−∞ = x0 < x1 < . . . < xM = ∞} be a partition on x and let Jk

denote the interval (xk−1, xk]. Then, the number of subintervals is M . This number,

M , equals to the number of condititional Markov chains. Each conditional Markov

chain consists of its own transition probability matrix. The detail for estimating

the transition probability matrix is given in the next subsection. Similarly, since we

assume that the number of state spaces of the Markov chain is finite, it also requires

a finite partition of g(x, y). Let N be the number of states of the Markov chain and

let I = {−∞ = g0 < g1 < . . . < gN = ∞} be the partition of g(x, y) and let Ii denote

the subinterval (gi−1, gi]. The size of the transition probability matrix is, therefore,

N×N . Based on the number of conditional Markov chains and the number of states,

it requires MN2 coefficients to be estimated for the effective model. As we will see

later, the typical values ofM and N are in the order of 5 to 10 and the empirical result

shows that the time series with 104 − 105 sample points provides a good estimate for

the effective model. The partitions I and J are empiricallly determined. After we

define these partitions, the transition probability matrices have to be estimated. The

8



next subsection gives the detail on the estimation of transition probability matrices.

Note that, in the case of vector-valued variable, x, the conditioning scheme of

the Markov chain is more complicated. We give an example for a two-dimensional

case, i.e. x = (x1, x2). Assume that the Markov chains in the effective model depend

on both x1 and x2. Also, assume that the partitions of x1 and x2 have M1 and M2

subintervals, respectively. Then, the number of conditional Markov chains in this

case is M1M2. The number of required coefficients is, therefore, M1M2N
2. It requires

more sample points in order to have an accurate estimation of the Markov chain.

This general idea can be applied to the conditioning scheme on two or more essential

variables. However, it may not be possible in practical situations since it requires

more data as the dimension of essential variables increases.

2.2.1 The Estimation of Transition Probability Matrices

The method that we use to estimate the transition probability matrices is a simple

counting method. The method counts the number of state changes and normalizes

this number by the total sum of state changes to obtain the transition probability.

Let Qk be the transition probability matrix for the kth conditional Markov chain.

This matrix is used to generate the value of the Markov chain in the effective model

when the value of X is in the subinterval (xk−1, xk]. Let qkij denote the element of

Qk at row i and column j. By the definition of the transition probability matrix, we

write

qkij = Pr(gn+1 ∈ Ij | gn ∈ Ii, xn ∈ Jk). (2.4)

Equation (2.4) is the probability that the Markov chain changes from state i to state

j conditioned on the essential variable, x, being in state k. Thus, to estimate this

probability, we count the number of data points such that gn ∈ (gi−1, gi], gn+1 ∈

9



(gj−1, gj], and xn ∈ (xk−1, xk]. Define the indicator function as follows

1kij(gn+1, gn, xn) =



























1, if gn+1 ∈ (gj−1, gj] and gn ∈ (gi−1, gi] and

xn ∈ (xk−1, xk]

0, otherwise.

(2.5)

The counting method that we described above can be expressed in mathematical

notation as follows

q̂kij =

∑N0−1
n=0 1kij(gn+1, gn, xn)

∑N
j=1[

∑N0−1
n=0 1kij(gn+1, gn, xn)]

. (2.6)

Equation (2.6) can be viewed as the number of changes that g changes from Ii to Ij

where x is in Jk. Then, this number is normalized by the total number of changes from

state Ii to all of the states. Thus, the summation over each row of Qk equals to 1 and

Qk satisfies the stochastic matrix property. Recall that there are two components for

the Markov chain. One is the transition probability matrix and the other is the value

of the state space of the Markov chain. The procedure to obtain transition probability

matrix was already described in this subsection. The next subsection gives the detail

on how to generate a state space value. The state space can be either discrete state

space or continuous state space. However, based on the numerical experiment in

section 2.3, both discrete state space method and continuous state space method

provide similar statistical results for the effective model. We will comment on the

state space later in section 2.3.

2.2.2 The State Space of the Markov Chain

We provide two approaches for the state space of the Markov chain: the discrete

state space and the continuous state space. The comparison result between these

two approaches is presented in section 2.3. The details of these two approaches are

described as follows.
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Discrete State Space

In the effective model, the Markov chain is constructed from the time series of g(x, y)

obtained from the full model. The state space of g(x, y) from the full model is

continuous. For the discrete state space, the value of the Markov chain in each state

is simply a single value. This value must be chosen such that it approximates g(x, y)

over the particular subinterval. Recall that the partition I = {Ii = (gi−1, gi]}, the

value of the state space for state i can be chosen between gi−1 and gi. In the discrete

state space scheme, we adopt the average value of g(x, y) with respect to the density

of g(x, y) over the subinterval (gi−1, gi] as the value of the Markov chain at state i.

Let m(Z;X)|ki denote the value of the Markov chain at state i with X being in

state k, then m(Z;X)|ki can be computed from the time series of g(x, y) as follows

m(Z;X)|ki =
∑N0−1

n=0 gn1ki(gn, xn)
∑N0−1

n=0 1ki(gn, xn)
, (2.7)

where

1ki(gn, xn) =















1, if gn ∈ (gi−1, gi] and xn ∈ (xk−1, xk]

0, otherwise.

(2.8)

Equation (2.7) is simply the average value of g(x, y) over the subinterval (gi−1, gi]

when X is in state k. Note that it is possible to choose the value of the Markov chain

by other methods. For example, one can choose the mid-point of each subinterval, Ii,

as a state space value of the Markov chain.

Continuous State Space

In this scheme, we assume that the value of the Markov chain at state i can be any

number in the subinterval (gi−1, gi]. We generate the value of the Markov chain by

using a uniform distribution over (gi−1, gi]. If the state space of the Markov chain

involves ±∞, we adopt the exponential distribution over that subinterval for gener-

ating the value of the Markov chain. The parameter of the exponential distribution
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is obtained from the standard maximum likelihood estimator.

2.3 Prototype Models

We consider the stochastic triad system coupled with non-essential variables. The

triad model can be viewed as the simple model of the wave interaction in the fluid

dynamics. In this section, we apply the Markov chain modeling approach to the

two different triad systems. For the first triad model, non-essential variables are

independent of essential variables whereas, in the second model, non-essential variable

depends on one of the essential variables. We illustrate some aspects that impact the

statistical results of the effective models. These aspects include the time step used

in the effective models, the number of states of the Markov chain, the number of

conditional Markov chains, and the type of the state space of the Markov chain.

2.3.1 Triad Model Coupled with 2 Independent

Non-essential Variables

We start with the simplest model of the triad system. Since non-essential variables are

independent of essential variables, the Markov chain does not have to be conditioned

on essential variables. Thus, it simplifies the Markov chain model.

Before we step into the detail of the Markov chain modeling approach. Let us

sumarize the major benefits of the Markov chain modeling approach as follows

• The number of the state space is typically in the order of 10. The small number

of the state space requires small sample data for the estimation of the Markov

chain. Thus, the effective models can be constructed from a short simulation of

the full model.

• The Markov chain modeling approach is robust to the type of the state space.
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We show that both discrete state space method and continuous state space

method provide a good statistical behaviour for the effective model.

• The time step in the numerical integration of the effective model is generally

greater than the time step used in the full model. Thus, the computational time

in the effective model is generally faster than the computational time in the full

model.

• The Markov chain modeling approach provides a good result on both strong

scale separation and weak scale separation. Unlike the asymptotic approach

where the method can not provide a good result under the weak scale separation.

For a stochastic triad system, let us consider the following system

dx1 = A1x2x3dt+ αy1y2dt− b1x
3
1dt

dx2 = A2x1x3dt− b2x2dt+ σ2dB2

dx3 = A3x1x2dt− b3x3dt+ σ3dB3 (2.9)

dy1 = −γy1dt+ σdW1

dy2 = −γy2dt+ σdW2

0 = A1 + A2 + A3.

W1,W2, B2, and B3 are independent Brownian motions. A1, A2, and A3 are known

coefficients. The parameters b1, b2, b3, σ1, and σ2 control the stationarity of the system.

The essential variables consist of x1, x2, and x3. These essential variables are coupled

with the non-essential variables, y1 and y2. y1 and y2 are the Ornstein-Uhlenbeck

processes which are independent of essential variables. The time scale separation

between essential variables and non-essential variables is determined by γ. A large

value of γ gives a strong scale separation. We simulate the effective model both

under the strong scale separation and weak scale separation. From (2.9), x1 interacts

directly with y1 and y2. Thus, we have g(x, y) = y1y2. In the effective model, y1y2
13



is replaced by the Markov chain. Since non-essential variables do not depend on the

essential variables, the Markov chain modeling approach has only one Markov chain.

The Markov chain effective model can be written as follows

dX1 = A1X2X3dt+ αm(Z)dt− b1X
3
1dt

dX2 = A2X1X3dt− b2X2dt+ σ2dB2 (2.10)

dX3 = A3X1X2dt− b3X3dt+ σ3dB3

0 = A1 + A2 + A3.

Since we are interested in the average quantities of the essential variables, we compare

the statistical properties of the Markov chain effective model to the statistical prop-

erties of the full model. We measure mean and variance of the essential variables. We

also measure the auto-correlation function (ACF) and the probability density func-

tion (PDF) of the essential variables. The auto-correlation function of a zero mean

stationary process, X(t), is defined as

ACFX(τ) = E[X(t)X(t+ τ)], ∀t ≥ 0.

We also compare the Markov chain effective model with the reduced model derived

from the asymptotic approach. The asymptotic reduced model is briefly described as

follows. To derive the reduced model, ǫ is introduced in the full model as follows

dx1 = A1x2x3dt +
1

ǫ
αy1y2dt− b1x

3
1dt

dx2 = A2x1x3dt− b2x2dt+ σ2dB2

dx3 = A3x1x2dt− b3x3dt+ σ3dB3 (2.11)

dy1 = − 1

ǫ2
γy1dt+

1

ǫ
σdW1

dy2 = − 1

ǫ2
γy2dt+

1

ǫ
σdW2

0 = A1 + A2 + A3.

We consider the limiting case where ǫ → 0. This corresponds to the infinite

scale separation between x1, x2, x3 and y1, y2. The reduced model can be derived by
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using the homogenization method provided in the appendix A. Thus, the asymptotic

reduced model can be written as follows

dx1 = A1x2x3dt− b1x
3
1dt+

ασ2

2γ
3
2

dB1

dx2 = A2x1x3dt− b2x2dt+ σ2dB2

dx3 = A3x1x2dt− b3x3dt+ σ3dB3 (2.12)

0 = A1 + A2 + A3.

Note that, in the asymptoic reduced model, y1 and y2 are approximated by Brow-

nian motion with a specific coefficient.

Numerical Settings

In this simulation, the parameters of (2.9) are as set follows

A1 = −1.0, A2 = 0.4, A3 = 0.6,

α = 1.0, b1 = 1.0, b2 = 0.4, b3 = 0.5,

σ2 = 0.6, σ3 = 0.7, (2.13)

γ = 50.0, σ = 10
√
2.

The value of γ is relavtively large. Thus, this case corresponds to the strong scale

separation between essential variables and non-essential variables. Figure (2.1) shows

the auto-correlation functions of essential and non-essential variables. The auto-

correlation functions of non-essential variables decrease much faster than the auto-

correlation functions of essential variables. In the simulation, we use the Euler-

Maruyama method for the numerical integration [21]. The time step used in the

numerical integration for the full model and the asymptotic reduced model is 10−4.

We sample data at the time step of 10−3 for the period of 200 (T0 = 200). Thus, the

number of sample points is 200/10−3 = 200, 000.

For the Markov chain effective model, the number of states is 11. We measure the
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Figure 2.1: Auto-correlation functions of essential variables, x1, x2, x3, and non-

essential variables, y1, y2, from a full model in equation (2.9).

mean and standard deviation of the sample data, gn = y1(n∆t)y2(n∆t), and construct

the partition for the state of the Markov chain as follows

I = {−∞ < µg − 3.0σg < µg − 2.0σg <

µg − 1.2σg < µg − 0.6σg < µg − 0.1σg <

µg + 0.1σg < µg + 0.6σg < µg + 1.2σg < (2.14)

µg + 2.0σg < µg + 3.0σg < ∞}

where µg = −0.03 and σg = 2.03 are obtained from the time series of gn. Then, the

effective model is integrated with the time step of 0.001 and we choose the discrete

state space scheme for the Markov chain.

We compute statistical behaviour of three systems: full model, asymptotic reduced

model, and Markov chain effective model. We integrate numerically all of these three

systems for T = 20, 000 and compute the statistical properties of all three systems.

Table (2.1), Figure (2.2) and (2.3) show the comparison of the statistical results from
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these three models. The auto-correlation functions of x1, x2, and x3 from the Markov

chain effective model have a good agreement with the auto-correlation functions from

the full model and the asymptotic reduced model. The relative errors of the variances

of the essential variables are relatively small (less than 5%). This result shows that the

Markov chain effective model is a good representative for the full model. However, as

we mentioned earlier, there are many factors that impact on the results of the Markov

chain effective model. We will illustrate all of these impacts in later subsections.

Full Model Asymptotic Error(%) Markov Chain Error(%)

µx1 4.778 × 10−3 −8.435 × 10−3 −3.855 × 10−2

µx2 1.011 × 10−2 1.537 × 10−2 1.093 × 10−2

µx3 −1.598 × 10−3 1.139 × 10−2 1.150 × 10−2

σ
2
x1

1.905 × 10−1 1.908 × 10−1
0.2 1.814 × 10−1

4.8

σ
2
x2

4.022 × 10−1 4.183 × 10−1
4.0 4.080 × 10−1

1.4

σ
2
x3

4.489 × 10−1 4.346 × 10−1
3.2 4.468 × 10−1

0.5

Table 2.1: Mean and variance of x1, x2, and x3 in the simulation of the full model

defined in (2.9), the asymptotic reduced model in (2.12), and the Markov chain ef-

fective model in (2.10). The parameters of the stochastic triad system are defined in

(2.13)
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Figure 2.2: Auto-correlation function of x1 from the full model in (2.9), the asymptotic

reduced model in (2.12), and the Markov chain effective mdoel in (2.10). The Markov

chain effective model has 11 states for the Markov chain. The partition for the state

is defined in (2.14).
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Figure 2.3: Auto-correlation functions of x2 and x3 from the full model in (2.9), the

asymptotic reduced model in (2.12), and the Markov chain effective mdoel in (2.10).

The Markov chain effective model has 11 states for the Markov chain. The partition

for the state is defined in (2.14).

Note that non-essential variables, y1 and y2, interact directly with x1 only. Thus,

the statistical results of x2 and x3 are impacted less by these non-essential variables.

Thus, for the rest of this section, we concentrate on the statistical behaviours of x1.
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Discrete State Space V.S. Continuous State Space

In section (2.2.2), we provide two approaches for the state space of the Markov chain;

discrete state space and continuous state space. In this section we perform two

simulations for the effective model; one with the discrete state space and the other

with the continuous state space. Table (2.2) and Figure (2.4) show statistical values

of the effective model with two different approaches for the state space. There is no

significant difference between discrete state space and continuous state space. The

effective model from the Markov chain modeling approach has a robustness over the

state space scheme. However, the implementation of the discrete state space Markov

chain is easier and less complex than the continuous state space Markov chain, we

will use the discrete state space Markov chain for the rest of this section.

Full Model Continuous Error(%) Discrete Error(%)

State Space State Space

µx1 4.778 × 10−3 −3.385 × 10−2 −3.855 × 10−2

µx2 1.011 × 10−2 1.040 × 10−2 1.093 × 10−2

µx3 −1.598 × 10−3 1.259 × 10−2 1.150 × 10−2

σ
2
x1

1.905 × 10−1 1.831 × 10−1
3.9 1.814 × 10−1

4.8

σ
2
x2

4.022 × 10−1 4.101 × 10−1
2.0 4.080 × 10−1

1.4

σ
2
x3

4.489 × 10−1 4.475 × 10−1
0.3 4.468 × 10−1

0.5

Table 2.2: Mean and variance of x1, x2, and x3 in the simulation of the full model

in (2.9), and the Markov chain effective model in (2.10). The Markov chain effective

model has 11 states. The state spaces for the effecitve model are both discrete and

continuous.
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Figure 2.4: Comparison of the auto-correlation function of x1 between discrete state

space and continuous state space. The number of states is 11.
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Number of States of the Markov Chain

We study the property of the effective model with different numbers of states of the

Markov chain. It is expected that the Markov chain effective model with a large

number of states will provide a good agreement with the full model. In this section,

the numbers of states of the Markov chain are chosen to be N = 5, 7, 11, and 15. The

partition, I, for each N will be as follows.

For N = 5, the partition is

I = {−∞ < µg − 2.1σg < µg − 0.5σg <

µg + 0.5σg < µg + 2.1σg < ∞}.

For N = 7, the partition is

I = {−∞ < µg − 2.1σg < µg − 1.0σg < µg − 0.3σg <

µg + 1.0σg < µg + 2.1σg < µg + 0.3σg < ∞}.

For N = 11, the partition is

I = {−∞ < µg − 3.0σg < µg − 2.0σg <

µg − 1.2σg < µg − 0.6σg < µg − 0.1σg <

µg + 0.1σg < µg + 0.6σg < µg + 1.2σg < (2.15)

µg + 2.0σg < µg + 3.0σg < ∞}

Lastly, for N=15, the partition is

I = {−∞ < µg − 3.0σg < µg − 2.3σg < µg − 1.7σg <

µg − 1.2σg < µg − 0.8σg < µg − 0.4σg <

µg − 0.1σg < µg + 0.1σg < µg + 0.4σg <

µg + 0.8σg < µg + 1.2σg < µg + 1.7σg <

µg + 2.3σg < µg + 3.0σg < ∞}.
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Table (2.3) and Figure (2.5) show the statistical properties of the effective model with

different numbers of states of the Markov chain. The auto-correlation functions of x1

from the effective models with different N are similar to the auto-correlation function

of x1 from the full model. However, the variances of x1 from the effective models

are different from the variance of x1 from the full model when N is small. From the

table, as N increases the relative error of the variance of x1 decreases. For N ≥ 11,

relative errors are less than 5%. The statistical results from the effective model with

N = 11 and N = 15 provide a good agreement with the full model. However, a large

value of N requires more sample data in order to accurately estimate the transition

probability matrix. The required number of data is proportional to N2. In general,

the value of N between 7 to 11 provides a good agreement with the full model.
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Figure 2.5: Auto-correlation functions of x1 from the full model in (2.9) and the

Markov chain effective model in (2.10) with different numbers of states of the Markov

chain.
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σ2
x1

σ2
x2

σ2
x3

Full Model 1.905× 10−1 4.022× 10−1 4.489× 10−1

MC (N=5) 1.666× 10−1 4.055× 10−1 4.445× 10−1

Rel Error(%) 12.5 0.8 1.0

MC (N=7) 1.750× 10−1 4.070× 10−1 4.452× 10−1

Rel Error(%) 8.1 1.2 0.8

MC (N=11) 1.814× 10−1 4.080× 10−1 4.468× 10−1

Rel Error(%) 4.8 1.4 0.5

MC (N=15) 1.859× 10−1 4.088× 10−1 4.475× 10−1

Rel Error(%) 2.4 1.6 0.3

Table 2.3: Mean and variance of x1, x2, and x3 from the full model in (2.9) and the

Markov chain effective models in (2.10). The numbers of states in the Markov chain

effective model are 5, 7, 11, and 15.

The Effect of the Time Step

In this section, we investigate the result of the Markov chain effective model when

the time step is varied. The referred time step is the time step used in the numerical

integration of the Markov chain effective model defined in (2.3). The time step used

in the numerical integration is the same as the time step used in the estimation of

the Markov chain. We simulate the Markov chain effective model with five different

time steps: 0.0001, 0.001, 0.005, 0.01, and 0.1. Statistical results are shown in Table

(2.4) and Figure (2.6).
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Figure 2.6: Auto-correlation function of x1 from the full model in (2.9) and the Markov

chain effective model in (2.10). The time steps used in the Markov chain effective

model are 0.0001, 0.001, 0.005, 0.01, and 0.1. Note that the Markov chain effective

models with ∆t = 0.0001 and 0.1 do not properly reproduce the auto-correlation

function of x1.
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σ2
x1

σ2
x2

σ2
x3

Full Model 1.905× 10−1 4.022× 10−1 4.489× 10−1

MC (∆t = 10−4) 1.598× 10−1 3.959× 10−1 4.355× 10−1

Rel Error(%) 16.1 1.6 3.0

MC (∆t = 10−3) 1.814× 10−1 4.080× 10−1 4.468× 10−1

Rel Error(%) 4.8 1.4 0.5

MC (∆t = 5× 10−3) 1.890× 10−1 4.081× 10−1 4.466× 10−1

Rel Error(%) 0.8 1.5 0.5

MC (∆t = 10−2) 1.927× 10−1 4.068× 10−1 4.504× 10−1

Rel Error(%) 1.2 1.1 0.3

MC (∆t = 10−1) 3.224× 10−1 4.406× 10−1 4.741× 10−1

Rel Error(%) 69.2 9.5 5.6

Table 2.4: Means and variances of x1, x2, and x3 from the full model in (2.9) and the

Markov chain effective model in (2.10). The time steps used in the effective model

are 0.0001, 0.001, 0.005, 0.01, and 0.1
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From Table (2.4), the variances of the essential variables are significantly different

from the full model when the time step is too small (∆t = 10−4). When the time step

is small, the transition probability matrix constructed from the time series is close to

the identity matrix. The off-diagonal entries are close to zero and, thus, the accuracy

of the estimation is lost with finite number of data. On the other hand, if the time

step in the numerical integration is too large, there will be a problem on the stability

and accuracy of the numerical integration. This problem can cause the large error in

the effective model. From the empirical results, we expect that the optimal time step

for the Markov chain effective model depends on the correlation time of g(x, y) of the

full model. In this case, the correlation time is 1
2γ

= 0.01. The proper value of the

time step in this case is either 10−3, 5 × 10−3, or 10−2. The numerical study shows

that the optimal value of the time step is

∆topt ∈ [0.1τc, 0.5τc], (2.16)

where τc is the correlation time of g(x, y). We will mention about the time step again

in the next subsection.

Weak Scale Separation

One major benefit of the effective model using the Markov chain modeling approach is

that the Markov chain effective model can reproduce the statistical behaviour of the

full model in the case of the weak scale separation where as the asymptotic reduced

model can not provide a good result under the weak scale separation. In this section,

we consider values of γ that correspond to the weak scale separation. The parameters
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are set as follows

A1 = −1.0, A2 = 0.4, A3 = 0.6,

α = 1.0, b1 = 1.0, b2 = 0.4, b3 = 0.5,

σ2 = 0.6, σ3 = 0.7, (2.17)

γ = 2.5, σ =
√
10.

We set σ =
√
10 to maintain the same energy level of non-essential variables as in

the case of the strong scale separation, i.e., Var{y1} = Var{y2} = 2 in both strong

and weak scale separations. The auto-correlation functions of essential variables and

non-essential variables are shown in Figure (2.7). The correlation times of y1 and y2

are approximately 0.38 and the correlation time of x1 is 0.91. Thus, in this case, the

correlation times of essential and non-essential variables are in the same order. For
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Figure 2.7: Auto-correlation functions of x1, x2, x3, y1, and y2 from the full model in

(2.9) with the parameters in (2.17).

the Markov chain effective model, the Markov chain has 11 states. The partition is

defined in (2.14). We simulate the effective model with two time step, ∆t = 0.01 and
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∆t = 0.1. The correlation time of g(x, y) in this case is 1
2×2.5

= 0.2. Therefore, the

proper ∆t should be in the range of 0.02 to 0.1. Table (2.5) and Figure (2.8) show the

statistical results of the Markov chain effective model with two time steps, ∆t = 0.01

and 0.1.
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Figure 2.8: Auto-correlation function of x1 from the full model in (2.9), the asymptotic

reduced model in (2.12), and the Markov chain effective model in (2.10). The time

steps for the Markov chain effective model are 0.01 and 0.1.

Note that the asymptotic reduced model does not produce a good agreement with

the full model. The variance of x1 is significantly different from the full model and

the auto-correlation function of x1 is far from the auto-correlation of x1 from the full

model. This is caused by the weak scale separation between x1, x2, x3 and y1, y2 in

the original model. However, the Markov chain effective model has a good agreement

with the full model when the time step is 0.1. Thus, with the appropriate time step,

the Markov chain modeling approach can be a good effective model for the case of

weak scale separation.

We would like to mention that in many systems, for example, the TBH system
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σ2
x1

σ2
x2

σ2
x3

Full Model 4.859× 10−1 4.713× 10−1 5.067× 10−1

Asymptotic Approach 5.953× 10−1 4.795× 10−1 5.112× 10−1

Rel Error(%) 22.5 1.7 0.9

MC (∆t = 10−2) 4.198× 10−1 4.409× 10−1 4.988× 10−1

Rel Error(%) 13.6 6.5 1.6

MC (∆t = 10−1) 4.852× 10−1 4.603× 10−1 5.169× 10−1

Rel Error(%) 0.1 2.3 2.0

Table 2.5: Mean and variance of x1, x2, and x3 from the full model in (2.9), the

asymptotic reduced model in (2.12), and the Markov chain effective model in (2.10)

The time steps for the Markov chain effective model are 0.01 and 0.1.

described in the next section, the scale separation between the essential variables and

the non-essential variables can not be clearly defined. Thus, the asymptotic reduced

model may encounter the problem of the weak scale separation. However, the Markov

chain modeling approach resolves the problem and provides a good statistical result

in this stochastic triad case. Therefore, we expect that the Markov chain modeling

approach can perform well in models without strong scale separation.
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2.3.2 Triad Model Coupled with Dependent

Non-essential Variable

In section 2.3.1, the non-essential variables are independent of the essential variables.

Thus, the Markov chain in the effective model does not need to be conditioned on the

essential variables. In this section, we consider the effective model for the triad where

the non-essential variables depend on the essential variable. The prototype equations

are described as follows

dx1 = A1x2x3dt+ αydt− b1x
3
1dt

dx2 = A2x1x3dt− b2x2dt+ σ2dB2

dx3 = A3x1x2dt− b3x3dt+ σ3dB3 (2.18)

dy = −γ1(y − x1)dt+ σ1dW1

0 = A1 + A2 + A3,

where B2, B3, andW1 are independent Brownian motion processes. We add the damp-

ing and forcing terms to the right-hand side of x2 and x3 in order to have a stationary

process. The essential variables are x1, x2, and x3 and the non-essential variable is y.

Note that y is coupled with x1. From the previous section, the factors that impact

the behaviour of the effective model are the number of states of the Markov chain

and the time step used in both estimation of the transition probability matrix and

numerical integration of the effective model. In this section, we also consider how

conditioning of the Markov chain affects the performance of the effective model. In

particular, we investigate several effective models with different numbers of condi-

tional Markov chains. The statistical results from effective models are compared with

the results from the full model and the asymptotic reduced model. The asymptotic
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reduced model is derived from the full model by introducing ǫ as follows

dx1 = A1x2x3dt+ αydt− b1x
3
1dt

dx2 = A2x1x3dt− b2x2dt+ σ2dB2

dx3 = A3x1x2dt− b3x3dt+ σ3dB3 (2.19)

dy = −1

ǫ
γ1(y − x1)dt+

1√
ǫ
σ1dW1

0 = A1 + A2 + A3.

Using the averaging method in Appendix A, the asymptotic reduced model can be

written as follows

dx1 = A1x2x3dt+ αx1dt− b1x
3
1dt

dx2 = A2x1x3dt− b2x2dt+ σ2dB2

dx3 = A3x1x2dt− b3x3dt+ σ3dB3 (2.20)

0 = A1 + A2 + A3.

Note that the asymptotic reduced model works well under the condition of strong

scale separation. We will demonstrate the results of the effective model under both

strong scale and weak scale separation.

Before we go into details of the Markov chain modeling approach, let us summarize

its benefits.

• The Markov chain approach for this case has the same properties as in the

previous case. The number of states of the Markov chain is in the order of 10

states. The time step of the effective model also depends on the correlation

time of g(x, y) and the state space of the Markov chain can be either discrete or

continuous. The statistical results from these two state space schemes are very

similar.

• The effective model with moderate numbers of conditional Markov chains pro-

vides a good statistical result. In the simulation, it is shown that the effective
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model with four conditional Markov chains reproduces the statistical behaviour

of essential variables well.

Numerical Settings

In this section, we begin with the strong scale separation case. The parameters are

set as follows

A1 = −1.0, A2 = 0.4, A3 = 0.6,

α = 1.0, b1 = 1.0, b2 = 0.4, b3 = 0.5,

σ2 = 0.6, σ3 = 0.7, (2.21)

γ1 = 100.0, σ1 = 50.0.

We illustrate three effective models having different partitions of x1. The first effective

model is not conditioned on x1. The second model has a partition on x1 with two

subintervals and the last model has four subintervals on x1. The partition of x1 with

two subintervals is written as follows

Jx1 = {−∞ < µx1 < ∞} (2.22)

and the partition of x1 with four subintervals is

Jx1 = {−∞ < µx1 − σx1 < µx1 < µx1 + σx1 < ∞}. (2.23)

The values of µx1 and σx1 are calculated from the time series of x1 from the full

model. The time length for the sample data is equal to T0 = 200.0. We sample the

data with the time step, ∆t = 0.001. Thus, the time series of x1 has 200,000 sample

points. Note that we use this time step in both estimation of transition probability

matrices and numerical integration of the effective model. In this simulation, we have

µx1 = 0.124 and σx1 = 0.832. For each conditional Markov chain, the number of

states is set to 11 states. The partition for each conditional Markov chain consists of
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11 subintervals and can be written as follows

I = {−∞ < µg − 2.7σg < µg − 1.9σg <

µg − 1.2σg < µg − 0.6σg < µg − 0.1σg <

µg + 0.1σg < µg + 0.6σg < µg + 1.2σg <

µg + 1.9σg < µg + 2.7σg < ∞}.

Table (2.6) and Figure (2.9) show the comparison of the statistical properties of

the full model, the Markov chain effective model, and the asymptotic reduced model.

Note that even in the case of strong scale separation, the asymptotic approach using

the averaging method does not have a good agreement with the full model on the

auto-correlation function of x1.

σ2
x1

σ2
x2

σ2
x3

Full Model 6.868× 10−1 5.012× 10−1 5.587× 10−1

Asymptotic 7.065× 10−1 5.215× 10−1 5.799× 10−1

Relative Error(%) 2.8 4.2 3.8

MC (1 subinterval) 2.407× 10−1 4.350× 10−1 4.573× 10−1

Relative Error(%) 64.9 13.2 18.2

MC (2 subintervals) 6.254× 10−1 5.206× 10−1 5.559× 10−1

Relative Error(%) 9.0 4.0 0.7

MC (4 subintervals) 6.424× 10−1 5.055× 10−1 5.415× 10−1

Relative Error(%) 6.5 0.2 3.0

Table 2.6: Mean and variance of essential variables from the full model defined in

(2.18), the asymptotic reduced model defined in (2.20), and the Markov chain effective

model with different conditioning schemes.
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Figure 2.9: Auto-correlation function of x1 from the full model, the asymptotic

reduced model, and the Markov chain effective model with different conditioning

schemes.

The effective model with one Markov chain cannot reproduce statistical properties

of essential variables. The relative errors of variances of essential variables are very

large. The auto-correlation function of x1 does not resemble the auto-correlation of

x1from the full model. With two conditional Markov chains, the variance of x1 from

the effective model improves significantly. However, there is a discrepancy between

the auto-correlation function of x1 from the Markov chain effective model and the

full model. The effective model with four conditional Markov chains reproduces

the statistical properties well. Both variance and auto-correlation function from the

effective model agree with the ones from the full model. It is expected that the

effective model with many conditional Markov chains is able to reproduce statistical

properties of essential variables. However, this requires more data in order to estimate

the transition probability matrices. From the empirical observation, four to eight

conditional Markov chains should be sufficient to reproduce statistical behaviours of

essential variables.
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2.4 Truncated Burgers-Hopf Model

As we have seen in the previous section, the Markov chain effective model reproduces

the statistical behaviour of the stochastic triad system under both strong and weak

scale separations. In this section, we apply the Markov chain modeling approach to

the Truncated Burgers-Hopf (TBH) system. It is known that the correlation times of

the Fourier coefficients in TBH equation are approximately inversely proportional to

the wave numbers [1, 2, 4]. Therefore, it is difficult to define a time scale separation

between essential variables and non-essential variables. In this section, we apply the

Markov chain modeling technique to derive effective models for one and two Fourier

coefficients. The benefits of the Markov chain modeling approach can be summarized

as follows

• The Markov chain approach is simple to implement. The number of states of

the Markov chain is in the order of 10 states or less.

• In general, the Markov chains have to be conditioned on, possibly, all essential

variables. However, based on the weak correlation among Fourier modes, each

Markov chain can be conditioned on its corresponding Fourier coefficient. Thus,

it simplifies the conditioning scheme of the Markov chain. Moreover, in the case

of zero Hamiltonian, it is shown in [7] that the real and image parts of the Fourier

coefficients are uncorrelated. Thus, the Markov chain can be conditioned only

on the real or image part of that Fourier mode.

• For the non-zero Hamiltonian case, the Markov chain is conditioned on both real

and image of the corresponding Fourier mode. However, the partition for the

secondary variable requires a partition with a few subintervals. In particular,

the partition with two subintervals for secondary variable significantly improves

the statistical behaviour of the effective model. This result is shown in details

later in this section.
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• The time step used in the numerical integration of the effective model is gener-

ally larger than the time step used in the full model. Thus, the computational

cost is reduced significantly.

In the next section, we describe some basic descriptions and properties of the TBH

equation. Then, we apply the Markov chain approach for the effective model. We

consider two effective models: the effective model with one Fourier mode and the

effective model with two Fourier modes.

2.4.1 The TBH Equation

We consider the spectral projection of Burgers-Hopf equation with a periodic solution.

In particular, the model can be written as follows

(UΛ)t +
1

2
PΛ(U

2
Λ)x = 0 (2.24)

where UΛ and PΛU represent the finite Fourier projection of U defined as follows

PΛU(t, x) ≡ UΛ(t, x) =
Λ
∑

k=−Λ

uk(t)e
ikx. (2.25)

Λ is the degree of freedom for the TBH system. Since the TBH system has a periodic

solution, we assume UΛ(t, 0) = UΛ(t, 2π) without loss of generality. We consider the

case of real solution of U(t, x) such that u−k(t) = uk(t)
∗ where u∗ denotes the complex

conjugate of u. Substituting (2.25) into (2.24), equation (2.24) can be recasted as a

system of the ordinary differential equations with |k| ≤ Λ as follows

d

dt
uk(t) = − ik

2

∑

k+p+q=0
|p|,|q|≤Λ

u∗
pu

∗
q. (2.26)

The TBH system has some constant quantities. These quantities are momentum,

energy and Hamiltonian. The momentum is defined as follows

M =
1

2π

∫ 2π

0

UΛdx = u0, (2.27)
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the energy is defined as

E =
1

4π

∫ 2π

0

U2
Λdx =

1

2
|u0|2 +

Λ
∑

k=1

|uk|2, (2.28)

and the Hamiltonian is

H =
1

12π

∫ 2π

0

PΛU
3
Λdx =

1

6

∑

k+p+q=0
|p|,|q|≤Λ

ukupuq. (2.29)

From (2.26), the equation for u0 is trivial and, thus, u0 is constant. Without loss of

generality, we assume u0 = 0.

For a large Λ, the TBH system tends to have a stochastic behaviour. Statistical

properties were studied extensively in [1, 2, 4]. It was shown that, with H ≈ 0, the

Fourier coefficients obtain an equipartition of energy and the joint probability density

function of Fourier coefficients follow the normal distribution

π(u1, u2, ..., uΛ) = Ce−βE , (2.30)

where C is the normalized coefficient. The energy per Fourier coefficient is β−1.

One interesting statistical property of the TBH is the auto-correlation function.

The correlation times of Fourier coeficients are inversely proportional to the Fourier

numbers. Figure (2.10) shows the auto-correlation functions of the first five Fourier

coefficients. Each Fourier coefficient represents the behaviour of the system at a

different time scale. However, it is difficult to define a scale separation between slow

and fast variables.

We are interested in the average behaviour of the system. The average behaviour

is generally characterized by the low Fourier modes. In this section, we are interested

in deriving the effective models for the first few Fourier modes. We describe the

effective models for the TBH system with one and two essential variables in the next

subsection.
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Figure 2.10: Auto-correlation functions of uk, k = 1, ..., 5. The TBH has Λ = 20, E =

0.4, and H = 0.

2.4.2 The Effective Model for TBH

Let λ be the number of the essential variables, i.e., u1, . . . , uλ are the essential variables

and uλ+1, . . . , uΛ are the non-essential variables. The right-hand side of the equation

(2.26) can be rewritten as a summation of 2 terms as follows

d

dt
uk(t) = − ik

2

∑

k+p+q=0
|p|,|q|≤λ

u∗
pu

∗
q − ik(

Λ−k
∑

p=λ−k+1

u∗
pup+k). (2.31)

The first term of the right-hand side consists of the interaction of the essential vari-

ables. The second term represents the interaction of non-essential variables. It in-

volves two types of interactions - (i) essential variables and non-essential variables and

(ii) non-essential variables with themselves. For the Markov chain effective model, we

replace the second term by a collection of conditional Markov chains. The Markov

chain is conditioned on the essential variables. The equation for the Markov chain

effective model is written as follows

d

dt
uk = − ik

2

∑

k+p+q=0
|p|,|q|≤λ

u∗
pu

∗
q +mk. (2.32)
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Here, mk represents the Markov chain corresponding to kth essential variable. We

consider the effective models with one essential variable (λ = 1) and two essential

variables (λ = 2). The details are described as follows.

2.4.3 One Essential Variable, λ = 1

From the equation (2.32), the first term vanishes for k = 1. Thus, the right-hand side

of u1 consists of the Markov chain term. The dynamics of u1 for the Markov chain

effective model in the real form is written as follows

d

dt
ure
1 = mre

1 (ure
1 , uim

1 ) (2.33a)

d

dt
uim
1 = mim

1 (ure
1 , uim

1 ), (2.33b)

where mre
1 (ure

1 , u
im
1 ) represents the Markov chain conditioned on ure

1 and uim
1 . To

construct mre
1 , the partitions of ure

1 and uim
1 need to be defined. Let M1 be the number

of subintervals for ure
1 and M2 the number of subintervals for uim

1 . The number of

conditional Markov chains formre
1 is equal toM1M2. We assume that each conditional

Markov chain has N states. Thus, it requires M1M2N
2 coefficients to be estimated

for the transition probability matrices. The estimation of the transition probability

matrices was already described in section (2.2). The construction of mim
1 is similar to

mre
1 . In this section, we apply the Markov chain effective model for the TBH system

with zero Hamiltonian. Since there is a weak correlation between ure
k and uim

k [7], the

Markov chain, mre
1 can be conditioned on ure

1 and, similarly, mim
1 can be conditioned

on uim
1 , i.e.,

mre
1 = mre

1 (ure
1 ), mim

1 = mim
1 (uim

1 ).

Thus, the required coefficients is reduced to M1N
2 coefficients and the number of

conditional Markov chains is M1.
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Numerical Settings

For the full TBH system, it consists of 20 Fourier modes (Λ = 20). The total energy

is 0.4 (E = 0.4). Thus, the energy per Fourier mode is 0.4
20

= 0.02 and the energy on

the real part and image part for each uk is 0.01. We use the Pseudo-Spectral method

with fourth-order Runge-Kutta method to numerically integrate the full model. The

time step is chosen to be 0.001. This time step is small enough such that the relative

error of the total energy is less than 10−5. We integrate the full model with length

T0 = 20, 000 and sample the data with time step ∆t = 0.1. Thus, the time series

obtained from the full model has a length of 200,000 sample points. This time series is

used to construct the Markov chain effective model. The Markov chain effective model

is integrated with the same time step, ∆t = 0.1. The Markov chain is conditioned on

ure
1 (or uim

1 ). The partition of the essential variable has 6 subintervals and is written

as follows

Ju = {−∞ < µu − 1.4σu < µu − 0.6σu < µu < µu+0.6σu < µu+1.4σu < ∞} (2.34)

where u = ure
1 , u

im
1 . Each conditional Markov chain has 7 states and the partition for

each conditional Markov chain is written as follows

Im = {−∞ < µm − 2.0σu < µm − 1.0σm <

µm − 0.3σm < µm + 0.3σm <

µm + 1.0σm < µm + 2.0σm < ∞}. (2.35)

We simulate the effective model with time step, ∆t = 0.1, and integrate the model

with a total time length of T = 200, 000. We measure statistical properties such

as mean, variance, kurtosis, ACF and PDF of ure
1 and uim

1 . Table (2.7) and Figure

(2.11) show the comparison of statistical properties between the full model and the

Markov chain effective model. The mean and variance of u1 from the effective model

are very close to the value from the theory. The kurtosis from the effective model is
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Theory Full Model Effective Model

Mean of ure
1 0.0 −6.169× 10−4 1.616× 10−4

Mean of uim
1 0.0 −7.013× 10−4 8.983× 10−5

Variance of ure
1 0.01 9.854× 10−3 1.019× 10−2

Variance of uim
1 0.01 9.845× 10−3 1.022× 10−2

Kurtosis of ure
1 3.0 2.885 3.425

Kurtosis of uim
1 3.0 2.867 3.386

Table 2.7: Mean, variance, and kurtosis of u1 from the full model and the effective

model.

higher than the theoretical value. However, the PDF of u1 from the effective model is

similar to the one from the full TBH model. The ACF of u1 from the effective model

decorrelates at the same rate as the ACF of u1 from the full model. However, there

is a slight discrepancy for time lag 5 ≤ τ ≤ 10. To compare the performance of the

Markov chain effective model with another method, we consider the stochastic mode

reduction method used in [4]. The Markov chain effective model provides a better

result for the auto-correlation function compared with the auto-correlation function

obtained from [4]. (See [4] on page 787.) The ACF in [4] decays exponentially whereas

the ACF from the full model does not. This is because the derivation of the reduced

model in [4] is based on the asymptotic approach where the infinite scale separation is

assumed. However, as we mentioned earlier, the TBH system does not have an infinite

scale separation. For this numerical results, the Markov chain approach performs well

under the weak scale separation.
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Figure 2.11: Statistical properties of u1. The top left figure is the ACF of ure
1 . The

top right is the ACF of uim
1 . The bottom left is the PDF of ure

1 and the bottom right

is the PDF of uim
1 .
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2.4.4 Two Essential Variables, λ = 2

The effective model consists of essential variables, u1 and u2 (ure
1 , u

im
1 , ure

2 , u
im
2 ). The

dynamics of the essential variables is obtained from (2.32) by setting λ = 2. The

Markov chain effective model for TBH with λ = 2 is written as follows

d

dt
ure
1 = (ure

1 u
im
2 − uim

1 ure
2 ) +mre

1

d

dt
uim
1 = (−ure

1 ure
2 − uim

1 uim
2 ) +mim

1

d

dt
ure
2 = 2ure

1 u
im
1 +mre

2

d

dt
uim
2 = (uim

1 )2 − (ure
1 )

2 +mim
2 .

All conditional Markov chains are assumed to be conditioned on the essential vari-

ables. However, from the empirical data, the right-hand side of u1 has a weak cor-

relation with u2 and, similarly, the right-hand side of u2 has a weak correlation with

u1. Thus, we can model m1 as a function of u1 and m2 as a function of u2. Since the

Hamiltonian is zero, we can model mre
1 and mim

1 , separately, as

mre
1 = mre

1 (ure
1 ), mim

1 = mim
1 (uim

1 ). (2.36)

Similarly, m2 can be modeled as

mre
2 = mre

2 (ure
2 ), mim

2 = mim
2 (uim

2 ). (2.37)

Note that the weak correlation of Fourier modes simplifies the structure of the Markov

chain. If there is a strong correlation between Fourier modes or strong correlation

between real and image part, the Markov chain has to be conditioned on one or

more essential variables. We will mention on this aspect again in the case of non-

zero Hamiltonian. The partition for the essential variables is defined as the same as

previous section. The time step is set to ∆t = 0.1. All parameters are the same as

the case of λ = 1.
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Theory Full Model Effective Model

Mean of ure
1 0.0 −6.169× 10−4 3.459× 10−4

Mean of uim
1 0.0 −7.013× 10−4 4.543× 10−4

Mean of ure
2 0.0 −3.351× 10−4 −1.531× 10−3

Mean of uim
2 0.0 −2.225× 10−4 2.314× 10−4

Variance of ure
1 0.01 9.854× 10−3 9.882× 10−3

Variance of uim
1 0.01 9.845× 10−3 9.968× 10−3

Variance of ure
2 0.01 9.789× 10−3 1.001× 10−2

Variance of uim
2 0.01 9.720× 10−3 1.005× 10−2

Kurtosis of ure
1 3.0 2.885 3.247

Kurtosis of uim
1 3.0 2.867 3.158

Kurtosis of ure
2 3.0 2.882 3.360

Kurtosis of uim
2 3.0 2.876 3.381

Table 2.8: Mean, variance, and kurtosis of u1 and u2 from the full model and the

effective model with λ = 2.

From Table (2.8), Figure (2.12), and Figure (2.13), the effective model reproduces

the statistical properties well. The variances of u1 and u2 are close to the values from

the theory. The auto-correlation functions of both u1 and u2 have the same decay rate

as the ones obtained from the full model. However, there is an oscilation in the auto-

correlation function of essential variables in the effective model when 5 ≤ τ ≤ 10. The

probability density functions from the effective model are similar to those obtained

from the full model.
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Figure 2.12: Auto-correlation functions of u1 and u2. The top left figure is the ACF

of ure
1 . The top right is the ACF of uim

1 . The bottom left is the ACF of ure
2 and the

bottom right is the ACF of uim
2 .
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Figure 2.13: Probability density functions of u1 and u2. The top left figure is the

PDF of ure
1 . The top right is the PDF of uim

1 . The bottom left is the PDF of ure
2 and

the bottom right is the PDF of uim
2 .
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2.4.5 The Effective Model for TBH with Non-zero Hamilto-

nian

For zero Hamiltonian, the conditioning scheme for the Markov chain effective model

is simple: the Markov chain is conditioned on one essential variable. For non-zero

Hamiltonian, it is shown in [7] that the correlation between the real part and the

image part of the Fourier modes is not negligible. If the Markov chain is conditioned

on only one variable, then the effective model may not be able to reproduce the

cross-correlation between the real and image parts of the essential variables. Thus,

it is essential to model the Markov chain to be conditioned on both real part and

image part of the essential variables. We demonstrate this issue for the case of one

Fourier mode. For mre
1 , we consider ure

1 as a primary variable and introduce uim
1 as

a secondary variable. Similary, for mim
1 , we consider uim

1 as a primary variable and

introduce uim
1 as a secondary variable. Thus, both mre

1 and mim
1 can be modeled as

mre
1 = mre

1 (ure
1 , u

im
1 ), mim

1 = mim
1 (uim

1 , ure
1 ). (2.38)

The partition on the primary variable is the same as we defined in (2.34) which is

Ju = {−∞ < µu − 1.4σu < µu − 0.6σu < µu < µu + 0.6σu < µu + 1.4σu < ∞}

where u stands for the primary variable. The partition for the secondary variable is

defined as

Jv = {−∞ < µv < ∞} (2.39)

where v is the secondary variable. The number of subintervals for the primary vari-

able is 6 subintervals and the number of subintervals for the secondary variable is 2

subintervals. Thus, in this case, the effective model consists of 12 conditional Markov

chains. Also, we note that the number of required coefficients in the estimation of

the transition probability matrices increases twice.

Table (2.9) and Figure (2.14) show the comparison of the statistical results be-

tween the full model and the effective model where the Markov chains are conditioned
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on both primary and secondary variables. By introducing the secondary variable to

the Markov chain, the effective model reproduces the cross-correlation between ure
1

and uim
1 . All other statistical properties are in a good agreement with the full model.

Theory Full Model Effective Model

Mean of ure
1 0.0 1.884× 10−5 −1.054× 10−4

Mean of uim
1 0.0 3.225× 10−4 −1.173× 10−4

Variance of ure
1 0.01 1.030× 10−2 9.852× 10−3

Variance of uim
1 0.01 1.035× 10−2 9.811× 10−3

Kurtosis of ure
1 3.0 2.800 3.188

Kurtosis of uim
1 3.0 2.809 3.290

Table 2.9: Mean, variance, and kurtosis of u1 from the full model and the effective

model. The TBH equation has non-zero Hamiltonian.

2.5 Conclusion

We studied the Markov chain modeling of the effective models for some deterministic

and stochastic systems. From numerical simulations, statistical properties of essen-

tial variables can be reproduced using the Markov chain modeling approach. The

factors that impact statistical properties of effective models depend on the number of

states of the Markov chain, the number of conditional Markov chains, and the time

step used in the simulation of the Markov chain. In our simulations, the number

of states is typically in the order of 10. Increasing the number of states improves

statistical properties of the effective model but it also requires more data in order

to estimate the transition probability matrix accurately. The number of conditional

Markov chains depends on the structure of the system. If non-essential variables do

not depend on essential variables, then Markov chains do not have to be conditioned
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Figure 2.14: Statistical properties of u1. The top left figure is the ACF of ure
1 . The

top right is the ACF of uim
1 . The bottom left is the cross-correlation between ure

1 and

uim
1 . The bottom right is the PDF of ure

1 .

on essential variables. Markov chains have to be conditioned on essential variables if

non-essential variables depend on essential variables. This increases the complexity

of the structure of the conditional Markov chain if there are many essential variables.

However, in most systems, the conditional Markov chain can be conditioned on one

or two essential variables. In this case, the complexity is reduced significantly. The

simulations in section (2.3.2) and (2.4) have shown that the effective models with 4

to 7 conditional Markov chains reproduce statistical properties of essential variables.

The time step is also one important factor for the effective model. With an appropri-

ate time step, the effective model reproduce statistical properties of the full model.

The proper values of the time step are generally in the range of 0.1 to 0.5 of the
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correlation time of g(x, y) defined in (2.1a).

One important benefit of the Markov chain modeling approach is that it works well

with the system both strong and weak scale separations. As we have seen the nu-

merical results in this chapter, the Markov chain effective models outperform the

asymptotic reduced models under the weak scale separation. This is an important

benefit from the Markov chain approach since, in many systems, the scale separation

between essential variables and non-essential variables cannot be clearly separated.
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Chapter 3

Stochastic Delay Differential

Equation for the Effective Model

3.1 Introduction

In this chapter, we propose a stochastic delay model for the dynamics of essential

variables. It is a numerically oriented approach. The effective model is constructed

from the time series of essential variables. The effective model mainly consists of three

parts. The first part is the Markovian term. The second part is the memory term

and the last part is the noise term. Generally, the dynamics of essential variables

in the effective model depends on the current and past values of themselves and is

driven by noise. The coefficients of the stochastic delay effective model are obtained

by simple least square method. The details are given later in this chapter.

The rest of this chapter is organized as follows. Section 3.2 describes the general

idea of delay models. It includes the estimation of parameters in the effective model

from the time series of essential variables. In section 3.3, we apply the stochastic

delay model to the TBH equation. In this case, we assume that the effective model

consists of the first Fourier mode. We also describe the approximation of the noise
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term in the effective model by white noise approximation. We also investigate the

case where the effective model consists of the first three Fourier modes in section 3.4.

Finally, we conclude this chapter in section 3.5.

3.2 General Setup for the Stochastic Delay Model

We consider the equation of the following form

dx

dt
= g1(x, y) (3.1a)

dy

dt
= g2(x, y) (3.1b)

where x and y are the essential and the non-essential variables, respectively. We

assume that the dimension of x is generally much less than the dimension of y.

We are particularly interested in the dynamics of essential variables. The previous

chapter has shown that the effective model can be obtained by replacing some parts

of the right hand side of essential variables with the approapriate set of Markov

chains. However, this method requires the knowledge of the right hand side of essential

variables. In some cases, the dynamics of models is unknown, i.e., the right hand side

of essential variables is not known explicitly. We can only observe the time series of

essential variables. The objective of this chapter is to construct the effective system of

essential variables from these numerical data. The numerical values of the right hand

side of essential variables can be estimated from discrete consecutive observational

data utilizing, for instance, the Euler discretization scheme. The main idea of this

approach is based on the fact that there are correlations between essential variables

and time derivatives of essential variables. Thus, the right hand side of essential

variables depends on the current value and the past value of essential variables. In

particular, we seek the following form of the effective model

dX(t)

dt
= G(X(t), X(t− τ)) + e(t). (3.2)
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Here, X(t− τ) represents the past values of essential variables and e(t) is a random

force in the effective system. For simplicity of the effective model, we choose the

linear delay model with finite number of time delays for the effective equation. The

model is written as follows

dX(t)

dt
=

n
∑

i=1

aiX(t− ti) + e(t), (3.3)

where e(t) represents the stochastic behaviour of the system. Without loss of gen-

erality, we assume 0 = t1 < t2 < . . . < tn. We simply set t1 = 0 to represent

the current value of the essential variable X . In some cases where there is a strong

scale separation between X(t) and e(t), e(t) can be approximated by a white noise

(time derivative of Brownian motion). Thus, the effective models are represented by

stochastic delay differential equations. In the next section, we describe the model in

details and provide the method for parameter estimation.

3.2.1 Model Setup and Parameter Estimation

We assume that there arem essential variables and the time series of x are observed at

known time step, ∆t. For simplicity of the notation, we use the matrix representation

for discrete data. Let Xi be a row vector consisting of the time series of xi with

length N . Let X be a matrix that contains Xi, ∀i = 1, ..., m. The dimension of X is,

therefore, m by N . The element, Xi,j, represents the value of the i
th essential variable

at time j∆t, i.e.,

Xi,j = xi(j∆t). (3.4)

To estimate the right-hand side of the effective model which is the time derivative

of essential variables, we let Y be the matrix consisting of the approximation of the

time derivative of essential variables. Then, the time derivative can be approximated

from the second order finite difference scheme as follows

Yi,j =
Xi,j+1 −Xi,j−1

2∆t
, j = 1, . . . , N, (3.5)
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where we assume that Xi,0 = Xi,N+1 = 0, ∀i ∈ {1, . . . , m}. We assume that the

number of time delays for each essential variable is n, and each essential variable can

have a different time delay. Let tkj be the jth time delay of the kth essential variable.

We seek the linear delay model of the following form

dxi(t)

dt
=

m
∑

k=1

n
∑

j=1

aikjxk(t− tkj) + ei(t), i ∈ {1, . . . , m}. (3.6)

From equation (3.6), the changes of essential variables are linear functions of them-

selves at different time delays. ei(t) represents a random force for an essential variable.

The coefficients aikj is estimated by the method of least square. The details are as

follows.

Method of Least Square

Let τkj = ⌊tkj/∆t⌋ where ⌊x⌋ denotes the largest integer that is less than x. The

value of τkj represents the corresponding discrete time of tkj. Let

τmax = max
1≤k≤m,
1≤j≤n

τkj (3.7)

be the maximum discrete time delay of the effective model. To estimate aikj, numerical

data at different time delays are required. One can obtain the required data with

specified time delay by shifting the time series. For example, to obtain the time series

of x1(t − t1), we can use the sample data from X1,1 to X1,N as the time series of

x1(t− t1) and the sample data from X1,(1+τ1) to X1,(N+τ1) as the time series of x1(t)

where τ1 = t1
∆t
. Thus, to estimate the parameters for the effective model from the

data of length N , we need the time series with length N+τmax, and numerical data of

length N for xk(t− tkj) are obtained from the time series of xk from Xk,(1+τmax−τkj) to

Xk,(N+τmax−τkj). Note that, in this case, Xk,(1+τmax) corresponds to the sample point

for xk(t). To put the time series of xk with different time delays in a matrix form,

we define Uk as n by N matrix where the row jth of Uk represents the time series of
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xk(t− tkj), i.e.,

Uk =



















Xk,(1+τmax−τk1) . . . Xk,(N+τmax−τk1)

Xk,(1+τmax−τk2) . . . Xk,(N+τmax−τk2)

...

Xk,(1+τmax−τkn) . . . Xk,(N+τmax−τkn)



















. (3.8)

Let U ∈ Rmn×N be the matrix where the jth row consists of Uk. Thus, U contains

the time series of all essential variables with all time delays defined in (3.6). Next, we

define a time series of the right-hand side of essential variables. We define a matrix

V ∈ Rm×N where the component of V is defined as follows

Vi,j = Yi,j+τmax
, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , N}. (3.9)

Each row of V corresponds to the time series of the right hand side of xk(t). Equation

(3.6) can be rewritten in a matrix notation as follows

V = ATU+ E, (3.10)

where A ∈ Rmn×m. In the context of method of least square, we seek a matrix A such

that the value of ‖E‖2 = ‖V −ATU‖2 is minimized where ‖E‖2 =
∑m

i=1

∑N

k=1E
2
ij.

Using the method of least square provided in Appendix B, A is obtained as follows

A = (UUT )−1(UVT ). (3.11)

The coefficient aikj of the right-hand side of xi in equation (3.6) is A(k−1)n+j,i. The

random force, ei(t), in (3.6) is obtained directly from the residual from least square

method as follows

E = V −ATU. (3.12)

Here, the ith row of E, Ei, is the time series of ei(t). Note that it is possible to

approximate the random force, ei(t), by white noise approximation if there is a strong

scale separation between ei(t) and xi(t). We illustrate the white noise approximation

for the TBH case in the next section.
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3.3 The Effective Model for the

First Fourier Mode of TBH System

We consider the case where the effective model consists of the first Fourier mode. We

write u1 as a real part, ure
1 , and an image part, uim

1 , and assume that the delay model

consists of n time delays. Thus, the delay effective model can be written as follows

dure
1 =

[

n
∑

i=1

aiu
re
1 (t− ti) +

n
∑

i=1

biu
im
1 (t− ti)

]

dt+ ere1 dt (3.13a)

duim
1 =

[

n
∑

i=1

ciu
re
1 (t− ti) +

n
∑

i=1

diu
im
1 (t− ti)

]

dt+ eim1 dt. (3.13b)

The coefficients ai, bi, ci, and di are estimated from equation (3.11). The processes

ere1 and eim1 are constructed from the time series of residuals obtained from (3.12).

In practice, the random forces behave stochastically in a fast time scale. Thus, it is

possible to model these random forces by white noises. We assume that the random

forces are stationary and ergodic processes with zero mean. We assume that the

random forces are written as follows

dere1 = f1(e
re
1 )dt+ h1(e

re
1 )dW1 (3.14a)

deim1 = f2(e
im
1 )dt+ h2(e

im
1 )dW2, (3.14b)

where W1 and W2 are independent Brownian motions. Combining (3.13) and (3.14),

and introducing ǫ, the system of equations can be written as follows

dure
1 =

[

n
∑

i=1

aiu
re
1 (t− ti) +

n
∑

i=1

biu
im
1 (t− ti)

]

dt+
1

ǫ
ere1 dt (3.15a)

duim
1 =

[

n
∑

i=1

ciu
re
1 (t− ti) +

n
∑

i=1

diu
im
1 (t− ti)

]

dt+
1

ǫ
eim1 dt (3.15b)

dere1 =
1

ǫ2
f1(e

re
1 )dt+

1

ǫ
h1(e

re
1 )dW1 (3.15c)

deim1 =
1

ǫ2
f2(e

im
1 )dt+

1

ǫ
h2(e

im
1 )dW2. (3.15d)
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We apply the homogenization method provided in Appendix A to (3.15) to obtain

the stochastic delay effective model. The stochastic delay effective model is written

as follows

dure
1 =

[

n
∑

i=1

aiu
re
1 (t− ti) +

n
∑

i=1

biu
im
1 (t− ti)

]

dt+
√
2σ1dB1 (3.16a)

duim
1 =

[

n
∑

i=1

ciu
re
1 (t− ti) +

n
∑

i=1

diu
im
1 (t− ti)

]

dt+
√
2σ2dB2, (3.16b)

where B1 and B2 are independent Brownian motions and the values of σ1 and σ2 are

defined as follows

σ2
1 =

∫ ∞

0

E[ere1 (t)ere1 (0)]dt (3.17a)

σ2
2 =

∫ ∞

0

E[eim1 (t)eim1 (0)]dt. (3.17b)

Here, E[.] denotes the expectation with respect to the invariant measure generated by

e1. In practice, σ1 and σ2 can be computed numerically from the time series defined

in (3.12). The expected value in (3.17) is computed by using the time average on a

single realization. Thus, we write E[ere1 (t)ere1 (0)] as follows

E[ere1 (t)ere1 (0)] = lim
T→∞

1

T

∫ T

0

ere1 (t+ s)ere1 (s)ds, (3.18)

and (3.17) can be rewritten as

σ2
1 =

∫ ∞

0

[

lim
T→∞

1

T

∫ T

0

ere1 (t+ s)ere1 (s)ds

]

dt (3.19a)

σ2
2 =

∫ ∞

0

[

lim
T→∞

1

T

∫ T

0

eim1 (t+ s)eim1 (s)ds

]

dt. (3.19b)

3.3.1 Numerical Results for One Fourier Mode

We simulate the full TBH equation with parameters as follows. The number of Fourier

modes is 20. (Λ = 20). The initial values of Fourier modes are chosen randomly

such that the total energy of the system is 0.4. Thus, the energy for the real and
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image of each Fourier mode is 0.01. We also choose the initial values such that the

Hamiltonian of the system is not zero. The full model is numerically integrated by

Pseudo Spectral method combining with the fourth-order Runge-Kutta method. The

time step in the numerical integration of the full model is 10−3. To obtain the time

series of the essential variable, we sample data at time step ∆t = 0.01 with the total

time of 2,000. Thus, the length of the time series is 200,000 points. For convenience

of notation, we assume that the dynamics of u1 is written as follows

dure
1

dt
= gre1

duim
1

dt
= gim1 ,

where gre1 and gim1 depends on the current and past values of ure
1 and uim

1 . The

numerical data of gre1 and gim1 are obtained by the method described in section (3.2.1).

Figure (3.1) and (3.2) show the cross-correlation between essential variables and the

right hand side of essential variables. In this effective model, there are two essential

variables which are ure
1 and uim

1 . Both gre1 and gim1 are correlated with ure
1 and uim

1 .

The cross-correlations are significant when the time lag is between 0 and 4. The

cross-correlations decay to zero as the time lag increases. This suggests that gre1 and

gim1 depend on the current and past values of ure
1 and uim

1 with a short period of

memory. In this particular model, we choose a maximum time delay tmax = 4.
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Figure 3.1: Cross-correlation function between gre1 and u1. The solid line is the cross-

correlation between gre1 and ure
1 . The dashed line is the cross-correlation between gre1

and uim
1 .
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Figure 3.2: Cross-correlation function between gim1 and u1. The solid line is the cross-

correlation between gim1 and uim
1 . The dashed line is the cross-correlation between

gim1 and ure
1 .
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For the effective model, we set the number of delays to 5 (n = 5). Figures (3.1)

and (3.2) show that the cross-correlations are strong at the time lag between 0 and

4. We choose the time delays for the effective model at time lags of 0.0, 1.0, 2.0,

and 4.0. Note that the time lag t1 = 0.0 corresponds to the current value of essential

variables. Table (3.1) shows the coefficient values in (3.16) obtained from the least

square method.

i τi ai bi ci di

1 0.0 1.1088 -0.1408 0.1358 1.1136

2 1.0 -1.5861 0.1902 -0.1888 -1.5959

3 2.0 0.4874 -0.1299 0.1374 0.5006

4 3.0 -0.0956 0.0663 -0.0744 -0.0996

5 4.0 0.0193 -0.0290 0.0319 0.0189

Table 3.1: The coefficients of the stochastic delay differential equation defined in

(3.16). The coefficient values are obtained by the least square method defined in

(3.11).

Once the coefficients are obtained, the time series of ere1 and eim1 can be obtained

from the residual defined in (3.12). Note that the time series of ere1 and eim1 has to

be uncorrelated with ure
1 and uim

1 since, by the concept of least square method, the

residuals are orthogonal to the independent variables. Figure (3.3) shows the cross-

correlation functions between noises (ere1 , e
im
1 ) and essential variables (ure

1 , u
im
1 ). From

the figure, the cross-correlation functions are almost identically zero.
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To approximate ere1 and eim1 by white noise, a time scale separation between ere1 ,

eim1 and ure
1 , u

im
1 has to be assumed. Their auto-correlation functions are illustrated

in Figure (3.4). The auto-correlation function of ere1 decays faster than the auto-

correlation function of ure
1 . The correlation time, which is defined as

correlation time of X =

∫∞

0
E[X(t+ τ)X(t)]dτ

E[X(t)]2
, (3.20)

represents how fast the stochastic processes decorrelate. In this particular case, the

correlation times of ere1 , eim1 , ure
1 and uim

1 are shown in Table (3.2). The correlation

times of ere1 and eim1 are approximately one tenth of the correlation times of ure
1 and

uim
1 .

Correlation time

ere1 0.1440

eim1 0.1573

ure
1 1.4738

uim
1 1.5378

Table 3.2: The correlation time of ere1 , eim1 , ure
1 , and uim

1 .

In practice, the diffusion coefficients defined in (3.19) need to be approximated

numerically from the time series of E defined in (3.12). The diffusion coefficients are

calculated by the following equation

σ2
i =

M
∑

m=1

[

1

N −M

N−M
∑

n=1

Ei,n+mEi,n

]

∆t, i ∈ {1, 2}, (3.21)

where M = ⌊TC

∆t
⌋ and TC = 10. In principle, TC has to be a large number but, from

the numerical data, the auto-correlation function of e1 decays to zero quickly. Thus,

it is sufficient to set TC = 10. The values of σ1 and σ2 computed from (3.21) are

σ1 = 9.37× 10−3

σ2 = 9.75× 10−3.
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Figure 3.4: Auto-correlation functions of ere1 and ure
1 . Note that the auto-correlation

of ere1 decorrelates faster than the auto-correlation of ure
1 .

To perform the simulation of the stochastic delay effective model, the equations

in (3.16) are integrated by Euler-Maruyama method [21]. The discretized equations

of (3.16) are written as follows

ure
1 (t +∆t) = ure

1 (t) +

[

n
∑

i=1

aiu
re
1 (t− ti) +

n
∑

i=1

biu
im
1 (t− ti)

]

∆t +

√
2σ1

√
∆tz1 (3.22a)

uim
1 (t +∆t) = uim

1 (t) +

[

n
∑

i=1

ciu
re
1 (t− ti) +

n
∑

i=1

diu
im
1 (t− ti)

]

∆t +

√
2σ2

√
∆tz2, (3.22b)

where z1 and z2 are independent standard normal distribution random variables. For

simplicity, the time step, ∆t, is chosen such that ti
∆t
, i = 1, ..., n, are integer. Here,

we choose ∆t = 10−2. Note that in the context of numerical programming, we have

to store the past values of u1 in a memory array. The length of the array equals to

τmax defined in (3.7). In this case, τmax = 4/0.01 = 400. This array is updated every

time the value of u1 is computed. We integrate the effective model with T = 200, 000
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and measure mean, variance, and kurtosis of ure
1 and uim

1 . We also measure the auto-

correlation functions of ure
1 and uim

1 , the cross-correlation function between ure
1 and

uim
1 , and the probability density functions of ure

1 and uim
1 .

mean variance kurtosis

Theory 0.0 10−2 3.0

Full model ure
1 −2.23× 10−3 1.01× 10−2 2.792

uim
1 −1.64× 10−3 1.01× 10−2 2.922

Effective model ure
1 −1.69× 10−3 1.01× 10−2 2.996

uim
1 −4.53× 10−4 1.03× 10−2 2.941

Table 3.3: Mean, variance, and kurtosis of ure
1 and uim

1 from the full model and the

stochastic delay effective model defined in (3.16).

The stochastic delay effective model provides a good agreement with the full

model. The relative error of the variance of u1 is less than 5%. The kurtosis approxi-

mately equals to 3. The auto-correlation functions of ure
1 and uim

1 from the stochastic

delay effective model are very close to the auto-correlation functions from the full

model. There is a little discrepancy of the cross-correlation function. Overall, the

effective model reproduces statistical behaviours of the full model both one-point and

two-points statistics.

The Effect of the Number of Time Delays

In this section, we investigate the effect of the number of time delays in the effective

model. We study two cases for the numerical simulations. The first effective model

has two time delays (n = 2) and the time delays are at 0.0 and 1.0. The second

effective model has ten time delays (n = 10) and the time delays are at 0.0, 1.0, ... ,

9.0.

64



0 5 10 15 20

0

0.5

1

time

 

 

0 5 10 15 20

0

0.5

1

time

 

 

0 5 10 15 20
−0.2

0

0.2

0.4

time

 

 

−0.5 0 0.5
0

1

2

3

4

5

Full Model
Effective Model

Full Model
Effective Model

Full Model
Effective Model

Figure 3.5: Comparison of statistical properties of u1 between the full model and the

stochastic delay effective model defined in (3.16). The auto-correlation of ure
1 is on

the top left. The auto-correlation of uim
1 is on the top right. The cross-correlation

between ure
1 and uim

1 is on the bottom left. The probability density function of ure
1 is

on the bottom right.

Table (3.4) and (3.5) show the coefficients of stochastic delay models with two

and ten delays, respectively. Statistical results from the effective model with two

time delays are shown in Figure (3.6) and Table (3.6).

The variances of ure
1 and uim

1 from the stochastic delay effective model with two

time delays are significantly larger than the variance from the full model. Both auto-

correlation function and cross-correlation function from the effective model behave

differently from the full model. There is a large oscillation in both auto-correlation

and cross-correlation functions of the effective model. Overall, the effective model

with two time delays is unable to reproduce the statistical behaviours of the full

model. The result shows that the effective model requires more time delays in order

to reproduce the statistical properties of the system. On the other hand, the effective
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i τi ai bi ci di

1 0.0 0.8301 -0.1537 0.1582 0.8297

2 1.0 -0.9765 0.1431 -0.1436 -0.9667

Table 3.4: The coefficients of the stochastic delay effective model defined in (3.16)

with two time delays. The coefficient values are obtained by the least square method

defined in (3.11).

model with ten time delays reproduces the statistical properties of the full model.

These statistical properties are shown in Figure (3.7) and and Table (3.7). Note that

increasing the number of time delays from five to ten does not significantly improve

statistical properties of the essential variables. The statistical behaviours from the

effective models with five and ten time delays are similar. Moreover, the stochastic

delay effective model with ten delays is more complex than the effective model with

five delays. The computation needs more memory arrays to store the past values of

essential variables. It is sufficient to model the stochastic delay effective model with

five time delays.
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i τi ai bi ci di

1 0.0 1.1155 -0.1300 0.1354 1.1116

2 1.0 -1.5872 0.1751 -0.1759 -1.5732

3 2.0 0.4881 -0.1215 0.1140 0.4712

4 3.0 -0.1044 0.0766 -0.0526 -0.0867

5 4.0 0.0030 -0.0650 0.0247 0.0173

6 5.0 -0.0064 0.0418 0.0057 0.0012

7 6.0 0.0071 -0.0191 -0.0129 -0.0034

8 7.0 -0.0161 0.0059 0.0141 -0.0067

9 8.0 0.0052 0.0030 -0.0115 0.0088

10 9.0 0.0017 -0.0022 0.0023 -0.0038

Table 3.5: The coefficients of the stochastic delay effective model defined in (3.16)

with ten delays. The coefficient values are obtained by the least square method

defined in (3.11).

mean variance kurtosis

Theory 0.0 10−2 3.0

Full model ure
1 −2.23× 10−3 1.01× 10−2 2.792

uim
1 −1.64× 10−3 1.01× 10−2 2.922

Effective model ure
1 −1.39× 10−3 3.03× 10−2 3.001

uim
1 −7.28× 10−4 3.01× 10−2 2.955

Table 3.6: Mean, variance, and kurtosis of ure
1 and uim

1 from the full model and the

effective model defined in (3.16). The effective model consists of two time delays.
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Figure 3.6: Comparison of statistical properties of u1 between the full model and the

stochastic delay effective model defined in (3.16). The effective model has two time

delays. The auto-correlation of ure
1 is on the top left. The auto-correlation of uim

1 is

on the top right. The cross-correlation between ure
1 and uim

1 is on the bottom left.

The probability density function of ure
1 is on the bottom right.

mean variance kurtosis

Theory 0.0 10−2 3.0

Full model ure
1 −2.23× 10−3 1.01× 10−2 2.792

uim
1 −1.64× 10−3 1.01× 10−2 2.922

Effective model ure
1 −8.15× 10−4 1.05× 10−3 2.938

uim
1 1.14× 10−4 1.01× 10−2 3.007

Table 3.7: Mean, variance, and kurtosis of ure
1 and uim

1 from the full model and the

effective model defined in (3.16). The effective model consists of ten time delays.
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Figure 3.7: Comparison of statistical properties of u1 between the full model and the

stochastic delay effective model defined in (3.16). The effective model has ten time

delays. The auto-correlation of ure
1 is on the top left. The auto-correlation of uim

1 is

on the top right. The cross-correlation between ure
1 and uim

1 is on the bottom left.

The probability density function of ure
1 is on the bottom right.
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The Effect of the Time Step in Numerical Integration

In this section, we study the effect of the time step used in the numerical integration

of the stochastic delay effective model. We choose the stochastic delay model with five

time delays as an effective model. The coefficients of the effective model are shown

in Table (3.1). We simulate the stochastic delay effective models with four different

time steps, ∆t = 0.01, 0.02, 0.05, 0.1. Note that these time steps are not related to

the time step used in the parameter estimation. The time step used in the parameter

estimation is 0.01 for all cases.

mean variance kurtosis

Theory 0.0 10−2 3.0

Full model with ure
1 −2.23× 10−3 1.01× 10−2 2.792

∆t = 10−3 uim
1 −1.64× 10−3 1.01× 10−2 2.922

Effective model with ure
1 −1.69× 10−3 1.01× 10−2 2.996

∆t = 10−2 uim
1 −4.53× 10−4 1.03× 10−2 2.941

Effective model with ure
1 −1.20× 10−3 1.02× 10−2 3.042

∆t = 2× 10−2 uim
1 3.95× 10−5 1.02× 10−2 3.005

Effective model with ure
1 −1.99× 10−3 1.02× 10−2 2.991

∆t = 5× 10−2 uim
1 1.47× 10−5 1.03× 10−2 2.999

Effective model with ure
1 −1.24× 10−3 1.09× 10−2 3.005

∆t = 10−1 uim
1 2.72× 10−4 1.10× 10−2 3.005

Table 3.8: Mean, variance, and kurtosis of ure
1 and uim

1 from the full model and the

effective model with five time delays. The effective model is numerically integrated

with different time steps.

Table (3.8) shows the one-point statistics of the effective model with different time

steps. The variances of ure
1 and uim

1 from the effective model with ∆t = 0.01, 0.02,
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Figure 3.8: Auto-correlation functions of ure
1 from the effective model. The effective

model is numerically integrated with different time steps.

and 0.05 are very close to the theoretical value. For ∆t = 0.1, the variance is a

little higher than the theoretical value. However, the auto-correlation function of

ure
1 from the effective model with ∆t = 0.1 behave differently from the others. In

this simulation, the effective model with 0.01 ≤ ∆t ≤ 0.05 reasonably reproduces

statistical properties of the full model. It is possible to increase the accuracy of the

result by using the higher order numerical integration scheme for the stochastic delay

model. The details of numerical solution of delay differential equations can be found

in [20, 41].

3.4 The Effective Model for the

First Three Fourier Modes

In this section, we consider the case where the essential variables consist of the first

three Fourier modes. As we have seen in section (3.3.1), the effective model with five
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time delays reproduces statistical properties of the full model. Thus, we use n = 5 for

the effective model in this section. However, these three Fourier modes have different

correlation times. The auto-correlation functions decorrelate at different rates. The

effective model should have different time delays for each Fourier mode. Figure (3.9)

shows the cross-correlation between grei and ure
i , i = 1, 2, 3, where grei is the right-hand

side of ure
i .

0 1 2 3 4 5 6 7 8 9 10

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

lag τ

 

 

<g
1
re(t+τ)u

1
re(t)>

<g
2
re(t+τ)u

2
re(t)>

<g
3
re(t+τ)u

3
re(t)>

Figure 3.9: Correlation functions between grei and ure
i , i = 1, 2, 3.

From Figure (3.9), there is a strong correlation between gre1 and ure
1 when 0 ≤ τ ≤

4. Thus, for the first Fourier mode, we choose time delays at 0.0, 1.0, 2.0, 3.0, and

4.0. For the second Fourier mode, the cross-correlation function between gre2 and ure
2

is significant when 0 ≤ τ ≤ 4. We choose the time delays within this interval. The

time delays are at 0.0, 0.5, 1.0, 1.5, and 2.0. Similarly, the time delays for the third

Fourier mode are chosen at time 0.0, 0.4, 0.8, 1.2, and 1.6.

To estimate the parameter of the effective model, U is constructed such that its

dimension is 30 by 200,000. Recall that the effective model has three Fourier modes

with real and image. Thus, it has six essential variables. Each essential variable has
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five time delays. Therefore, the number of rows in U is 3× 2× 5 = 30. The number

of columns in U is simply equal to the length of a time series which is 200,000. V is a

matrix with a dimension of 6 by 200,000. The coefficients of the effective model and

the residual are obtained from (3.11) and (3.12), respectively. Figure (3.10) shows
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Figure 3.10: The auto-correlation functions of erei and ure
i , i = 1, 2, 3. Note that the

decorrelation time of ei is faster than ui, for i = 1, 2, 3.

the comparison between the auto-correlation functions of the residual and the auto-

correlation functions of the essential variables. Note that the residuals decorrelate

faster than the essential variables. Thus, we apply the homogenization method to

obtain the diffusion coefficients of the effective model. Table (3.9) shows the mean,

variance, and kurtosis of ure
i and uim

i for i = 1, 2, 3. The variances of ui, i = 1, 2, 3,

are close to the theoretical value. The relative errors of the variances are less than

10 %. The kurtosis from the effective model approximately equals to 3. Figure

(3.11) - (3.13) show the comparison of the correlation functions between the full

model and the effective model. There is a slight discrepancy of the auto-correlation

and cross-correlation functions of ui, i = 1, 2, 3. However, the decorrelation times
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mean variance kurtosis

Theory 0.0 10−2 3.0

Full model ure
1 −2.23× 10−3 1.01× 10−2 2.792

uim
1 −1.64× 10−3 1.01× 10−2 2.922

ure
2 −4.05× 10−5 1.05× 10−2 2.829

uim
2 −1.51× 10−3 1.03× 10−2 2.823

ure
3 −1.59× 10−4 1.03× 10−2 2.831

uim
3 2.47× 10−5 1.03× 10−2 2.822

Effective model ure
1 −1.23× 10−5 1.00× 10−2 3.011

uim
1 2.91× 10−5 1.01× 10−2 2.942

ure
2 2.27× 10−4 1.04× 10−2 3.002

uim
2 6.76× 10−5 1.07× 10−2 3.040

ure
3 9.13× 10−5 9.38× 10−3 3.012

uim
3 −6.18× 10−5 1.03× 10−2 2.992

Table 3.9: Mean, variance, and kurtosis of ure
i and uim

i for i = 1, 2, 3 from the full

model and the effective model.

of ui, i = 1, 2, 3, from these two models are approximately the same. Overall, the

effective model reproduces the statistical behaviours of the full model.
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Figure 3.11: Statistical properties of u1 from the full model and the stochastic delay

effective model. The auto-correlation of ure
1 is on the top left. The auto-correlation of

uim
1 is on the top right. The cross-correlation between ure

1 and uim
1 is on the bottom

left. The probability density function of ure
1 is on the bottom right.
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Figure 3.12: Statistical properties of u2 from the full model and the stochastic delay

effective model. The auto-correlation of ure
2 is on the top left. The auto-correlation of

uim
2 is on the top right. The cross-correlation between ure

2 and uim
2 is on the bottom

left. The probability density function of ure
2 is on the bottom right.
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Figure 3.13: Statistical properties of u3 from the full model and the stochastic delay

effective model. The auto-correlation of ure
3 is on the top left. The auto-correlation of

uim
3 is on the top right. The cross-correlation between ure

3 and uim
3 is on the bottom

left. The probability density function of ure
3 is on the bottom right.

77



3.5 Conclusion

We have shown in this chapter that the stochastic delay effective model reproduced

statistical behaviours of essential variables of TBH system. The stochastic delay

effective model is simple and straightforward. It is a linear combination of essential

variables at different time delays. One benefit of this effective model is that it does

not require the knowledge of the dynamics of essential variables. The stochastic

delay effective model can be obtained from a single realization of essential variables.

Parameters of the stochastic delay effective model are obtained from least square

method. We also showed that the factor that impact the effective model is mainly the

number of time delays. It is shown that effective models with five or more time delays

provided a good agreement with the full model. However, as we mentioned earlier in

this chapter, the numerical simulation requires more memory arrays as the number of

time delays increases but the statistical results are not significantly improved. Thus,

it is best to employ minimal number of time delays in the stochastic delay effective

model. We also showed that, under the strong scale separation assumption, the

random force in the effective model can be approximated by Brownian motion. This

simplifies the structure of the stochastic delay effective model.
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Appendix A

Asymptotic Mode Elimination

A.1 Forward and Backward Equations

Consider a one-dimensional time homogeneous SDE

dx(t) = µ(x)dt+ σ(x)dW (t),

x(0) = x. (A.1)

Here µ(x) and σ(x) are the drift and diffusion coefficients, respectively. Let f(x) be

a twice differentiable function. Define the operator L as follows

Lf(x) = lim
t→0

E[f(x(t))]− f(x)

t
. (A.2)

It can be shown that

Lf(x) = µ
∂f

∂x
+

1

2
σ2∂

2f

∂x2
. (A.3)

To see this, consider the Ito’s formula for f(x)

f(x(t))− f(x) =

∫ t

0

(µ
∂f

∂x
+

1

2
σ2∂

2f

∂x2
)du+

∫ t

0

σ
∂f

∂x
dW (u). (A.4)
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By taking the expectation of (A.4) and taking the limit t → 0, we have

Lf(x) = lim
t→0

E[f(x(t))]− f(x)

t
= lim

t→0

E
∫ t

0
(µ∂f

∂x
+ 1

2
σ2 ∂2f

∂x2 )du

t

= E lim
t→0

∫ t

0
(µ∂f

∂x
+ 1

2
σ2 ∂2f

∂x2 )du

t

= µ
∂f

∂x
+

1

2
σ2∂

2f

∂x2
. (A.5)

Now consider the function of the form v(t, x) = E[f(x(t))|x(0) = x] = Ex[f(x(t))].

Applying the operator L to v(t, x), then

Lv(t, x) = lim
h→0

Ex[v(t, x(h))]− v(t, x)

h

= lim
h→0

Ex[Ex(h)[f(x(t))]]− v(t, x)

h

= lim
h→0

Ex[Ex[f(x(t+ h))|Fh]]− v(t, x)

h

= lim
h→0

Ex[f(x(t + h))]− v(t, x)

h

= lim
h→0

v(t+ h, x)− v(t, h)

h
=

∂v

∂t
. (A.6)

Thus, the evolution of v(t, x) can be represented by the following PDE.

∂v

∂t
= µ

∂v

∂x
+

1

2
σ2 ∂

2v

∂x2
(A.7a)

v(0, x) = f(x). (A.7b)

Equation (A.7) is called the Chapman-Kolmogorov equation. More details can be

found in [39]. The solution of the Chapman-Kolmogorov equation can be written in

the semi-group notation as follows

v(t, x) = eLtf(x). (A.8)

Another equation that is related to the Chapman-Kolmogorov equation is called the

Fokker-Planck equation. It represents the evolution of the probability density function

of x(t). To obtain the Fokker-Planck equation, we again consider the Ito’s formula
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(A.4). We consider the following equation
∫

R

f(x)
∂ρ(t, x)

∂t
dx = lim

h→0

∫

R

f(x)
ρ(t+ h, x)− ρ(t, x)

h
dx

= lim
h→0

E[f(x(t + h))]− E[f(x(t))]

h

= E[lim
h→0

∫ t+h

t
(µ∂f

∂x
+ 1

2
σ2 ∂2f

∂x2 )du

h
]

= E[µ
∂f

∂x
+

1

2
σ2∂

2f

∂x2
]

=

∫

R

(µ
∂f

∂x
+

1

2
σ2∂

2f

∂x2
)ρ(t, x)dx. (A.9)

Using the integration by part and the fact that limx→±∞ ρ(t, x) = 0 and

limx→±∞
∂ρ(t,x)

∂x
= 0. It can be shown that

∫

R

(µ
∂f

∂x
+

1

2
σ2∂

2f

∂x2
)ρ(t, x)dx =

∫

R

f(x)(−∂(µρ)

∂x
+

1

2

∂2(σ2ρ)

∂x2
)dx. (A.10)

Equation ( A.9) can be written as
∫

R

f(x)
∂ρ(t, x)

∂t
dx =

∫

R

f(x)(−∂(µρ)

∂x
+

1

2

∂2(σ2ρ)

∂x2
)dx. (A.11)

The above equation is true for any f(x). Thus,

∂ρ(t, x)

∂t
= −∂(µρ(t, x))

∂x
+

1

2

∂2(σ2ρ(t, x))

∂x2
. (A.12)

Therefore, the probability density function of x(t) can be solved from

∂ρ(t, x)

∂t
= −∂(µρ(t, x))

∂x
+

1

2

∂2(σ2ρ(t, x))

∂x2
(A.13a)

ρ(0, x) = ρ0(x). (A.13b)

Equation (A.13) is called Fokker-Planck equation. Similarly, the solution ρ(t, x) can

be written in semi-group notation as ρ(t, x) = eL
∗tρ0(x) where

L∗ρ =
∂(µρ)

∂x
+

1

2

∂2(σ2ρ)

∂x2
. (A.14)

L∗ is called the adjoint operator of L and satisfies < v, L∗ρ >=< Lv, ρ > where

< f, g >=
∫

R
f(x)g(x)dx. Another important relationship between v and ρ is

∫

R

eLtf(x)ρ0(x)dx =

∫

R

eL
∗tρ0(x)f(x)dx. (A.15)
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If x(t) is the ergodic process, then the invariant density function which is defined as

ρ∞(x) = limt→∞ eL
∗tρ0(x) exists and satisfies L∗ρ∞ = 0.

A.2 Asymptotic Mode Elimination

Let us consider the system of m+ n variables

dx = f(x, y)dt+ a(x, y)dB (A.16a)

dy = g(x, y)dt+ b(x, y)dW, (A.16b)

where x ∈ Rm and y ∈ Rn. B and W are independent multivariate Wiener processes

with dimensions d1 and d2, respectively. The functions f(x, y) and g(x, y) are real-

valued vector functions. We also assume that a(x, y) ∈ Rm×d1 and b(x, y) ∈ Rn×d2 .

We also assume that x and y have a strong scale separation where x is in a slow regime

and y is in a fast regime. The main objective of this section is to obtain the reduced

equation for x. Particularly, we seek the reduced equation for x of the following form

dX = F (X)dt+ A(X)dB. (A.17)

By assuming scale separation between x and y, the asymptotic approach can be

used to obtain the reduced equation. Two methods of the asymptotic approach are

described in this section; the averaging method and the homogenization method. The

approapriate method is determined from the structure of the full system (A.16).

A.2.1 Averaging Method

For the averaging method, the scale separation between x and y is defined by the

parameter ǫ. We assume ǫ ≪ 1. We introduce ǫ to the full system as follows

dx = f(x, y)dt+ a(x, y)dB (A.18a)

dy =
1

ǫ
g(x, y)dt+

1√
ǫ
b(x, y)dW. (A.18b)
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The corresponding Chapman-Kolmogorov equation for the system (A.18) can be writ-

ten as follows

∂u

∂t
= f(x, y) · ∇xu+

1

2
Trace(a(x, y)aT (x, y)∇x(∇xu)) +

1

ǫ
(g(x, y) · ∇yu+

1

2
Trace(b(x, y)bT (x, y)∇y(∇yu)), (A.19)

where ∇xu denotes the gradient of u with respect to x, i.e., ∇xu = [ ∂u
∂x1

. . . ∂u
∂xm

]T , and

∇x(∇xu) denotes the second order partial derivative of u, i.e., (∇x(∇xu))i,j =
∂2u

∂xi∂xj
.

Define the operator L0 and L1 as

L0 = f(x, y) · ∇x +
1

2
Trace(a(x, y)aT (x, y)∇x(∇x ))

L1 = g(x, y) · ∇y +
1

2
Trace(b(x, y)bT (x, y)∇y(∇y )).

Then, (A.19) can be written in an operator notation as follows

∂u

∂t
= L0u+

1

ǫ
L1u. (A.21)

We assume that u has the following expansion

u = u0 + ǫu1 + ǫ2u2 + . . . . (A.22)

Substituting (A.22) into (A.21), we have

∂u0

∂t
+ ǫ

∂u1

∂t
+ . . . =

1

ǫ
L1u0 + (L0u0 + L1u1) + ǫ(L0u1 + L1u2) + . . . . (A.23)

Comparing the coefficients on the scale ǫ−1 and ǫ0, we have

L1u0 = 0 (A.24a)

∂u0

∂t
= L0u0 + L1u1. (A.24b)

Since L1 consists of the derivatives with respect to y. Equation (A.24a) implies that

u0 is a constant function with respect to y. Thus, u0 ≡ u0(t, x). Let ρ(y; x) be the

invariant density function related to the operator L1, i.e, ρ(y; x) satisfies L∗
1ρ = 0,
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where L∗
1 is the adjoint operator of L1. Here y is treated as a variable and x is treated

as a constant. Define the averaging operator Py as follows

Pyu =

∫

Rn

u ρ(y; x)dy. (A.25)

Applying the averaging operator Py to (A.24b), we have

Py

∂u0

∂t
= PyL0u0 + PyL1u1. (A.26)

Since

Py

∂u0

∂t
=

∫

Rn

∂u0

∂t
ρ(y; x) dy =

∂u0

∂t

∫

Rn

ρ(y; x)dy =
∂u0

∂t

and

PyL1u1 =

∫

Rn

L1u1 ρ(y; x)dy =

∫

Rn

u1 (L∗
1ρ) dy = 0,

(A.26) can be rewritten as

∂u0

∂t
= PyL0u0 = Pyf(x, y) · ∇xu0 +

1

2
PyTrace(a(x, y)a

T (x, y)∇x(∇xu0)). (A.27)

Equation (A.27) is the Chapman-Kolmogorov equation that represents the dynamics

of x. In an infinite scale separation, u → u0 as ǫ → 0. Thus, the reduced equation

can be obtained from (A.27)

Example

Consider the following system

dx = −ydt+ dB1 (A.28)

dy = −α(y − x)dt+ σdB2, (A.29)

where x and y are one dimensional stochastic processes. B1 and B2 are independent

Wiener processes. We assume x and y have a strong scale separation. We introduce

ǫ to the equation as follows

dx = −ydt+ dB1 (A.30)

dy = −1

ǫ
α(y − x)dt+

1√
ǫ
σdB2. (A.31)
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The corresponding Chapman-Komolgorov equation can be written as follows

∂u

∂t
= L0u+

1

ǫ
L1u, (A.32)

where

L0u = −y
∂u

∂x
+

1

2

∂2u

∂x2
(A.33)

L1u = −α(y − x)
∂u

∂y
+

1

2
σ2∂

2u

∂y2
. (A.34)

Using the expansion, u = u0+ǫu1+ ... and substituting u into (A.32), equation (A.27)

for this example can be written as follows

∂u0

∂t
= PyL0u0 = Py(−y

∂u0

∂x
+

1

2

∂2u0

∂x2
), (A.35)

where Pyg(y, x) =
∫

R
g(y, x)ρ(y; x)dy and ρ(y; x) is the invariant density function

ρ(y; x) =

√

α

πσ2
e−

α(y−x)2

σ2 . (A.36)

Equation (A.35) can be simplified as follows

∂u0

∂t
= −

∫

R

y ρ(y; x)dy
∂u0

∂x
+

1

2

∂2u0

∂x2
= −x

∂u0

∂x
+

1

2

∂2u0

∂x2
. (A.37)

Equation (A.37) has a corresponding stochastic differential equation

dX = −Xdt+ dW. (A.38)

Equation (A.38) is, thus, the reduced equation for (A.28).

A.2.2 Homogenization Method

The averaging method dose not apply if PyL0u0 = 0 in (A.27). In this case, the time

of fast variables has to be rescaled to the order of ǫ−2, the epsilon form of (A.16) is

given as follows

dx = f0(x, y)dt+
1

ǫ
f1(x, y)dt+ a(x, y)dB (A.39a)

dy =
1

ǫ2
g(x, y)dt+

1

ǫ
b(x, y)dW, (A.39b)
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where we decompose f(x, y) as f(x, y) = f0(x, y) + f1(x, y).

The Chapman-Kolmogorov equation of (A.39) can be written as follows

∂u

∂t
= f0(x) · ∇xu+

1

2
Trace(a(x, y)aT (x, y)∇x(∇xu)) +

1

ǫ
f1(x, y) · ∇xu+

1

ǫ2
(g(x, y) · ∇yu+

1

2
Trace(b(x, y)bT (x, y)∇y(∇yu))). (A.40)

Define the operators L0, L1, and L2 as

L0 = f0(x, y) · ∇x +
1

2
Trace(a(x, y)a(x, y)T∇x(∇x ))

L1 = f1(x, y) · ∇x

L2 = g(x, y) · ∇y +
1

2
Trace(b(x, y)bT (x, y)∇y(∇y )).

Then (A.40) can be rewritten as

∂u

∂t
= L0u+

1

ǫ
L1u+

1

ǫ2
L2u. (A.42)

Expanding u as (A.22) and substituting it into the above equation, we have

∂u0

∂t
+ ǫ

∂u1

∂t
+ . . . =

1

ǫ2
L2u0 +

1

ǫ
(L1u0 +L2u1) + (L0u0 +L1u1 +L2u2) + . . . . (A.43)

Comparing the coefficients on the scale ǫ−2, ǫ−1 and ǫ0, we have

L2u0 = 0 (A.44a)

L1u0 + L2u1 = 0 (A.44b)

∂u0

∂t
= L0u0 + L1u1 + L2u2. (A.44c)

Equation (A.44a) implies that u0 is in the null space of L2. Thus, u0 is a constant

function with respect to y, i.e., u0 ≡ u0(t, x). Let ρ(y; x) be the invariant density

function related to the operator L2, i.e, ρ(y; x) satisfies L∗
2ρ = 0, where L∗

2 is the

adjoint operator of L2. Define the averaging operator Py as

Pyu =

∫

Rn

u ρ(y; x)dy. (A.45)
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Applying the averaging operator, Py to (A.44b), we have

PyL1u0 + PyL2u1 = PyL1u0 = 0. (A.46)

Equation (A.46) is the condition for applying the homogenization method. In other

word, one can apply the homogenization method if
∫

Rn

f1(x, y)ρ(y; x)dy = 0. (A.47)

From (A.44b), u1 can be rewritten as u1 = −L−1
2 L1u0. Substituting u1 = −L−1

2 L1u0

into (A.44c) and applying the averaging operator, we have

Py

∂u0

∂t
= Py L0u0 + Py [−L1L

−1
2 L1u0] + Py L2u2. (A.48)

Since Py
∂u0

∂t
= ∂u0

∂t
and Py L2u2 = 0, the above equation can be simplified as

∂u0

∂t
= Py L0u0 + Py [−L1L

−1
2 L1u0]. (A.49)

To interpret the inverse operator L−1
2 , we consider the following problem

−L−1
2 f = g, and

∫

fρ(y; x)dy = 0. (A.50)

If we let g =
∫∞

0
eL2tfdt. Then

−L2g = −
∫ ∞

0

L2e
L2tfdt

= −
∫ ∞

0

∂

∂t
eL2tfdt

= f − lim
t→∞

eL2tf = f −
∫

fρ(y; x)dy = f. (A.51)

Thus,

−L−1
2 f =

∫ ∞

0

eL2tfdt. (A.52)

The term Py [−L1L
−1
2 L1u0] in (A.49) can be computed as

Py [−L1L
−1
2 L1u0] =

∫

Rn

ρ(y; x)(

∫ ∞

0

(E[Trace(f1(x, y)f1(x, y(t))
T∇x(∇xu0))] +

E[f1(x, y)∇xf1(x, y(t))
T ] · ∇xu0)dt)dy

=

∫ ∞

0

(

∫

Rn

ρ(y; x)E[Trace(f1(x, y)f1(x, y(t))
T∇x(∇xu0))]dy +

∫

Rn

ρ(y; x)E[f1(x, y)∇xf1(x, y(t))
T ] · ∇xu0)dy)dt. (A.53)
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The expectation and the averaging under the invariant density function in (A.53) is,

in fact, redundant. Thus, equation (A.53) can be rewritten as follows

Py [−L1L
−1
2 L1u0] =

∫ ∞

0

(E[Trace(f1(x, y)f1(x, y(t))
T∇x(∇xu0))] +

E[f1(x, y)∇xf1(x, y(t))
T ] · ∇xu0)dt. (A.54)

Equations (A.49) and (A.54) together represent the Chapman-Kolmogorov equation

related to x variable. Thus, the reduced equation for x can be obtained from (A.49)

and (A.54). We give an example of the homogenization method here.

Example

Consider the following system

dx = −xdt + ydt (A.55)

dy = −αydt+ σdB, (A.56)

where x and y are one dimensional stochastic processes, and B is a one dimensional

Brownian motion. We assume x and y have a strong scale separation. We introduce

ǫ to the equation as follows

dx = −xdt +
1

ǫ
ydt (A.57)

dy = − 1

ǫ2
αydt+

1

ǫ
σdB. (A.58)

The corresponding Chapman-Komolgorov equation can be written as follows

∂u

∂t
= L0u+

1

ǫ
L1u+

1

ǫ2
L2u (A.59)

where

L0u = −x
∂u

∂x
(A.60)

L1u = y
∂u

∂x
(A.61)

L2u = −αy
∂u

∂y
+

1

2
σ2∂

2u

∂y2
. (A.62)
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Using the expansion, u = u0 + ǫu1 + ... and substituting u into (A.59), we have

∂u0

∂t
= PyL0u0 + Py[−L1L

−1
2 L1u0]

= Py(−x
∂u0

∂x
) + (

∫ ∞

0

E[y(0)y(t)]dt)
∂2u0

∂x2
, (A.63)

where the invariant density function related to L2 in this case is

ρ(y) =

√

α

πσ2
e−

αy2

σ2 . (A.64)

We note that
∫ ∞

0

E[y(0)y(t)]dt =

∫ ∞

0

σ2

2α
e−αtdt =

σ2

2α2
. (A.65)

Thus, the Chapman-Kolmogorov equation for u0 is written as follows

∂u0

∂t
= −x

∂u0

∂x
+

σ2

2α2

∂2u0

∂x2
(A.66)

and its corresponding stochastic differential equation is written as follows

dX = −Xdt +
σ

α
dW. (A.67)

Equation (A.67) is the reduced equation for (A.55). Readers interested in asymptotic

mode elimination can find more details in [36, 37, 38].
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Appendix B

Least Square Method

In this appendix , we assume that x and y are vector-valued variables where x ∈ Rn×1

and y ∈ Rm×1. We also assume that the relationship between x and y is

y = ATx (B.1)

where A ∈ Rn×m and AT denotes the transpose of A. Let X be a time series of x

with length N , i.e., X ∈ Rn×N . Similarly, we let Y denote a time series of y with

length N , i.e., Y ∈ Rm×N . For the ease of notation, Xj denotes a row vector of X at

row j and Yi denotes a row vector of Y at row i. To estimate A from time series X

and Y , we minimize the following error function

E =
1

2

N
∑

k=1

m
∑

i=1

(
n

∑

j=1

AjiXjk − Yik)
2 =

1

2

m
∑

i=1

N
∑

k=1

(
n

∑

j=1

AjiXjk − Yik)
2. (B.2)

There are mn coefficients to estimate for this case. By taking the derivative with

respect to Ats, 1 ≤ t ≤ n, 1 ≤ s ≤ m, and setting the derivative to zero, we have

∂E

∂Ats

=
N
∑

k=1

(
n

∑

j=1

AjsXjk − Ysk)Xtk = 0. (B.3)

Equation (B.3) can be rewritten as follows

n
∑

j=1

Ajs(XjX
T
t ) = YsX

T
t . (B.4)
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Equation (B.4) is true for 1 ≤ t ≤ n, 1 ≤ s ≤ m. In fact, (B.4) can be written in a

matrix notation as follows

AT (XXT ) = (Y XT ) (B.5)

and the solution of (B.5) is

A = (XXT )−1(XY T ). (B.6)
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