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Abstract Microemulsions can be modeled by an initial-boundary valablem for
a sixth order Cahn-Hilliard equation. Introducing the cliahpotential as a dual
variable, a Ciarlet-Raviart type mixed formulation yiemsystem consisting of a
linear second order evolutionary equation and a nonlineartth order equation.
The spatial discretization is done by & @terior Penalty Discontinuous Galerkin
(CPIPDG) approximation with respect to a geometrically conforg simplicial tri-
angulation of the computational domain. The DG trial spacesconstructed by €
conforming Lagrangian finite elements of polynomial degree2. For the semidis-
cretized problem we derive quasi-optimal a priori erromeates for the global dis-
cretization error in a mesh-dependent COIPDG norm. Thedisanetized problem
represents an index 1 Differential Algebraic Equation (DA#ich is further dis-
cretized in time by an s-stage Diagonally Implicit Rungeti(DIRK) method of
orderg > 2. Numerical results show the formation of microemulsioren oil/water
system and confirm the theoretically derived convergenesra

1 Introduction

Microemulsions are thermodynamically stable colloidapdirsions of an oil/water
system that typically occur as oil-in-water, water-in;oit water/oil droplets with a
diameter up to 200 nm. They are thus considerably smallerdrdinary emulsions
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(macroemulsions). Moreover, in contrast to macroemugsishose generation re-
quires strong shear forces, microemulsions can be cregtsdriple mixing. Due
to their efficient drug solubilization capacity and biod&hility, microemulsions
have significant applications in pharmacology as drug eegtior the delivery of
hydrophilic as well as lipophilic drugs. Other applicatidinclude cleaning and pol-
ishing processes, food processing, and cutting oils (df. 21, 23, 24, 27, 28]).

As far as the mathematical modeling is concerned, for tgroidwater-microemul-
sions Gompper et al. [15, 16, 17, 18] have considered a seoated Ginzburg-
Landau free energy so that the dynamics of the microemusific process can
be described by an initial-boundary value problem for ahsodder Cahn-Hilliard
equation. The existence and uniqueness of strong and wéatloss has been in-
vestigated analytically by Pawlow et al. [25, 26, 29].

For the numerical simulation of the microemulsificationgess, we introduce the
chemical potential as a dual variable and consider a CiRdwiart type mixed for-
mulation as a system consisting of a linear second ordeugonhry equation and
a nonlinear fourth order elliptic equation. The spatiakcdisization is taken care
of by a @ Interior Penalty Discontinuous Galerkin {fPDG) approximation with
respect to a geometrically conforming simplicial triaregidn of the computational
domain. The DG trial spaces are constructed Bycénforming Lagrangian finite
elements of polynomial degrge> 2. We note that IPDG methods for the stan-
dard fourth order Cahn-Hilliard equation have been studig82] based on IPDG
approximations of fourth order problems including the bihanic equation consid-
ered in [5, 10] (cf. also [3, 11, 12, 13]). The semidiscredipeoblem represents an
initial value problem for an index 1 Differential Algebreimuation (DAE) which is
discretized in time by an s-stage Diagonally Implicit Ruigéta method of order
g > 2 with respect to a partitioning of the time interval (cfge[1, 7, 19]). The
resulting parameter dependent nonlinear algebraic syistenmerically solved by
a predictor-corrector continuation strategy with the tistep size as the continua-
tion parameter featuring constant continuation as a pt@dimd Newton’s method
as corrector.

The paper is organized as follows: After some notations aetinpinaries in sec-
tion 2, in section 3 we present the initial-boundary valustem for the sixth order
Cahn-Hilliard equation based on a Ginzburg-Landau freeggnand introduce a
Ciarlet-Raviart type mixed formulation as a system coirgjsdf a linear second or-
der evolutionary equation and a nonlinear fourth ordeptdiiequation. Then, sec-
tion 4 is devoted to the semidiscretization in space by th®0G method. Quasi-
optimal a priori error estimates for the global discreii@aterror both in the primal
and in the dual variable are derived in section 5. In sectjmefy briefly we discuss
the discretization in time by an s-stage DIRK method of omgland the numeri-
cal solution of the resulting parameter dependent nonliakgebraic system by a
predictor-corrector continuation strategy. In the finaltem 7, we present numer-
ical results which show the formation of water-in-oil andtiokwater droplets in
a ternary water-oil-microemulsion system and confirm to es@xtent the theoreti-
cally derived convergence rates.
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2 Notations and preliminaries

We use standard nontation from Lebesgue and Sobolev spamy {lcf., e.g., [30]).
In particular, for a bounded domaid c RY,d € N, we refer toLP(Q),1 < p < oo,
as the Banach space of p-th power Lebesgue integrabledmsan® with norm|| -
llo.p.0 and toL™(Q) as the Banach space of essentially bounded functiofswith
norm|| - [o.q- For functions; € LPi(Q),1<i <3, wherepi € Ry, 33 ,1/pi = 1,
the generalized Holder inequality

/_lilVi dx< _ﬁ”ViHO,pi,_Q. 1)
0 1= I=

holds true. Further, we denote W*P(Q),s€ R, ,1 < p < «, the Sobolev spaces
with norms|| - |s p.o. We note that fop = 2 the spacek?(Q) andws2(Q) = H5(Q)
are Hilbert spaces with inner produ¢ts )o 2 o and(-,-)s2 . In the sequel, we will
suppress the subindex 2 and write-)o 0, (-,-)so and|| - [lo.o,| - [|so instead of
(,)02.0:()s2.0 and| - floz.a, | - [ls2.0-

ForT > 0 and a Banach spatewith norm|| - |lv the spacé.P((0,T),V),1<p<
oo, refers to the Banach space of all functionsuch thatv(t) € V for almost all

t € (0,T) with norm

]
([ VOB dy¥P, 1< p< oo
[IMlLeomyvy =94 ©
(OTY7 ess sup|v(t) v , p=eo
te(0,T)

The space®VsP((0,T),V),s€ R;,1 < p < =, are defined analogously. Finally,
C([0,T],V) denotes the Banach space of functiersich that(t) € V for all t €
[0,T] with norm

‘= ma t)||v.
HVHC([O,T],V) te[o,TX] [v(t)[lv

3 The sixth order Cahn-Hilliard equation

Given a bounded domai? ¢ R? with boundary™ = dQ and exterior unit normal
vectornr, denoting byT > O the final time, and settin@ := Q x (0,T), > =
I x (0,T), we consider the following sixth order Cahn-Hilliard eqoati

o % —MA (KAZC— a(c)Ac— %a/(c)\DC\ZJF fO(C)) =0 inQ (29

with the boundary conditions
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nr-Oc=nr-0Ou(c)=nr-0Ac=0 onZ, (2h)
and the initial condition
c(-,0)=cp inQ. (2¢c)

Here,o is a surface energy density] stands for the mobility which in the sequel
will be assumed to be a positive constanis a positive constant as well, and the
coefficient functiora(c) is assumed to be of the form

a(c) =ag+ac®, acR, a>0. ©)

The functionfy(c) = dFy(c)/dc is the variational derivative of the multiwell free
energy

Fo(c) :/g (c+1)%(c®+ho)(c—1)2, hyeR,
Q

wheref} is another surface energy density dnds R measures the deviation from
the oil-water-microemulsion coexistence. Moreoyg;) denotes the chemical po-
tential which is the variational derivative

_ OF(c)
of the total free energy
1 2 1 2
F(o) :Fo(c)+/<§a(c)\Dc\ + 5K[Ac?) dx 4)

Q

andcy is a given initial condition.

Remark 1 The initial-boundary value probleif2a)(2c) describes the dynamics of
ternary oil-water-microemulsion systems where the soiutiis an order parameter
representing the local difference between the oil and wedeicentrations. We note
that the Ginzburg-Landau free ener4) for such systems has been suggested in
[16, 17]and[15, 18]

For bounded convex domains with boundarpf class € and initial data ¢ such
that @ € H%(Q) with spatial mean

1
Cm .= @ !co dx
satisfying the compatibility conditions

nr-Ocg=nr-0OAco=0 onl, (5)
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it has been shown if25] that the initial-boundary value problem for the sixth order
Cahn-Hilliard equation(2a)(2c) has a unique solution global in time such that

cel?(0,T),H ( ))NHY((0,T),HY(Q)),
c(-,0) = cp, )dx=cm forallt e R,.
ar [

Introducing the chemical potentigl(c) as an additional unknoww := p(c), the
sixth order Cahn-Hilliard equation (2a) can be equivalefdfmulated as a system
of a linear second order evolutionary equation and a noafifeurth order elliptic
equation in(c,w) according to

o %: —MAw=0 inQ, (6a)
kA%c—a(c)Ac—axc|dc|2+ fo(c)—w=0 inQ, (6b)
with the boundary conditions
nr-Oc=nr-Ow=nr-04c=0 onZ, (6¢)
and the initial condition
c(-,0)=cp inQ. (6d)
We set
V:=HY(Q), Z:={zeH?Q)|nr-0Oz=0o0nr}. )
Observing
0- (a(c)dc) = a(c)Ac+ 2a,|c|?,
we define

(9(c),V)o.a := —(a(c)Ac,V)o.a — (azc |0c%,V)o.o + (fo(©),V)oo, VEZ (8)

A pair (c,w) is said to be a weak solution of (6a)-(6d), if for &lE V andze Z it
holds

<Z: Viv:v +M (Ow,Ov)g o =0, (9a)
K (Ac,A2)00 +(9(C),2)0.0 — (W2)o0 =0, (9b)

and if the initial condition

c(-,0) = co. (9¢c)
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is satisfied.

Remark 2 The existence and unigueness of a weak solution satisfying

ce HY((0,T),V*)NL>((0,T),Z) NL3((0,T),H3(Q)), (10)
weL%((0,T),V)

has been shown if29].

4 CO Interior Penalty Discontinuous Galerkin approximation

For semidiscretization in space of the coupled system (&&)-we will use the

CYIPDG method with respect to a simplicial triangulation o tomputational do-
main. Due to the convexity of the computational domain, we ese the Ciarlet-
Raviart mixed formulation of (6b) by introducirm= Ac as an additional unknown
so that (6b) can be written as the following system of two asdaarder equations

z=Ac, (11a)
kAz—a(c)Ac— axc|[c)? + fo(c) = w. (11b)

Multiplying (11a) by a test functiog € H1(Q) and (11b) by a test functiogy €
H2(Q) and integrating ovef2, integration by parts and observing (6c),(8) yields
the weak formulation

(z¢)oo =—(0c,0¢)oa, (12a)
(Kz,AP)o.0 — (Kz,n-O@)or +(9(c), Yoo = (W P)o.o- (12b)

We assumeZp(Q) to be a shape-regular simplicial triangulation®f ForD C Q,
we denote by, (D) the sets of nodal points of;, in D. ForK € %,(Q) andE €
éh(Q) we further refer tdik andhg as the diameter df and the length oE. We
seth:= max{hk | K € Z,(Q). For two quantitiesA,B € R, we use the notation
A < B, if there exists a constafit> 0, independent df, such thatA < CB.
Denoting byPy(K), p € N, the linear space of polynomials of degreep onK, for
p > 2 we set

QP = {vh € L2(Q) | Walk € Po(T), K € R} (13)
and refer to
VP = QP nHY(Q) (14)

as the finite element space of Lagrangian finite elementsefpy(cf., e.g., [4, 8]).
We refer to4;,(Q) as the set of nodal points such that apy Vh(p) is uniquely de-
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termined by its degrees of freedof(a),a € 44(Q) and tol, : H3(Q) — Vh(p),s >
2, as the nodal interpolation operator.
In the sequel, we will use the inverse inequalities [31]

1Ovhllox < CVp?h L | villox, vheVP, (15a)

Inv

1AV]lok <C?(p—1)2hL ||Ovillok, VeV, (15b)
and the trace inequality [31]
Ivillook < Cr P 2 [Vhllox, v € P (15¢)
We note thavh(p) ¢ H?(Q) and hence\/é Pisa nonconforming finite element space

for the approximation of the fourth order equation (6b). &mtjzular, for a function
z, on Q that is elementwise polynomial, we define averages and jaogsrding to

1
(z)e = { 2 (zh\Em +zh|EmT,) ,E € én(Q), (16a)
e, E€&n(l),
[ zlent, —zmlenT. , E € éh(Q),
[Z“]E'—{ Znle  E € &), ° (16)

The general DG approximation of (12a),(12b) reads: Givenp € V,Ep), find
(chrzn) € ViIP x QIP) such that for all ¢, vi) € QP x Vit holds

((Zhyd)h)O‘K + (Ocn, D¢h)0‘K) - > (e éEyd’h)O,BK) =0, (17a)

KeZh(Q) Ecén(Q)
((th,AVh)OT + (g(ch)vvh)O,K) — ~ (2e,0vh)oe — (Whvvh)O,K) =0,
KeTQ) EciniQ)

(17b)

whereCg andzg are suitably chosen numerical flux functions that deterrtindype
of C°DG approximation. In particular, for the®@DG approximation we choose

2e = ({aonte — 122 e, E €6, (17d)

wherea > 0 is a penalization parameter. The choice (17c),(17d) remadkantage
that for ¢, = KAv;, in (17a) we may eliminate the dual variatdefrom the sys-
tem and thus arrive at the following primal variational faration of the IPDG

approximation: Fina, € VP’ such that for alk, € V(* it holds
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a(cnVh)+ Y (9(ch),Vh)ok = (Wh,Vh)o.0, (18)
Keh(Q)

whereaP®(,.) : P x VP’ _; R stands for the IPDG bilinear form

at(envh) = Y (KAchAVh)ok — 5 ((KnE'{DCh}E7[AVh}E)o,E (19)
KeZh(Q) Ecéh(Q)

a
JF(K[ACh]BnE'{DVh}E)O,E)JF > h*(nE-[DCh]EME-[DVh]E)O,E-
Ecén(Q)

We note that the @IPDG bilinear form is not well-defined for functiols Z, since
Aclg,E € 6,(Q, does not live inL?(E). This can be cured by means of a lifting
operator
(P (p)
L: V7 +Z—=V,

which is defined according to

/L(c) Vh dx= — Z /nE -[Oc]g v ds
Q Ecén(Q)E

We define an extensia®®(-,) : (V\P +2) x (V\” +Z) — R as follows:

foev= Y /(AcAv+L(c)Av+AcL(v))dx+ (20)
ke

a ne - [Oc]e ng - [Ov]g ds
EcéQ) E

Onvrgp) +Z we introduce the mesh-dependent IPDG semi-norm

[of

1/2
clena=( 3 laclt ¥ - lne-[OcklBe) (21)

Ken(Q) Ecén(Q)
and the mesh-dependent IPDG norm
1/2
lellzne == (IcBha +lclfa) - (22)

From the Poincaré-Friedrichs inequality for piecewiseftihctions (cf., e.g., [6])
we deduce that there exists a cons@nt> 0 such that

IOVI3 o < Cor VBha vEVP +2Z. (23)
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It is not difficult to show that for sufficiently large penalparameten there exist
constantsy > 0 and > 0 such that the 8PDG bilinear formaP® satisfies the
Garding-type inequality

5DG

an

Moreover, there exists a constdnt> 0 such that

(c.0)>ycl3no—BlclBa, ceViP+z. (24)

8% (V)| < T |clano IVMlzhe, cveVP +z. (25)

The CIPDG method for the nonlinear fourth order elliptic equatfms the advan-
tage that we may approximate the dual variakl@ the linear second order evolu-

tionary equation by a function wp) as well. Hence, the @PDG approximation of
the initial-boundary value problem (6a)-(6d) for the sigtider Cahn-Hilliard equa-
tion reads:

Find (cn,wh) € H1((0,T),V,P) x L2((0,T), V") such that for alls, € P it holds

ac
(0 ¢ Vh)o.o —M (Owh, DWh)oo = O. (262)
aF%(cn, V) + Y (9(on), Vn)ok — (Wh,Vh)o.o = O, (26b)
KeZh(Q)

Ch(+,0) = InCo. (26¢)

Remark 3 (i) The unique solvability of26a}(26c)can be shown by similar argu-
ments as irf29].

(i) The CIPDG approximatior(26a)(26c)is consistent with the weak formulation
(9a)(9c) of the initial-boundary value problerg6a)(6d) in the sense that for all

vi € VP it holds (cf., e.q.[5])

Jc
<0 Eavh>V7V* -M (DW7 DVh)O;.Q = 07 (27a)
&°(c,vh) + (9(¢), Vn)ox — (W,Vh)o.0 = 0. (27b)
KeIm(Q)

5 Quasi-optimal a priori error estimates

We suppose that for somme> 5 the domainQ has a boundar§ of classC't?, the
initial data satisfyco € H' (Q) as well as the compatibility condition (5) and that the
unique solutior(c,w) of (9a)-(9c) satisfies the regularity assumptions
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ce L2((0,T),H Q) nHY(0,T),H " 1(Q))NH?((0,T),H3(Q)), (28a)
we L2((0,T),H1(Q))nHL((0,T),H3(Q))nHZ((0,T),H >(Q)). (28b)

Remark 4 It follows from(28a)(28b)that the pair(c,w) satisfies
ce C([0,T],H"(Q))NCY([0,T,H2(Q)), (29a)
we C([0,T],H2(Q))nCY([0,T],H*(Q)). (29b)

The regularity assumptions (28a),(28b) imply the follogvinterpolation estimates
(cf.,e.q.,[4,8])

t t
/ o~ lrelfq dr S RAMAPHC-m / Rinpeirinods  (30a)

t t
" oc ac,, omi ac
_ < p2min(p+1,r-1) /
b/ H 08 IhaSHQQ dSN h l |a

H( —In) (V)| g S PEMMPEEDTI e 1)

S min(p+1,r—1),Q dS (30b)

|m|n (p+1,r),Q (SOC)

/ w113, ds;S RT3 / WZinpiar 0 ds  (300)

ow ow
/ N / s minpr 9,008 (30€)
0

1w 1hw) (-, ) [ 7,0 S EMAPFLE2I7 (. t) (30f)

‘min( p+1r-2),Q"

For the interpolation error in the mesh-dependent IPDGmibfollows from (30)
that

/ o~ lncl3 g dr s RAMPFD-2 / Binprarinadt.  (31a)
(e =1hO) (1) 50 S MPMPFED=2) e )2 pia) 00 (31b)

Theorem 5.Let (c,w) and (cy,W,) be the solutions of9a)(9c) and (26a)(26c¢)
Under the regularity assumptior{28a)(28b), and (29a)(29b) there exists a con-
stant C> 0, independent of h, such that for @ik t < T it holds
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lc—cn)(-, >nm+/uc ch\|mds+/|\mw w3ads <  (32)

t t
Jc
h2(Pri1-2 /|c|p+lg dst P12 / 2 ods+
0 0

t
: ow
2(pr_1—1 2 2 2
h (pr-1-1) /IW‘PPLQ ds+h Pr-3 /‘ min(p+1,r—3),Q dS+

h2(Pr=2) |00‘m|n p+lr)(2+thr z |WO‘Dr 2,Q>
where p :=min(p+1,¢).

The proof of Theorem 5 will be given by a series of lemmas awp@sitions.

First of all, recalling thataEG(~,~) satisfies the Garding-type inequality (24), we
perform a scaling of the primal variabéeand the dual variable according to

c(x,t) :=exp(tt) E(x,t), w(x,t):=exp(tt) W(x,t), T1>0. (33)
In the new variableé€, W), the system (6a)-(6d) reads
o 3—6 +01€—MAW=0 inQ, (34a)
KA%E+§(6)—Ww=0 inQ, (34b)
with the boundary conditions
n-0é=n-OW=n-0AE=0 onZx, (34c)

and the initial condition

€(-,0)=cp inQ, (34d)

where
§(6) := —a(6) AG— ag exp(21t) & |O&)? + fo(6), (34e)
a(€) := ap+ agexp(21t) €2, (34f)

fo(€) := B (exp(tt) &+ 1)(exp(tt) 6—1)(exp(21t) €3 — (1—2hg) €).  (340)
A pair (c,w) is said to be a weak solution of (6a)-(6d), if for alE Z it holds
96
o {5V
K (AC,AV)o.0 +(8(6),V)o,o — (W,V)o.o =0, (35b)

vey +0T (€ V)0 +M (OW,0v)g o =0, (35a)
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and if the initial condition

is satisfied. The semidiscrete variables, w,) are scaled in the same way and
hence, the semidiscrete approximation requires the catipnof(€,, W) € Vh(p) X
Vh<p) such that for all, eV,gp) it holds

0¢ N .
(o O-Tth,vh)o,g + 07T (€, Vh)o,.o —M (OWh, Ovh)o.0 = 0, (36a)
a o)+ Y (8(En).Vn)ok — (Wh,Vh)o.o = O, (36b)
Keh(Q)
Cn(-,0) = cno. (36¢)

Remark 6 If the regularity assumption&8a)(28b)hold true for(c,w), they also
apply to(€, W) and the interpolation estimat€380) are satisfied fof¢, W) as well.

We will prove Theorem 5 based on an implicit time discretaabf (34a)-(34d) and
(386a)-(36¢) by the backward Euler scheme with respect tagaidiestant partition
{tmn=mAt,0<m<M},M €N, of the time interval0, T] with step sizeAt =T /M.
Denoting by (€™, W™) and (&', W') approximations of¢, W) and (€,, W) at time
tm, 0 < m< M, with €% = & andc) = cn, the backward Euler scheme for (34a)-
(34d) reads:

Find (€M, W") such that for alv € Z it holds

0 (€™ V)o.0 + OTAL (€™ V). +At (OW™,DV)g0 — 0 (€™ V)00 =0, (37a)
ap®(E™ V) + (9(€™ V)o.0 — (W" V)0 =0. (37b)

The unique solvability of (37a),(37b) follows in the sameyeas that of (9a)-(9c¢).
Likewise, the backward Euler scheme for (36a)-(36c) ismgivg

Find (", W™ such that for alk, € Vi\”’ it holds

o (&1 — &MY wh)o.q + OTAL (€1, Vh)o.o + At (DWW, Dvh)o.o = O, (38a)

aC(E v+ Y (6 Vh)ok — (W, Vh)oo = 0. (38b)
KeIh(Q)

Again, the unique solvability of (38a),(38b) follows in tkeme way as that of (26a)-
(26c).

Remark 7 (i) The COIPDG approximatio(B88a),(38b}s consistent witli37a)(37b)
in the sense that for allye Vh<p> it holds
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o (€M —E™ 1, vh)o.o + OTAL (€™, Vn)o.o + At (OW™, Ovi)oo =0,  (39)

a0°(E™, Vi) + > (G(E™,Vn)ok — (W",Vn)o.o = 0.
KeZh(Q)

(if) Using similar arguments as in [26, 29] it can be shown tiEg is bounded in

the COIPDG norm uniformly in h, i.e., there exists a cons@é{lﬁ > 0, independent
of h, such that

lEnllzne < C(Bl>7 0<m< M. (40)

Since\fp) is continuously embedded ir(ﬁ, there exists another constarﬁzt> 0,
independent of h, such that

max |&'(x )|<Cg , 0<m<M. (41)
xcQ

Lemma 1. Let§ be given by34e) Then there exists a constamt (hdependent of
h, such that fo€™ € H"(Q),r > 5,0 < m< M, and¢[, v, eV Pl p>2, it holds

(G(€™) = 8(&) . vh)o.al < Ci[|€7 = EFllzn.a [IVhllo.o- (42)

Proof. Observing (34e) we have

(G(E™) —a(E) Vo =— 5 (A(EMAE™ —A(E)ALT vn)ok  (43)
keF©o) keFr@)
— Y aexp(2tt)(€MOEM* — & 0ENI% vi)ox + (fo(€™) — fo(ET), Wh)o.0
keFQ)
In view of (3)

aenaey - a( ) AE™ = (A(E™) —a(e))AC +a(e) (AEM - AL =
agexp(2tt) (€™ + &) (€™ — &) - AG).

Then the first term on the right-hand side of (43) can be esidhaccording to

>
(¢
3
+
2
(@)}
=3
>
(@)

| Y (AEMACT - a(E) AL vh)ox| < (44)
KeFh(Q)
Di Y €™ llox [vhlloxk +D2 Y [[AE"—AeTok [Ivhllok.

Ke Q) Ke Q)

where the constani3;, 1 <i < 2, are given by

D1 := max|(€™+ &M (X)AE™(X)|, Dz :=max|ag+ azexp(2rT)(EN(x))?|.
xeQ xeQ
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We note that™ AE™ € C(Q), since forr > 5 the spaceZ NH'(Q) andH"?(Q)
are continuously embedded@{Q). Moreover, due to (419y"is bounded irC(Q)
uniformly in h. Hence, the constani®;,1 <i < 2, are well defined and bounded
from above independent of

For the second term on the right-hand side of (43) we split

agexp(2tt) (€M |DE™? — & [OET, n)ok . K € Fh(Q),
by means of

(agexp(21t) (€™ |OE™2 — & [T, vin)ok = (45)
agexp(2tt) (€™ — &) |OE™2, vh)ok + azexp(2rt) (67 O™ (O™ — D), Vh)ok
+agexp(2tt) (6 OER'- (O™ — 0, Vh)ok -

For the first term on the right-hand side of (45) we obtain

| agexp(2tt) (€ — &) |0EM?, ok | < (46)
KeTn(Q)
Ds 5 [IE"—&llok [Ivhllox

KeTn(Q)

where

D3 := apexp(21T) max|0e™(x)[?
xXeQ

which is well defined, sinc&8le™ € C(Q)?2.
Likewise, observing (23), the second term on the right-hsidd of (45) can be
estimated from above as follows

|3 aen(2rt) (6 0" (067 06 ol < (47)
Ke 'h(Q)
Dy y [IBE™— D& ok [IVhllox < Dal|O(E™ = ENllo.0 IVlloo <

ke Fm(Q) a

CoeDa [€" = &2h.0 [[Vhllo.o:

where due to (41)

Dy := apexp(21T) max|é'(x) OEM(x)| < azexp(ZTT)Céz) max|0E™(x)|.
xeQ xeQ

Sincedé™ € C(Q)?, we note thaD, is well defined and independentaf

For the third term on the right-hand side of (45) we use theegdized Holder
inequality (1) withvy = O&",vo = OE™ — O&],v3 =V, andpy = 4/(1+2¢), p2 =
4/(1—-2¢),0< e 1, andpz = 2.
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|y aexp(rt) (& 060 (O™ — DEl). vh)ox| < (48)
Kem(Q)
Ds 5 [ 106 106"~ CaF) vl dx <

KeIh(Q)k

Ds > lIEFlla/(ie k 1€" = Ell1a/1-26)k [IVhllox <
KeFh(Q)

Ds & ll1a/aizepe D 1€ —ERll1a/1-26)  [IVhllox
KeZh(Q)

where
Ds 1= azexp(21T) max|¢(x)| < azexp(ZTT)C(Bz).
xeQ

SinceH%2-£(Q) is continuously embedded W4/(1+26)(Q) andV,” is contin-

uously embedded in%2-¢(Q) (cf., e.g., [5]), there exists a constdd§ > 0 such
that

16011.4/(1+2¢).2 < De [IER12n.0- (49)
MoreoverH?(K) is continuously embedded W4/ (1-2¢)(K) and hence, there ex-
ists a constanD; > 0, which can be chosen independenthpfsuch that for all
K € % (Q) it holds
(€™ — €Ml 1.4/ (126 k < D7 I€" = &2k - (50)

Using (49) and (50) in (48), it follows that

|y agexp2rt) (6 OEY (0E™ — OEY), ok | < (51)
Keh(Q)
Ds ; €M — €Mz [IVnllox,

KeZh(Q)

where due to (40)
Dg:= Ds Dg D (AZ < DsDgD C(l>
8 - 5 Ve U7 H h ||2,h,Q > UsUsg U7l .

Finally, for the third term on the right-hand side of (43) weeuhat
1
fo(e") — fole) = [ fa(e™+ s (67— &™) ds (e &)
0

to obtain
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|(fo(€™) — fo(&).vh)ool <Ds  F €™ = &ox [IVall3x (52)
KeFh(Q)

where
Do :=max [ |f5(€™+s (&' —¢&M)| ds
Now, (42) is a direct consequence of (44),(46),(47),(54, @&2).

Corollary 1. Under the assumptions diemma 1lthere exists a constant,C> 0,
independent of h, such that for< m < M it holds

W™ —Wlo,0 < Co b2 [|€™— |20 + W — 10" |o.0- (53)
Proof. Obviously, we have

|(InV™ — W, Vh)o.0 |

1™ —Vi[0,0 = sup
[vllo.c

Vh €V|,£ P

(54)

Using (6b) and (26b) we find

(W™ =W Vh)o,0 = (InW" = W™, vn)o,0 + (W™ — W, Vh)oo = (55)
(I — W™ Vn)o,0 + @RS (E™ — &7 Vi) + (G(E™) — 8(EM), Vh)o.0-

In view of (25), for the second term on the right-hand side5&) (wve obtain
RS — &) < T [[€" = Ell2ne [[Vhll2ha- (56)
On the other hand, using (42) from Lemma 1 we find
|8 (€™ — &, vi) + (G(E™) — (&), Vh)o.a| < C1 [|E" = Ellzh.a [IVhllzhe- (57)

The inverse inequalities (15a)(15b) and the trace inegu@lbc) imply the exis-
tence of a constam; g > 0, independent dfi, such that

[Vhll2h.o < D11 h™2 ||Vh|[o.q- (58)

Using (57) and (58) in (55) gives the assertion.

We introduce the interpolation errors:
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1) /A A N 2) /A N

e (€)= at & 13 o, e (€)= at|OE —1he)Bg, 0<<m
gl gt

ey ()= at| y T T Mg, 1<t<m

el () == At [|E" — 1 |3hg, 0<f<m, (59)

el — & 1 ¢l —gt-t
e (e =at | —Ih("
el (W) := At | W — WHOQ, &2 (W) = At DWW —1n¥) 3o, 0<f<m,

W — W oW -wt
el (W) =4t | )3, 1<<m

)”%,h,fb 1S£Sm7

Lemma 2. Under the assumptions of Theorem 5,A0€ > O there exists a constant
Cz > 0, independent of h, such that it holds

1 N . 1 A
Sno |\Cm—ch||%,g+§mc’m le™— e < (60)

3 m A 1 - -
Sné 'MCpAt ||E"— & ||%.h9+§’75MAt OO W) B0 +
Co((1+a0) €™ =& 23 o + €™~ 1ne™ 1||og+zqm ™)

Proof. We have
no ||€"— &5 o + nodt |E" - &5 o = (61)
no (€"—¢&,€"—1heMo.o + TNOAt (€M — &, €M — 1,0 0 +
no (€M — e Ihe" — Moo + TNOAt (€™ — &7, Ine™ — E1)o.0-
By Young's inequality withe = 1/4 the first two terms on the right-hand side of
(61) can be estimated from above according to
no |(€"—&,e"— 1Mol <no [[€"—loq [I€" 1€Moo < (62a)

ém_ émfl ém_ émfl N
Y Mo+ 6™ —Ine™ l||0(2>

1 M A e A 1 .(3) /A
< ZUG(1+ A [|E"— &5 o +no €™ —1ke™ |5 o + noT 1eu(m)(cm),

no &~ &loo (4t

1 . N
oAt [(€"— e, EM = 1Mool < 7 77No4t [ —ChmIIS,QJrTnG%(:t)(Cm)-
(62b)

In view of (37a) and (38a), for the last two terms on the rigatid side of (61) we
find
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no (€= Ine" — &Moo + TNOAL (€™ — €L InC" — o0 = (63)
no (€1 =&t e~ eo.o — NMAL (DWW — W), O(1n€™ — E1))o.0-
The first term on the right-hand side of (63) can be estimatad &bove as follows:
no @ & Ine™ — Mool < (64)
no (€t =&t e~ EMoo| +no (€M~ & e~ ol

As in (62a), for the first term on the right-hand side of (64uNg’s inequality with
£ =1/4yields

LeEM—1htMo0| < (65)

no @ t-er
1 o A _ 3) A
ZNO(L+T40) € e 3 g +nal|le™ t—1ne™ Y o + T M0 e (e,
For the second term on the right-hand side of (64) we obtain
NoIE - &L ool < no(FIE - lBq + e -3 ,).

(66)

For the second term on the right-hand side of (63) Young'quiadity withe = 1/6
and the Poincaré-Friedrichs inequality (23) yield

NMAt [(OW" = W), O(Ih€™ = €)ool < (67)
nMAt (00" &), OrE™ — EM)o | +| (W™ — ), D(E™— &) o.al ) <

1 . . 3__ A 3 _ ~
MAL(5& D" W3 + 58 Cor 16"~ ElEn o+ 5nE M e (€.
The assertion follows from (61)-(67).

Lemma 3. Under the assumptions of Theorem 5, for> 0 there exist constants
Ci > 0,4 <i <6, independent of h, such that it holds

ZAMAt Hm(m—wmn%%ﬁ%;\oy(lwt) le" =&z ne < (68)
A0(Ca+TCsA1) [|€™— &3 0 +Co (2+40) €™~ & Y3 o +

[E™ =5 ho + (L+h ) ([E™ = 1™ HF o + IE™ T = 1™ Y5 h0) +
W — W™ o+ (L D) (el (€7) + el (€M) + el (€7) +- el (€7) +
o )+ 2 ) + )€ el ().

Proof. We have
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AMA [[DOF" — W) 1§ o = AMAL (D& —WfY), DWW — 1n@™)o.0 +  (69)
AMAE (O(W™ — ), O(IpW™ — W) )o,0-

For the first term on the right-hand side of (69) Young'’s insiy with € = 1/6
yields

AMAE (DW= W), D" = 1n™))o 0| < (70)
1 o 3 -
SAMAL OO~ W) 8 o + SAM el (W),

Taking advantage of (37a) and (38a), for the second term@night-hand side of
(69) it follows that

AMA (O™ — &), O(Ind™ —@))o.o = A0 (€™ — &4 1w —W)o g

—TAOAL (€ — & I — W00 — A0 (€ — &1L InW" — W )o0 =

Ag (€W — W), — TAGAL (€™ — & I — WMo 0

— A0 (€™ — &I — WMo 0 + A0 (€™ — LW —Wo o

— TAOAt (ém—éﬂﬂ',\l’\\lm—\/’\\ﬁ)qg —Ao (ém—éhm,\l’\‘lm—\l’\\fm)o,_(). (72)
The first and the third term on the right-hand side of (71) carestimated from

above as the corresponding terms in Lemma 2 using Younggadigy withe = 1
ande =1/6:

Ao (@1 — g I —W)o 0| <A(1+AL) [E™ - Y2, +  (72a)
1 o . 1 -
ZAGIWTE = 1028 o+ ZA 0 el (W),
Ao (€= InWW" — WMo 0| <Ao(1+ %At) [|E™ — éhm||SﬁQ + (72b)
1 e e 3 N
220 =W B g + SA 0 e (W),
For the second term on the right-hand side of (71) Young'guiadity with e =1
implies
TAGAL |(€"— & A" — WMo o < TAG (AL €™~ &30+ j e (@), (73)
For the last three terms on the right-hand side of (71) weiobta
Ao (€M =& W —W)o o — TAGAL (€7 — & W — )00 (74)
—A0 (@ —Woo = A0 (€™ = Ih€™ LW — W00
—TAOAt (ém - |h6m,Wn_W|P)O,Q —Ao (ém— |h6m,Wn— \/A\fr;ﬂ)o_rg

+Ao (|hém71 —éhmil,\f\lm—\l'\\/lm)oyg — TAOAt (|hém— Chm,\l’\‘lm—\f\l'r?)o,g
= Ao (In€" = & W —W)o 0.
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Using Corollary (1) and Young's inequality with=1/18 ande = 1/2 , the first
term on the right-hand side of (74) can be estimated from @lasvollows:

A [(E€ =™ W —Woq| < (75)
A0 €™ - Yo (97— i og -+ [~ foa) <
AO Hémil— |hémilHon (2 HW“— IhW‘HHOAQ +Czh72 Hém—éhmHz’h?Q) <

W“—W“‘l_l (v‘vm—vi/m‘1
At A
2 WL~ W™ o, +Coh 2 €~ EFlln0) <

Ao |lE™ e o0 (24t | oo +

1 R 9 4\ Am -
EAU ||Cm*CrT||%,h,Q+§/\GQZh et —em 1”%,9 +
AM— AM— AM— Am— 1) fam— 3)/n
A0 (1€ = e Y3 g + W™= W™ 23 o + el (€771 + ey (7))

Likewise, by Young's inequality witle = 1/14,& = 1/18, ande = 1/2 and observ-
ing At < T, for the third term on the right-hand side of (74) we get

A (€M=" W —Woo| < (76)
émiém—l émiém—l . o
A0 (8t =—— = (oo + €™ = 1™ o) -
W — w1 W — w1 o o
(28t | = — (o +2 W™ L = 1@ o0

+Coh 2 €~ flana) <
TATBUIE 3o+ A0 (B4 T) e (Em) + T &M +
A0 (B (€M) + el (47) + 63 (W) + €l €™ H)) +

T 0Cs € B+ 520G €7 e YR +

Ao €L 1™ B g 4 AGTW™ L i B

Finally, for the second term on the right-hand side of (74)in@'s inequality with
£ =1/14 ande = 1/2 gives

TAGAL [(E" = 1hE™ W™ —WMo.0| < (77)
TAOAL [|E™ = 1hEM0.0 (va“— I l0,0 + [ InW™ — Wﬂ‘l\o,o) =<

TAGAL [[€"~ 1n€ o (2 NP~ 1n#l0,0 +Cz 2 |E"~ Fll2ne ) <

1 A R 7 , _ ~ N
ﬂr)\ oyOt [|E"—&5ho + EM O’(l+ yiC2h 4) e%(:t)(cm) +TAo q(nlt) (W),
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Using (37b) and (38b), for the first of the last three termstanright-hand side of
(74) we obtain

o (€™ — gL W™ WMo o = (78a)
(a.?G e & In€™ 1 — & 1) + (6(E™) — §(6 )lhcm Lo Yog) =
( DG(eM — g 1pe™ L — g™ 1) 4 aPC(Em - g em g l))—k
A0 ((6(E™ — GE, 1nE™ ™~ ™)+ (6(€™) — G(EM), €™~ & o0 )
Similarly, for the second term we get
TAOAt (In€" — &7 W"— W00 = (78b)
TAGAL (aRC(E"— & 1n€™— ")+ (e - e e — &) +
TAOAt ((@(é ) —G(ER), In€™ — €™) + (8(E™) — §(ER). Cm—éhm)o.g)7
whereas for the third term we obtain
—A0 (In€"— MW" —W)oo = (78¢c)
— Ao (BRC(E - &, Ine™ - &) + &RC(E - e - ) )
— 20 ((G(E™ — §(EM). €™~ €00 + (6(E™) — G(E), €™ — &Moo ).

Taking advantage of (25) and (42) from Lemma 1 and using Ystingquality with
£ =1/18, for (78a) we can establish the upper bound

M o~ - 2 A
Ac (€™t =gt W= W)oa| < —)\U €™~ EMl5ha + (79)
5)‘0(’_24'(3%) ™t =& Zha + )\U(’_2+C1) €™ — 165 o

Similarly, for (78b) Garding’s inequality (24) and Youisghequality withe = 1/14
yield

— TAOAL (In€"— G W" —W)o.o < —TAOYAL [|E"—&|5h0 + (80)
3

TAGBAL €™ &I 0 + T5TA AL €7 =5 h0 +

7 - M a 14 44

sthay H(CRat " &3 o + (CF ey (€M + T2 e (€M) ).

Finally, for (78c) another application of Garding’s inetjty (24) and Young’s in-
equality withe = 1/14 ands = 1/18 we obtain
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— A0 (1n€" = W~ W00 <A~y €~ 3o+ B " &30 +
A E B0+ TATB [~ 3o+ 5A0CE €~ EIRq +
O A L P e A P

ro(Cddem +r2eem). (61)

The assertion follows from (69)-(81).

Proposition 8 Under the assumptions of Theorem 5 there exists a consianti;
independent of h, such that it holds

6"~ &3 o + ot e~ B0 + A0y (€™~ Enq ®2)
+At €= &3m0 ) +MAL DWW -3 o <

c7(uem-1—eﬂ“ 8o+ IEm = B o+t € = 1™ M50 +
e 1||2hg+||w“ L I g +h el (€M) e (€M) +
i e (€ +qu ) e (€™ ) +e (W) ).

Proof. The estimates (60) from Lemma 2 and (68) from Lemma 3 implyetkis-
tence of a constam; o > 0, independent dfi, such that

3 .

01— 2ACe) €~ .o + T0( — A7)t 6"~ SRl + (83)
1 I .
EAGVHCm_ChH%A,h,Q‘i'é)‘o(TV_ —'75 Cp)At e —&NlI5ha +

5 1 - - m-1  am—
M(2A = 5n&)At D" W3 < Duof (L+40) €™~ & Yo +

Am-1 am-1p2 Ay am-1p am-1;2 Am-1 . Am-1(2
HNE™ =& zhe + (AHRHIET I G +I1E™ T =T IZh0)

+ - lhw“*lnﬁg + (L) (] (€™) + 3 (€M) + el (€) +
Z e (e + qu )+ el (E™71) + e ().
We choose < A < 2 andn > 0 such that
n-— max(gcﬁ, %07))\ >0 L

Then, we choosé > 0 by means of
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>
6

5A — 6
2n

)\—%nle —= &<

Finally, we choose > 0 according to

> 28y+3nC,. .
28y

For this choice ofA,n,¢&, andt, the assertion follows from (83) observing that

1) /a 4) /A 2) /a 4) A 3)/a 5) /A
el (€™) < ey (™), €l (€7) < CBeely (€™, €3 (€™ < €3 (€™). and|V]o < [Vll2no.ve
VP 4z,

3
VI-SnE G >y =

Proposition 9 Under the assumptions of Theorem 5 there exists a consgantd
independent of h, such that it holds
2 i ! 2 il / 2
[€"—EM5n0 +Atiz 1€ —Ehll2n0 +At/z ||D(W€—Wﬁ)\|o,g < (84)
= =1
4% @D e+ v T @) v ol i
Ce(h™ > (e (C) +e (€)) + (€)+ (W) +
(3 @RE)+aR(E)+3 5 au®)+ 3 3 e
h 4 Jlco—Incoll3 @ + (1+h™%) llco—Incol3na + Mo~ Inwoll3.0 ).
where w by (9b) with c= ¢g and w= wp.

Proof. The proof is by induction om. Form = 1 the assertion follows from (82)
taking into account that®= cg andw® = wp. Let us assume that (84) holds true for
m— 1. Observing

) . ml g g@-1 @l @l
6™ —1he™ o0 SA'[/Z I A llo.o + llco — InCollo,@
=1

At

and the same foff¢™ ! — 1,E™2||,h o and W1 — 101 (|g o, it follows from
(82) that (84) is satisfied fan as well.

Proof of Theorem 5: We have, — t asAt — 0. Due to the regularity assumptions
(28a),(28b) forAt — 0 the left-hand side of (84) converges to

t t
(€= &) (-DIBna+ [ I6-el3na ds+ [ 00— ds
0 0

On the other hand, for the sum of the interpolation error3 {&®lds
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;qm —>/\|z 230 ds 2=candZ=W,
m N A

3) /4 02 0z L L
> ) O/ 15— th52lBods 2= candZ=w,
m t

4) s af ~ A
3 an@) - / 6= 1hél3n ds
(=1

d¢

[zeqm / 192 1T B ds
< 2
> i +/||D ~1hW)[3q ds
=1

Hence, taking (30),(31) into account, (32) holds truedes €. Finally, backtrans-
formation according to (33) allows to conclude. |

6 Discretization in time by singly diagonally implicit
Runge-Kutta methods

For the discretization in time of the COIPDG approximati@6d)-(26c) we use
(s,q) Singly Diagonally Implicit Runge-Kutta (SDIRK) methods efages and
orderq with respect to a partitioning of the time intenj@l T] into subintervals
[tm—1,tm] Of length Ty :=tm —tm-1,1 <M< M (cf., e.g., [1, 7, 19]). In particular,
for polynomial ordemp = 2 of the COIPDG approximation we us€2 2) SDIRK
method with coefficients given by the Butcher scheme in Tékle

Table 1 Butcher scheme of a 2-stage SDIRK method of oler2
kK| kK O
11—k k K=1+1y2
1-k K

If the polynomial degree ip = 3, we use &3,3) SDIRK method with Butcher
scheme given by Table 6.2, and fpr= 4 we use &3,4) SDIRK method with
Butcher scheme given by Table 6.3.

The fully discrete approximation represents a parameteenident nonlinear alge-
braic system with the time-step size as a parameter whiabived by a predictor-
corrector continuation strategy with constant contirratis a predictor and New-
ton’s method as a corrector [9, 20]. The predictor-cornectmtinuation strategy
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Table 2 Butcher scheme of a 3-stage SDIRK method of ogler3

ala 00O
1ta |1-

S5 a0
1 |by by a

bp by a

wherea ~ 0.44 is the root ofp(x) =33 — 33+ 3x— 1, by — —80*-160+1 anqp, — 6a°-20a+5

(cf. [1]).

Table 3 Butcher scheme of a 3-stage SDIRK method of oler4
(1+k)/2|(1+k)/2 0 0
1 —Kk/2  (1+kK)/2 0

(1-k)/2| 14k —(1+2k) (1+k)/2

| 1/(6x%) 1—1/(3k?) 1/(6k?)

K =2 cogm/18)/\/3

features an adaptive choice of the continuation parameterdetails we refer to

2].

7 Numerical results

We consider the initial-boundary value problem (2a)-(2cRi:= Q x (0, T] with
Q:=(0,L)? L:=1.0-10"*m, andT := 1.0-10"s. The physical parametefsk, o,
andag,ap,ho,M are given in Table 4 in their physical units. We use the refeee
quantities

Lier :=1.0-107°m, Ter:=1.0-102%s, Ot :=1.0IJm? (85)

and scale all independent variables and parameters to diomess form. Hence,
the scaled domain and the scaled time interval bec@mae(0,10)? and[0, 10]. The
values of the parameters in dimensionless form are alsullistTable 4. The initial
concentratiorcy has been chosen as a smooth functgr C*(Q) satisfying the
compatibility conditions (5).

Table 4 Physical parameters in the sixth order Cahn Hilliard equati

Symbol Value Unit | Dimensionless Valug

o 1.0 Jm? 1.0

B 5.0 Jm 2 5.0

ho 50-10°1 1 50-10°1

M 10-108 | ms? 1.0-10°3

K 1.0-10% | Jn? 1.0.101

ao —4.0-1012| J —4.0

a 1.0-102 | J 1.0
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Figure 1 shows a visualization of the microemulsificatioagass obtained by the
numerical solution of the sixth order Cahn-Hilliard eqoatusing a €PDG ap-
proximation withp = 2 and penalization parameter= 25.0 and a 2-stage SDIRK
with g = 2 at time instants = 0.60 (left) andt = 3.86 (right). The pure water phase
(c =1) is depicted in dark blue, the pure oil phase<—1) in dark red, and the
microemulsion phasec(= 0) in light green. In Figure 1 (right), the formation of
oil-in-water and water-in-oil droplets is clearly visible

Water
Microemul.
Qil

Fig. 1 Formation of oil-in-water and water-in-oil droplets at #rmstants = 0.60 (left) andt =
3.86 (right). @IPDG approximation wittp = 2 on a 128« 128 grid and 2-stage SDIRK witlp= 2
(from [2]).

Water

Microemul.

QOil

The underlying finite element mesh is a geometrically canfog, simplicial trian-
gulation %,(Q) of mesh sizéh. Forh = 1/24,1/48 and at = 2.5 we have com-
puted the convergence rates in the mesh dependent COIPBG-Bdviously, the
domainQ does not have a boundafyof classC'*1,r > 5, and hence, we cannot
expect quasi-optimal convergence rates. Therefore, veecalsputed the conver-
gence rates for a patd@ of elements around the midpoimg, of Q given by

w:=|J{K € Zn(Q) | mg € Mn(K)},
where#5,(K) is the set of nodal points ilK. The convergence rates are as follows
[[Un(:,t) — Uzn(-,t)[|2.2h00
|Up/2(-t) = Un(,t)[[2.2000
[[Un(-t) — Uzn(:,V)[22n.0
[n/2(-t) = un(-,t)[|22n.0

In each case the time-step size has been chosen sufficiemly s that the error
due to discretization in time do not affect the error due @tighdiscretization. The
convergence rates are shown in Table 5, Table 6, and Table 7.

erry(t) := log, |

errg (t) := log,
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Table 5 Patchwise and global convergence rates for the semides€@PDG approximation with
p=2

| [ errw(25] ermq(25)]

h=1/24 1.06 0.66
h=1/48 1.02 0.91

Table 6 Patchwise and global convergence rates for the semicdes€@PDG approximation with
p=3

| [ errw(25)] ermg(25)]

h—1/24 1.83 1.68
h=1/48 1.91 1.79

Table 7 Patchwise and global convergence rates for the semidéssC@PDG approximation with
p=4

| | erry(25)] errqg(25)]

h=1/24 2.83 2.56
h=1/48 2.90 2.67

For domaing2 with boundary™ of classC'**,r > 5, the quasi-optimal convergence
rates are D for p=2, 20 for p= 3, and 30 for p = 4 (cf. Theorem 5). We see
that we get almost quasi-optimal convergence rates on tich pan the || - [|2.2n, ¢
norm, but as expected not quite as good convergence ratée @mtire domaif2
inthe|| - ||2,2n,-norm.
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