Research in the Parallel Software Technologies Laboratory

Edgar Gabriel

Parallel Software Technologies Laboratory,
Department of Computer Science
University of Houston

edgar@cs.uh.edu
Motivation

• Why Parallel Computing?
 - Solve larger problems
 - Reduce the time to solution
How to use multiple processors

• **Functional parallelism**: each processor executes a different function

• **Data parallelism**: each processor executes the same function using a different portion of the overall problem
Open MPI

- Widely utilized public domain implementation of the Message Passing Interface (MPI)
- Jointly developed and maintained by numerous universities, research labs and companies
Abstract Data and Communication Library

- Auto-tuning of (collective) communication operations
 - Library of possible algorithms / implementations
- Runtime selection logic through
 - Brute force search
 - Orthogonal search
 - 2k factorial design search
- Historic learning
 - Incorporating knowledge of previous executions
- Support for asynchronous operations through timer-object
The I/O problem

Magnetic Hard Drive:
- Latency to access data on disk: 7-12 ms
- Bandwidth: 5 - 100 MB/sec
I/O projects at PSTL

- **OMPIO**
 - Efficient access to a shared file by multiple processes
 - Part of the 1.7 release series of Open MPI

- **OpenMP I/O**
 - Efficient access to a shared file by multiple threads
 - Integrated with the OpenUH compiler
Reliability in parallel computing

- Why worry about failures in parallel computing?
 - Increasing numbers of processors used
 - Unreliability of distributed environments

- Volpex: Parallel applications in volatile environments
 - Volpex Dataspace API
 - VolpexMPI

- Failure Management
 - Multiple copies of every processes
 - Independent process checkpoint/recovery
 - Message logging