Integrated Bio and Nano Systems

UH Home | Engineering Home | Search
Center Info | In the News | Opportunities at IBNS | Contact Info
Patterned Media | Bionanomagnetic Sensors | Magnetic Logic | Single Domain Device Physics | Magnetic RAM | Heat-Assisted Magnetic Recording
Faculty | Students | Students
Materials Synthesis | Device Patterning | Magnetic Characterization | Device Testing
Journal Articles | Books and Book Chapters | Conference Papers | Patents
WORKSHOPS | NAPMRC | NDSI
small logo

About IBNS

The research in the Center for Bio and Nano Systems covers a range of topics related to the development and applications of novel magnetic materials and devices at nanoscale dimensions. These include nanomagnetic materials and devices directly related to the current and future magnetic storage technologies such as disk drive storage and probe storage based on MEMS, magnetic random access memory (MRAM), and magnetic cellular logic (QCA).

Among the investigated issues are fabrication and device physics of magnetic probe heads at nanoscale dimensions (the recording heads with dimensions down to few tens of nanometers have been routinely fabricated using focused ion-beam nanofabrication techniques); development and characterization of nanocrystalline materials for advanced recording media applications; micromagnetic behavior of soft magnetic materials; recording properties of nanocrystalline alloy and superlattice-based media materials; recording processes at nanoscale dimensions, etc. Record track densities in excess of 400ktpi (~60nm track width) were demonstrated using above-mentioned nanoprobe recording heads and specially prepare media. The micromagnetic behavior of magnetic ‘ nanotubes ' was for the first time experimentally observed.

Nanomagnetic transducers: Left to right: 30nm wide longitudinal writer;
60nm wide perpendicular writer; nanoprobe with 40nm x 40nm x 10nm apex.

The current research activities are focused on applications of nanocrystalline materials and nanoscale devices for achieving extremely high density recording (above 1Terabit/in 2 ). The current state-of-the-art in magnetic recording is 160x40x10nm magnetic features (corresponding to areal density of 100Gbin/in 2) recorded into a magnetic recording medium. The individual magnetic grains forming the recording medium are ~9nm in diameter. At these dimensions, the conventional recording schemes employed today are rapidly approaching the fundamental (superparamagnetic) limit in areal bit density, above which the recording data become unstable. It is widely believed that longitudinal recording will run out of steam at approximately 200Gbin/in 2 . Perpendicular magnetic recording will enable to sustain the current great strides in technological advances for the next several generations of mass storage solutions. The technology is technically the closest alternative to conventional longitudinal recording, while it is capable of extending the superparamagnetic density limit beyond what is achievable with longitudinal recording. The recording densities above 1Terabit/in 2 (recording features as small as 50x12x10nm) are conceivable utilizing perpendicular recording. To support such a nanoscale technology, major innovations in both magnetic recording heads and media are necessary.

                   

The research at the Center for Integrated Bio and Nano Systems is supported by National Science Foundation, National Institute of Health, Office of Naval Research, and Information Storage Industry Consortium.

State of Texas | UH System | Privacy and Policies | Copyright | ©2006 University of Houston Center for Integrated Bio and Nano Systems